/*************************************************************************** * * Copyright (C) 2007-2010 SMSC * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * *****************************************************************************/ #include <linux/module.h> #include <linux/kmod.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/usb.h> #include <linux/crc32.h> #include <linux/usb/usbnet.h> #include <linux/slab.h> #include "smsc75xx.h" #define SMSC_CHIPNAME "smsc75xx" #define SMSC_DRIVER_VERSION "1.0.0" #define HS_USB_PKT_SIZE (512) #define FS_USB_PKT_SIZE (64) #define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE) #define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE) #define DEFAULT_BULK_IN_DELAY (0x00002000) #define MAX_SINGLE_PACKET_SIZE (9000) #define LAN75XX_EEPROM_MAGIC (0x7500) #define EEPROM_MAC_OFFSET (0x01) #define DEFAULT_TX_CSUM_ENABLE (true) #define DEFAULT_RX_CSUM_ENABLE (true) #define DEFAULT_TSO_ENABLE (true) #define SMSC75XX_INTERNAL_PHY_ID (1) #define SMSC75XX_TX_OVERHEAD (8) #define MAX_RX_FIFO_SIZE (20 * 1024) #define MAX_TX_FIFO_SIZE (12 * 1024) #define USB_VENDOR_ID_SMSC (0x0424) #define USB_PRODUCT_ID_LAN7500 (0x7500) #define USB_PRODUCT_ID_LAN7505 (0x7505) #define RXW_PADDING 2 #define SUPPORTED_WAKE (WAKE_MAGIC) #define check_warn(ret, fmt, args...) \ ({ if (ret < 0) netdev_warn(dev->net, fmt, ##args); }) #define check_warn_return(ret, fmt, args...) \ ({ if (ret < 0) { netdev_warn(dev->net, fmt, ##args); return ret; } }) #define check_warn_goto_done(ret, fmt, args...) \ ({ if (ret < 0) { netdev_warn(dev->net, fmt, ##args); goto done; } }) struct smsc75xx_priv { struct usbnet *dev; u32 rfe_ctl; u32 wolopts; u32 multicast_hash_table[DP_SEL_VHF_HASH_LEN]; struct mutex dataport_mutex; spinlock_t rfe_ctl_lock; struct work_struct set_multicast; }; struct usb_context { struct usb_ctrlrequest req; struct usbnet *dev; }; static bool turbo_mode = true; module_param(turbo_mode, bool, 0644); MODULE_PARM_DESC(turbo_mode, "Enable multiple frames per Rx transaction"); static int __must_check smsc75xx_read_reg(struct usbnet *dev, u32 index, u32 *data) { u32 *buf = kmalloc(4, GFP_KERNEL); int ret; BUG_ON(!dev); if (!buf) return -ENOMEM; ret = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0), USB_VENDOR_REQUEST_READ_REGISTER, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 00, index, buf, 4, USB_CTRL_GET_TIMEOUT); if (unlikely(ret < 0)) netdev_warn(dev->net, "Failed to read reg index 0x%08x: %d", index, ret); le32_to_cpus(buf); *data = *buf; kfree(buf); return ret; } static int __must_check smsc75xx_write_reg(struct usbnet *dev, u32 index, u32 data) { u32 *buf = kmalloc(4, GFP_KERNEL); int ret; BUG_ON(!dev); if (!buf) return -ENOMEM; *buf = data; cpu_to_le32s(buf); ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), USB_VENDOR_REQUEST_WRITE_REGISTER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 00, index, buf, 4, USB_CTRL_SET_TIMEOUT); if (unlikely(ret < 0)) netdev_warn(dev->net, "Failed to write reg index 0x%08x: %d", index, ret); kfree(buf); return ret; } static int smsc75xx_set_feature(struct usbnet *dev, u32 feature) { if (WARN_ON_ONCE(!dev)) return -EINVAL; cpu_to_le32s(&feature); return usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_DEVICE, feature, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } static int smsc75xx_clear_feature(struct usbnet *dev, u32 feature) { if (WARN_ON_ONCE(!dev)) return -EINVAL; cpu_to_le32s(&feature); return usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE, feature, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } /* Loop until the read is completed with timeout * called with phy_mutex held */ static int smsc75xx_phy_wait_not_busy(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; int ret; do { ret = smsc75xx_read_reg(dev, MII_ACCESS, &val); check_warn_return(ret, "Error reading MII_ACCESS"); if (!(val & MII_ACCESS_BUSY)) return 0; } while (!time_after(jiffies, start_time + HZ)); return -EIO; } static int smsc75xx_mdio_read(struct net_device *netdev, int phy_id, int idx) { struct usbnet *dev = netdev_priv(netdev); u32 val, addr; int ret; mutex_lock(&dev->phy_mutex); /* confirm MII not busy */ ret = smsc75xx_phy_wait_not_busy(dev); check_warn_goto_done(ret, "MII is busy in smsc75xx_mdio_read"); /* set the address, index & direction (read from PHY) */ phy_id &= dev->mii.phy_id_mask; idx &= dev->mii.reg_num_mask; addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR) | ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR) | MII_ACCESS_READ | MII_ACCESS_BUSY; ret = smsc75xx_write_reg(dev, MII_ACCESS, addr); check_warn_goto_done(ret, "Error writing MII_ACCESS"); ret = smsc75xx_phy_wait_not_busy(dev); check_warn_goto_done(ret, "Timed out reading MII reg %02X", idx); ret = smsc75xx_read_reg(dev, MII_DATA, &val); check_warn_goto_done(ret, "Error reading MII_DATA"); ret = (u16)(val & 0xFFFF); done: mutex_unlock(&dev->phy_mutex); return ret; } static void smsc75xx_mdio_write(struct net_device *netdev, int phy_id, int idx, int regval) { struct usbnet *dev = netdev_priv(netdev); u32 val, addr; int ret; mutex_lock(&dev->phy_mutex); /* confirm MII not busy */ ret = smsc75xx_phy_wait_not_busy(dev); check_warn_goto_done(ret, "MII is busy in smsc75xx_mdio_write"); val = regval; ret = smsc75xx_write_reg(dev, MII_DATA, val); check_warn_goto_done(ret, "Error writing MII_DATA"); /* set the address, index & direction (write to PHY) */ phy_id &= dev->mii.phy_id_mask; idx &= dev->mii.reg_num_mask; addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR) | ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR) | MII_ACCESS_WRITE | MII_ACCESS_BUSY; ret = smsc75xx_write_reg(dev, MII_ACCESS, addr); check_warn_goto_done(ret, "Error writing MII_ACCESS"); ret = smsc75xx_phy_wait_not_busy(dev); check_warn_goto_done(ret, "Timed out writing MII reg %02X", idx); done: mutex_unlock(&dev->phy_mutex); } static int smsc75xx_wait_eeprom(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; int ret; do { ret = smsc75xx_read_reg(dev, E2P_CMD, &val); check_warn_return(ret, "Error reading E2P_CMD"); if (!(val & E2P_CMD_BUSY) || (val & E2P_CMD_TIMEOUT)) break; udelay(40); } while (!time_after(jiffies, start_time + HZ)); if (val & (E2P_CMD_TIMEOUT | E2P_CMD_BUSY)) { netdev_warn(dev->net, "EEPROM read operation timeout"); return -EIO; } return 0; } static int smsc75xx_eeprom_confirm_not_busy(struct usbnet *dev) { unsigned long start_time = jiffies; u32 val; int ret; do { ret = smsc75xx_read_reg(dev, E2P_CMD, &val); check_warn_return(ret, "Error reading E2P_CMD"); if (!(val & E2P_CMD_BUSY)) return 0; udelay(40); } while (!time_after(jiffies, start_time + HZ)); netdev_warn(dev->net, "EEPROM is busy"); return -EIO; } static int smsc75xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length, u8 *data) { u32 val; int i, ret; BUG_ON(!dev); BUG_ON(!data); ret = smsc75xx_eeprom_confirm_not_busy(dev); if (ret) return ret; for (i = 0; i < length; i++) { val = E2P_CMD_BUSY | E2P_CMD_READ | (offset & E2P_CMD_ADDR); ret = smsc75xx_write_reg(dev, E2P_CMD, val); check_warn_return(ret, "Error writing E2P_CMD"); ret = smsc75xx_wait_eeprom(dev); if (ret < 0) return ret; ret = smsc75xx_read_reg(dev, E2P_DATA, &val); check_warn_return(ret, "Error reading E2P_DATA"); data[i] = val & 0xFF; offset++; } return 0; } static int smsc75xx_write_eeprom(struct usbnet *dev, u32 offset, u32 length, u8 *data) { u32 val; int i, ret; BUG_ON(!dev); BUG_ON(!data); ret = smsc75xx_eeprom_confirm_not_busy(dev); if (ret) return ret; /* Issue write/erase enable command */ val = E2P_CMD_BUSY | E2P_CMD_EWEN; ret = smsc75xx_write_reg(dev, E2P_CMD, val); check_warn_return(ret, "Error writing E2P_CMD"); ret = smsc75xx_wait_eeprom(dev); if (ret < 0) return ret; for (i = 0; i < length; i++) { /* Fill data register */ val = data[i]; ret = smsc75xx_write_reg(dev, E2P_DATA, val); check_warn_return(ret, "Error writing E2P_DATA"); /* Send "write" command */ val = E2P_CMD_BUSY | E2P_CMD_WRITE | (offset & E2P_CMD_ADDR); ret = smsc75xx_write_reg(dev, E2P_CMD, val); check_warn_return(ret, "Error writing E2P_CMD"); ret = smsc75xx_wait_eeprom(dev); if (ret < 0) return ret; offset++; } return 0; } static int smsc75xx_dataport_wait_not_busy(struct usbnet *dev) { int i, ret; for (i = 0; i < 100; i++) { u32 dp_sel; ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel); check_warn_return(ret, "Error reading DP_SEL"); if (dp_sel & DP_SEL_DPRDY) return 0; udelay(40); } netdev_warn(dev->net, "smsc75xx_dataport_wait_not_busy timed out"); return -EIO; } static int smsc75xx_dataport_write(struct usbnet *dev, u32 ram_select, u32 addr, u32 length, u32 *buf) { struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); u32 dp_sel; int i, ret; mutex_lock(&pdata->dataport_mutex); ret = smsc75xx_dataport_wait_not_busy(dev); check_warn_goto_done(ret, "smsc75xx_dataport_write busy on entry"); ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel); check_warn_goto_done(ret, "Error reading DP_SEL"); dp_sel &= ~DP_SEL_RSEL; dp_sel |= ram_select; ret = smsc75xx_write_reg(dev, DP_SEL, dp_sel); check_warn_goto_done(ret, "Error writing DP_SEL"); for (i = 0; i < length; i++) { ret = smsc75xx_write_reg(dev, DP_ADDR, addr + i); check_warn_goto_done(ret, "Error writing DP_ADDR"); ret = smsc75xx_write_reg(dev, DP_DATA, buf[i]); check_warn_goto_done(ret, "Error writing DP_DATA"); ret = smsc75xx_write_reg(dev, DP_CMD, DP_CMD_WRITE); check_warn_goto_done(ret, "Error writing DP_CMD"); ret = smsc75xx_dataport_wait_not_busy(dev); check_warn_goto_done(ret, "smsc75xx_dataport_write timeout"); } done: mutex_unlock(&pdata->dataport_mutex); return ret; } /* returns hash bit number for given MAC address */ static u32 smsc75xx_hash(char addr[ETH_ALEN]) { return (ether_crc(ETH_ALEN, addr) >> 23) & 0x1ff; } static void smsc75xx_deferred_multicast_write(struct work_struct *param) { struct smsc75xx_priv *pdata = container_of(param, struct smsc75xx_priv, set_multicast); struct usbnet *dev = pdata->dev; int ret; netif_dbg(dev, drv, dev->net, "deferred multicast write 0x%08x", pdata->rfe_ctl); smsc75xx_dataport_write(dev, DP_SEL_VHF, DP_SEL_VHF_VLAN_LEN, DP_SEL_VHF_HASH_LEN, pdata->multicast_hash_table); ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl); check_warn(ret, "Error writing RFE_CRL"); } static void smsc75xx_set_multicast(struct net_device *netdev) { struct usbnet *dev = netdev_priv(netdev); struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); unsigned long flags; int i; spin_lock_irqsave(&pdata->rfe_ctl_lock, flags); pdata->rfe_ctl &= ~(RFE_CTL_AU | RFE_CTL_AM | RFE_CTL_DPF | RFE_CTL_MHF); pdata->rfe_ctl |= RFE_CTL_AB; for (i = 0; i < DP_SEL_VHF_HASH_LEN; i++) pdata->multicast_hash_table[i] = 0; if (dev->net->flags & IFF_PROMISC) { netif_dbg(dev, drv, dev->net, "promiscuous mode enabled"); pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_AU; } else if (dev->net->flags & IFF_ALLMULTI) { netif_dbg(dev, drv, dev->net, "receive all multicast enabled"); pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_DPF; } else if (!netdev_mc_empty(dev->net)) { struct netdev_hw_addr *ha; netif_dbg(dev, drv, dev->net, "receive multicast hash filter"); pdata->rfe_ctl |= RFE_CTL_MHF | RFE_CTL_DPF; netdev_for_each_mc_addr(ha, netdev) { u32 bitnum = smsc75xx_hash(ha->addr); pdata->multicast_hash_table[bitnum / 32] |= (1 << (bitnum % 32)); } } else { netif_dbg(dev, drv, dev->net, "receive own packets only"); pdata->rfe_ctl |= RFE_CTL_DPF; } spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags); /* defer register writes to a sleepable context */ schedule_work(&pdata->set_multicast); } static int smsc75xx_update_flowcontrol(struct usbnet *dev, u8 duplex, u16 lcladv, u16 rmtadv) { u32 flow = 0, fct_flow = 0; int ret; if (duplex == DUPLEX_FULL) { u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv); if (cap & FLOW_CTRL_TX) { flow = (FLOW_TX_FCEN | 0xFFFF); /* set fct_flow thresholds to 20% and 80% */ fct_flow = (8 << 8) | 32; } if (cap & FLOW_CTRL_RX) flow |= FLOW_RX_FCEN; netif_dbg(dev, link, dev->net, "rx pause %s, tx pause %s", (cap & FLOW_CTRL_RX ? "enabled" : "disabled"), (cap & FLOW_CTRL_TX ? "enabled" : "disabled")); } else { netif_dbg(dev, link, dev->net, "half duplex"); } ret = smsc75xx_write_reg(dev, FLOW, flow); check_warn_return(ret, "Error writing FLOW"); ret = smsc75xx_write_reg(dev, FCT_FLOW, fct_flow); check_warn_return(ret, "Error writing FCT_FLOW"); return 0; } static int smsc75xx_link_reset(struct usbnet *dev) { struct mii_if_info *mii = &dev->mii; struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET }; u16 lcladv, rmtadv; int ret; /* write to clear phy interrupt status */ smsc75xx_mdio_write(dev->net, mii->phy_id, PHY_INT_SRC, PHY_INT_SRC_CLEAR_ALL); ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL); check_warn_return(ret, "Error writing INT_STS"); mii_check_media(mii, 1, 1); mii_ethtool_gset(&dev->mii, &ecmd); lcladv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_ADVERTISE); rmtadv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_LPA); netif_dbg(dev, link, dev->net, "speed: %u duplex: %d lcladv: %04x" " rmtadv: %04x", ethtool_cmd_speed(&ecmd), ecmd.duplex, lcladv, rmtadv); return smsc75xx_update_flowcontrol(dev, ecmd.duplex, lcladv, rmtadv); } static void smsc75xx_status(struct usbnet *dev, struct urb *urb) { u32 intdata; if (urb->actual_length != 4) { netdev_warn(dev->net, "unexpected urb length %d", urb->actual_length); return; } memcpy(&intdata, urb->transfer_buffer, 4); le32_to_cpus(&intdata); netif_dbg(dev, link, dev->net, "intdata: 0x%08X", intdata); if (intdata & INT_ENP_PHY_INT) usbnet_defer_kevent(dev, EVENT_LINK_RESET); else netdev_warn(dev->net, "unexpected interrupt, intdata=0x%08X", intdata); } static int smsc75xx_ethtool_get_eeprom_len(struct net_device *net) { return MAX_EEPROM_SIZE; } static int smsc75xx_ethtool_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *ee, u8 *data) { struct usbnet *dev = netdev_priv(netdev); ee->magic = LAN75XX_EEPROM_MAGIC; return smsc75xx_read_eeprom(dev, ee->offset, ee->len, data); } static int smsc75xx_ethtool_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *ee, u8 *data) { struct usbnet *dev = netdev_priv(netdev); if (ee->magic != LAN75XX_EEPROM_MAGIC) { netdev_warn(dev->net, "EEPROM: magic value mismatch: 0x%x", ee->magic); return -EINVAL; } return smsc75xx_write_eeprom(dev, ee->offset, ee->len, data); } static void smsc75xx_ethtool_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); wolinfo->supported = SUPPORTED_WAKE; wolinfo->wolopts = pdata->wolopts; } static int smsc75xx_ethtool_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo) { struct usbnet *dev = netdev_priv(net); struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); pdata->wolopts = wolinfo->wolopts & SUPPORTED_WAKE; return 0; } static const struct ethtool_ops smsc75xx_ethtool_ops = { .get_link = usbnet_get_link, .nway_reset = usbnet_nway_reset, .get_drvinfo = usbnet_get_drvinfo, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_settings = usbnet_get_settings, .set_settings = usbnet_set_settings, .get_eeprom_len = smsc75xx_ethtool_get_eeprom_len, .get_eeprom = smsc75xx_ethtool_get_eeprom, .set_eeprom = smsc75xx_ethtool_set_eeprom, .get_wol = smsc75xx_ethtool_get_wol, .set_wol = smsc75xx_ethtool_set_wol, }; static int smsc75xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { struct usbnet *dev = netdev_priv(netdev); if (!netif_running(netdev)) return -EINVAL; return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); } static void smsc75xx_init_mac_address(struct usbnet *dev) { /* try reading mac address from EEPROM */ if (smsc75xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN, dev->net->dev_addr) == 0) { if (is_valid_ether_addr(dev->net->dev_addr)) { /* eeprom values are valid so use them */ netif_dbg(dev, ifup, dev->net, "MAC address read from EEPROM"); return; } } /* no eeprom, or eeprom values are invalid. generate random MAC */ eth_hw_addr_random(dev->net); netif_dbg(dev, ifup, dev->net, "MAC address set to eth_random_addr"); } static int smsc75xx_set_mac_address(struct usbnet *dev) { u32 addr_lo = dev->net->dev_addr[0] | dev->net->dev_addr[1] << 8 | dev->net->dev_addr[2] << 16 | dev->net->dev_addr[3] << 24; u32 addr_hi = dev->net->dev_addr[4] | dev->net->dev_addr[5] << 8; int ret = smsc75xx_write_reg(dev, RX_ADDRH, addr_hi); check_warn_return(ret, "Failed to write RX_ADDRH: %d", ret); ret = smsc75xx_write_reg(dev, RX_ADDRL, addr_lo); check_warn_return(ret, "Failed to write RX_ADDRL: %d", ret); addr_hi |= ADDR_FILTX_FB_VALID; ret = smsc75xx_write_reg(dev, ADDR_FILTX, addr_hi); check_warn_return(ret, "Failed to write ADDR_FILTX: %d", ret); ret = smsc75xx_write_reg(dev, ADDR_FILTX + 4, addr_lo); check_warn_return(ret, "Failed to write ADDR_FILTX+4: %d", ret); return 0; } static int smsc75xx_phy_initialize(struct usbnet *dev) { int bmcr, ret, timeout = 0; /* Initialize MII structure */ dev->mii.dev = dev->net; dev->mii.mdio_read = smsc75xx_mdio_read; dev->mii.mdio_write = smsc75xx_mdio_write; dev->mii.phy_id_mask = 0x1f; dev->mii.reg_num_mask = 0x1f; dev->mii.supports_gmii = 1; dev->mii.phy_id = SMSC75XX_INTERNAL_PHY_ID; /* reset phy and wait for reset to complete */ smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET); do { msleep(10); bmcr = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, MII_BMCR); check_warn_return(bmcr, "Error reading MII_BMCR"); timeout++; } while ((bmcr & BMCR_RESET) && (timeout < 100)); if (timeout >= 100) { netdev_warn(dev->net, "timeout on PHY Reset"); return -EIO; } smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_CTRL1000, ADVERTISE_1000FULL); /* read and write to clear phy interrupt status */ ret = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, PHY_INT_SRC); check_warn_return(ret, "Error reading PHY_INT_SRC"); smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_SRC, 0xffff); smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_MASK, PHY_INT_MASK_DEFAULT); mii_nway_restart(&dev->mii); netif_dbg(dev, ifup, dev->net, "phy initialised successfully"); return 0; } static int smsc75xx_set_rx_max_frame_length(struct usbnet *dev, int size) { int ret = 0; u32 buf; bool rxenabled; ret = smsc75xx_read_reg(dev, MAC_RX, &buf); check_warn_return(ret, "Failed to read MAC_RX: %d", ret); rxenabled = ((buf & MAC_RX_RXEN) != 0); if (rxenabled) { buf &= ~MAC_RX_RXEN; ret = smsc75xx_write_reg(dev, MAC_RX, buf); check_warn_return(ret, "Failed to write MAC_RX: %d", ret); } /* add 4 to size for FCS */ buf &= ~MAC_RX_MAX_SIZE; buf |= (((size + 4) << MAC_RX_MAX_SIZE_SHIFT) & MAC_RX_MAX_SIZE); ret = smsc75xx_write_reg(dev, MAC_RX, buf); check_warn_return(ret, "Failed to write MAC_RX: %d", ret); if (rxenabled) { buf |= MAC_RX_RXEN; ret = smsc75xx_write_reg(dev, MAC_RX, buf); check_warn_return(ret, "Failed to write MAC_RX: %d", ret); } return 0; } static int smsc75xx_change_mtu(struct net_device *netdev, int new_mtu) { struct usbnet *dev = netdev_priv(netdev); int ret = smsc75xx_set_rx_max_frame_length(dev, new_mtu); check_warn_return(ret, "Failed to set mac rx frame length"); return usbnet_change_mtu(netdev, new_mtu); } /* Enable or disable Rx checksum offload engine */ static int smsc75xx_set_features(struct net_device *netdev, netdev_features_t features) { struct usbnet *dev = netdev_priv(netdev); struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); unsigned long flags; int ret; spin_lock_irqsave(&pdata->rfe_ctl_lock, flags); if (features & NETIF_F_RXCSUM) pdata->rfe_ctl |= RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM; else pdata->rfe_ctl &= ~(RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM); spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags); /* it's racing here! */ ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl); check_warn_return(ret, "Error writing RFE_CTL"); return 0; } static int smsc75xx_wait_ready(struct usbnet *dev) { int timeout = 0; do { u32 buf; int ret = smsc75xx_read_reg(dev, PMT_CTL, &buf); check_warn_return(ret, "Failed to read PMT_CTL: %d", ret); if (buf & PMT_CTL_DEV_RDY) return 0; msleep(10); timeout++; } while (timeout < 100); netdev_warn(dev->net, "timeout waiting for device ready"); return -EIO; } static int smsc75xx_reset(struct usbnet *dev) { struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); u32 buf; int ret = 0, timeout; netif_dbg(dev, ifup, dev->net, "entering smsc75xx_reset"); ret = smsc75xx_wait_ready(dev); check_warn_return(ret, "device not ready in smsc75xx_reset"); ret = smsc75xx_read_reg(dev, HW_CFG, &buf); check_warn_return(ret, "Failed to read HW_CFG: %d", ret); buf |= HW_CFG_LRST; ret = smsc75xx_write_reg(dev, HW_CFG, buf); check_warn_return(ret, "Failed to write HW_CFG: %d", ret); timeout = 0; do { msleep(10); ret = smsc75xx_read_reg(dev, HW_CFG, &buf); check_warn_return(ret, "Failed to read HW_CFG: %d", ret); timeout++; } while ((buf & HW_CFG_LRST) && (timeout < 100)); if (timeout >= 100) { netdev_warn(dev->net, "timeout on completion of Lite Reset"); return -EIO; } netif_dbg(dev, ifup, dev->net, "Lite reset complete, resetting PHY"); ret = smsc75xx_read_reg(dev, PMT_CTL, &buf); check_warn_return(ret, "Failed to read PMT_CTL: %d", ret); buf |= PMT_CTL_PHY_RST; ret = smsc75xx_write_reg(dev, PMT_CTL, buf); check_warn_return(ret, "Failed to write PMT_CTL: %d", ret); timeout = 0; do { msleep(10); ret = smsc75xx_read_reg(dev, PMT_CTL, &buf); check_warn_return(ret, "Failed to read PMT_CTL: %d", ret); timeout++; } while ((buf & PMT_CTL_PHY_RST) && (timeout < 100)); if (timeout >= 100) { netdev_warn(dev->net, "timeout waiting for PHY Reset"); return -EIO; } netif_dbg(dev, ifup, dev->net, "PHY reset complete"); smsc75xx_init_mac_address(dev); ret = smsc75xx_set_mac_address(dev); check_warn_return(ret, "Failed to set mac address"); netif_dbg(dev, ifup, dev->net, "MAC Address: %pM", dev->net->dev_addr); ret = smsc75xx_read_reg(dev, HW_CFG, &buf); check_warn_return(ret, "Failed to read HW_CFG: %d", ret); netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG : 0x%08x", buf); buf |= HW_CFG_BIR; ret = smsc75xx_write_reg(dev, HW_CFG, buf); check_warn_return(ret, "Failed to write HW_CFG: %d", ret); ret = smsc75xx_read_reg(dev, HW_CFG, &buf); check_warn_return(ret, "Failed to read HW_CFG: %d", ret); netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG after " "writing HW_CFG_BIR: 0x%08x", buf); if (!turbo_mode) { buf = 0; dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE; } else if (dev->udev->speed == USB_SPEED_HIGH) { buf = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE; dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE; } else { buf = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE; dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE; } netif_dbg(dev, ifup, dev->net, "rx_urb_size=%ld", (ulong)dev->rx_urb_size); ret = smsc75xx_write_reg(dev, BURST_CAP, buf); check_warn_return(ret, "Failed to write BURST_CAP: %d", ret); ret = smsc75xx_read_reg(dev, BURST_CAP, &buf); check_warn_return(ret, "Failed to read BURST_CAP: %d", ret); netif_dbg(dev, ifup, dev->net, "Read Value from BURST_CAP after writing: 0x%08x", buf); ret = smsc75xx_write_reg(dev, BULK_IN_DLY, DEFAULT_BULK_IN_DELAY); check_warn_return(ret, "Failed to write BULK_IN_DLY: %d", ret); ret = smsc75xx_read_reg(dev, BULK_IN_DLY, &buf); check_warn_return(ret, "Failed to read BULK_IN_DLY: %d", ret); netif_dbg(dev, ifup, dev->net, "Read Value from BULK_IN_DLY after writing: 0x%08x", buf); if (turbo_mode) { ret = smsc75xx_read_reg(dev, HW_CFG, &buf); check_warn_return(ret, "Failed to read HW_CFG: %d", ret); netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x", buf); buf |= (HW_CFG_MEF | HW_CFG_BCE); ret = smsc75xx_write_reg(dev, HW_CFG, buf); check_warn_return(ret, "Failed to write HW_CFG: %d", ret); ret = smsc75xx_read_reg(dev, HW_CFG, &buf); check_warn_return(ret, "Failed to read HW_CFG: %d", ret); netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x", buf); } /* set FIFO sizes */ buf = (MAX_RX_FIFO_SIZE - 512) / 512; ret = smsc75xx_write_reg(dev, FCT_RX_FIFO_END, buf); check_warn_return(ret, "Failed to write FCT_RX_FIFO_END: %d", ret); netif_dbg(dev, ifup, dev->net, "FCT_RX_FIFO_END set to 0x%08x", buf); buf = (MAX_TX_FIFO_SIZE - 512) / 512; ret = smsc75xx_write_reg(dev, FCT_TX_FIFO_END, buf); check_warn_return(ret, "Failed to write FCT_TX_FIFO_END: %d", ret); netif_dbg(dev, ifup, dev->net, "FCT_TX_FIFO_END set to 0x%08x", buf); ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL); check_warn_return(ret, "Failed to write INT_STS: %d", ret); ret = smsc75xx_read_reg(dev, ID_REV, &buf); check_warn_return(ret, "Failed to read ID_REV: %d", ret); netif_dbg(dev, ifup, dev->net, "ID_REV = 0x%08x", buf); ret = smsc75xx_read_reg(dev, E2P_CMD, &buf); check_warn_return(ret, "Failed to read E2P_CMD: %d", ret); /* only set default GPIO/LED settings if no EEPROM is detected */ if (!(buf & E2P_CMD_LOADED)) { ret = smsc75xx_read_reg(dev, LED_GPIO_CFG, &buf); check_warn_return(ret, "Failed to read LED_GPIO_CFG: %d", ret); buf &= ~(LED_GPIO_CFG_LED2_FUN_SEL | LED_GPIO_CFG_LED10_FUN_SEL); buf |= LED_GPIO_CFG_LEDGPIO_EN | LED_GPIO_CFG_LED2_FUN_SEL; ret = smsc75xx_write_reg(dev, LED_GPIO_CFG, buf); check_warn_return(ret, "Failed to write LED_GPIO_CFG: %d", ret); } ret = smsc75xx_write_reg(dev, FLOW, 0); check_warn_return(ret, "Failed to write FLOW: %d", ret); ret = smsc75xx_write_reg(dev, FCT_FLOW, 0); check_warn_return(ret, "Failed to write FCT_FLOW: %d", ret); /* Don't need rfe_ctl_lock during initialisation */ ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl); check_warn_return(ret, "Failed to read RFE_CTL: %d", ret); pdata->rfe_ctl |= RFE_CTL_AB | RFE_CTL_DPF; ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl); check_warn_return(ret, "Failed to write RFE_CTL: %d", ret); ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl); check_warn_return(ret, "Failed to read RFE_CTL: %d", ret); netif_dbg(dev, ifup, dev->net, "RFE_CTL set to 0x%08x", pdata->rfe_ctl); /* Enable or disable checksum offload engines */ smsc75xx_set_features(dev->net, dev->net->features); smsc75xx_set_multicast(dev->net); ret = smsc75xx_phy_initialize(dev); check_warn_return(ret, "Failed to initialize PHY: %d", ret); ret = smsc75xx_read_reg(dev, INT_EP_CTL, &buf); check_warn_return(ret, "Failed to read INT_EP_CTL: %d", ret); /* enable PHY interrupts */ buf |= INT_ENP_PHY_INT; ret = smsc75xx_write_reg(dev, INT_EP_CTL, buf); check_warn_return(ret, "Failed to write INT_EP_CTL: %d", ret); /* allow mac to detect speed and duplex from phy */ ret = smsc75xx_read_reg(dev, MAC_CR, &buf); check_warn_return(ret, "Failed to read MAC_CR: %d", ret); buf |= (MAC_CR_ADD | MAC_CR_ASD); ret = smsc75xx_write_reg(dev, MAC_CR, buf); check_warn_return(ret, "Failed to write MAC_CR: %d", ret); ret = smsc75xx_read_reg(dev, MAC_TX, &buf); check_warn_return(ret, "Failed to read MAC_TX: %d", ret); buf |= MAC_TX_TXEN; ret = smsc75xx_write_reg(dev, MAC_TX, buf); check_warn_return(ret, "Failed to write MAC_TX: %d", ret); netif_dbg(dev, ifup, dev->net, "MAC_TX set to 0x%08x", buf); ret = smsc75xx_read_reg(dev, FCT_TX_CTL, &buf); check_warn_return(ret, "Failed to read FCT_TX_CTL: %d", ret); buf |= FCT_TX_CTL_EN; ret = smsc75xx_write_reg(dev, FCT_TX_CTL, buf); check_warn_return(ret, "Failed to write FCT_TX_CTL: %d", ret); netif_dbg(dev, ifup, dev->net, "FCT_TX_CTL set to 0x%08x", buf); ret = smsc75xx_set_rx_max_frame_length(dev, 1514); check_warn_return(ret, "Failed to set max rx frame length"); ret = smsc75xx_read_reg(dev, MAC_RX, &buf); check_warn_return(ret, "Failed to read MAC_RX: %d", ret); buf |= MAC_RX_RXEN; ret = smsc75xx_write_reg(dev, MAC_RX, buf); check_warn_return(ret, "Failed to write MAC_RX: %d", ret); netif_dbg(dev, ifup, dev->net, "MAC_RX set to 0x%08x", buf); ret = smsc75xx_read_reg(dev, FCT_RX_CTL, &buf); check_warn_return(ret, "Failed to read FCT_RX_CTL: %d", ret); buf |= FCT_RX_CTL_EN; ret = smsc75xx_write_reg(dev, FCT_RX_CTL, buf); check_warn_return(ret, "Failed to write FCT_RX_CTL: %d", ret); netif_dbg(dev, ifup, dev->net, "FCT_RX_CTL set to 0x%08x", buf); netif_dbg(dev, ifup, dev->net, "smsc75xx_reset, return 0"); return 0; } static const struct net_device_ops smsc75xx_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = smsc75xx_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = smsc75xx_ioctl, .ndo_set_rx_mode = smsc75xx_set_multicast, .ndo_set_features = smsc75xx_set_features, }; static int smsc75xx_bind(struct usbnet *dev, struct usb_interface *intf) { struct smsc75xx_priv *pdata = NULL; int ret; printk(KERN_INFO SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n"); ret = usbnet_get_endpoints(dev, intf); check_warn_return(ret, "usbnet_get_endpoints failed: %d", ret); dev->data[0] = (unsigned long)kzalloc(sizeof(struct smsc75xx_priv), GFP_KERNEL); pdata = (struct smsc75xx_priv *)(dev->data[0]); if (!pdata) { netdev_warn(dev->net, "Unable to allocate smsc75xx_priv"); return -ENOMEM; } pdata->dev = dev; spin_lock_init(&pdata->rfe_ctl_lock); mutex_init(&pdata->dataport_mutex); INIT_WORK(&pdata->set_multicast, smsc75xx_deferred_multicast_write); if (DEFAULT_TX_CSUM_ENABLE) { dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; if (DEFAULT_TSO_ENABLE) dev->net->features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6; } if (DEFAULT_RX_CSUM_ENABLE) dev->net->features |= NETIF_F_RXCSUM; dev->net->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXCSUM; /* Init all registers */ ret = smsc75xx_reset(dev); dev->net->netdev_ops = &smsc75xx_netdev_ops; dev->net->ethtool_ops = &smsc75xx_ethtool_ops; dev->net->flags |= IFF_MULTICAST; dev->net->hard_header_len += SMSC75XX_TX_OVERHEAD; dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len; return 0; } static void smsc75xx_unbind(struct usbnet *dev, struct usb_interface *intf) { struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); if (pdata) { netif_dbg(dev, ifdown, dev->net, "free pdata"); kfree(pdata); pdata = NULL; dev->data[0] = 0; } } static int smsc75xx_suspend(struct usb_interface *intf, pm_message_t message) { struct usbnet *dev = usb_get_intfdata(intf); struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); int ret; u32 val; ret = usbnet_suspend(intf, message); check_warn_return(ret, "usbnet_suspend error"); /* if no wol options set, enter lowest power SUSPEND2 mode */ if (!(pdata->wolopts & SUPPORTED_WAKE)) { netdev_info(dev->net, "entering SUSPEND2 mode"); /* disable energy detect (link up) & wake up events */ ret = smsc75xx_read_reg(dev, WUCSR, &val); check_warn_return(ret, "Error reading WUCSR"); val &= ~(WUCSR_MPEN | WUCSR_WUEN); ret = smsc75xx_write_reg(dev, WUCSR, val); check_warn_return(ret, "Error writing WUCSR"); ret = smsc75xx_read_reg(dev, PMT_CTL, &val); check_warn_return(ret, "Error reading PMT_CTL"); val &= ~(PMT_CTL_ED_EN | PMT_CTL_WOL_EN); ret = smsc75xx_write_reg(dev, PMT_CTL, val); check_warn_return(ret, "Error writing PMT_CTL"); /* enter suspend2 mode */ ret = smsc75xx_read_reg(dev, PMT_CTL, &val); check_warn_return(ret, "Error reading PMT_CTL"); val &= ~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST); val |= PMT_CTL_SUS_MODE_2; ret = smsc75xx_write_reg(dev, PMT_CTL, val); check_warn_return(ret, "Error writing PMT_CTL"); return 0; } if (pdata->wolopts & WAKE_MAGIC) { /* clear any pending magic packet status */ ret = smsc75xx_read_reg(dev, WUCSR, &val); check_warn_return(ret, "Error reading WUCSR"); val |= WUCSR_MPR; ret = smsc75xx_write_reg(dev, WUCSR, val); check_warn_return(ret, "Error writing WUCSR"); } /* enable/disable magic packup wake */ ret = smsc75xx_read_reg(dev, WUCSR, &val); check_warn_return(ret, "Error reading WUCSR"); if (pdata->wolopts & WAKE_MAGIC) { netdev_info(dev->net, "enabling magic packet wakeup"); val |= WUCSR_MPEN; } else { netdev_info(dev->net, "disabling magic packet wakeup"); val &= ~WUCSR_MPEN; } ret = smsc75xx_write_reg(dev, WUCSR, val); check_warn_return(ret, "Error writing WUCSR"); /* enable wol wakeup source */ ret = smsc75xx_read_reg(dev, PMT_CTL, &val); check_warn_return(ret, "Error reading PMT_CTL"); val |= PMT_CTL_WOL_EN; ret = smsc75xx_write_reg(dev, PMT_CTL, val); check_warn_return(ret, "Error writing PMT_CTL"); /* enable receiver */ ret = smsc75xx_read_reg(dev, MAC_RX, &val); check_warn_return(ret, "Failed to read MAC_RX: %d", ret); val |= MAC_RX_RXEN; ret = smsc75xx_write_reg(dev, MAC_RX, val); check_warn_return(ret, "Failed to write MAC_RX: %d", ret); /* some wol options are enabled, so enter SUSPEND0 */ netdev_info(dev->net, "entering SUSPEND0 mode"); ret = smsc75xx_read_reg(dev, PMT_CTL, &val); check_warn_return(ret, "Error reading PMT_CTL"); val &= (~(PMT_CTL_SUS_MODE | PMT_CTL_WUPS | PMT_CTL_PHY_RST)); val |= PMT_CTL_SUS_MODE_0; ret = smsc75xx_write_reg(dev, PMT_CTL, val); check_warn_return(ret, "Error writing PMT_CTL"); /* clear wol status */ val &= ~PMT_CTL_WUPS; val |= PMT_CTL_WUPS_WOL; ret = smsc75xx_write_reg(dev, PMT_CTL, val); check_warn_return(ret, "Error writing PMT_CTL"); /* read back PMT_CTL */ ret = smsc75xx_read_reg(dev, PMT_CTL, &val); check_warn_return(ret, "Error reading PMT_CTL"); smsc75xx_set_feature(dev, USB_DEVICE_REMOTE_WAKEUP); return 0; } static int smsc75xx_resume(struct usb_interface *intf) { struct usbnet *dev = usb_get_intfdata(intf); struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]); int ret; u32 val; if (pdata->wolopts & WAKE_MAGIC) { netdev_info(dev->net, "resuming from SUSPEND0"); smsc75xx_clear_feature(dev, USB_DEVICE_REMOTE_WAKEUP); /* Disable magic packup wake */ ret = smsc75xx_read_reg(dev, WUCSR, &val); check_warn_return(ret, "Error reading WUCSR"); val &= ~WUCSR_MPEN; ret = smsc75xx_write_reg(dev, WUCSR, val); check_warn_return(ret, "Error writing WUCSR"); /* clear wake-up status */ ret = smsc75xx_read_reg(dev, PMT_CTL, &val); check_warn_return(ret, "Error reading PMT_CTL"); val &= ~PMT_CTL_WOL_EN; val |= PMT_CTL_WUPS; ret = smsc75xx_write_reg(dev, PMT_CTL, val); check_warn_return(ret, "Error writing PMT_CTL"); } else { netdev_info(dev->net, "resuming from SUSPEND2"); ret = smsc75xx_read_reg(dev, PMT_CTL, &val); check_warn_return(ret, "Error reading PMT_CTL"); val |= PMT_CTL_PHY_PWRUP; ret = smsc75xx_write_reg(dev, PMT_CTL, val); check_warn_return(ret, "Error writing PMT_CTL"); } ret = smsc75xx_wait_ready(dev); check_warn_return(ret, "device not ready in smsc75xx_resume"); return usbnet_resume(intf); } static void smsc75xx_rx_csum_offload(struct usbnet *dev, struct sk_buff *skb, u32 rx_cmd_a, u32 rx_cmd_b) { if (!(dev->net->features & NETIF_F_RXCSUM) || unlikely(rx_cmd_a & RX_CMD_A_LCSM)) { skb->ip_summed = CHECKSUM_NONE; } else { skb->csum = ntohs((u16)(rx_cmd_b >> RX_CMD_B_CSUM_SHIFT)); skb->ip_summed = CHECKSUM_COMPLETE; } } static int smsc75xx_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { while (skb->len > 0) { u32 rx_cmd_a, rx_cmd_b, align_count, size; struct sk_buff *ax_skb; unsigned char *packet; memcpy(&rx_cmd_a, skb->data, sizeof(rx_cmd_a)); le32_to_cpus(&rx_cmd_a); skb_pull(skb, 4); memcpy(&rx_cmd_b, skb->data, sizeof(rx_cmd_b)); le32_to_cpus(&rx_cmd_b); skb_pull(skb, 4 + RXW_PADDING); packet = skb->data; /* get the packet length */ size = (rx_cmd_a & RX_CMD_A_LEN) - RXW_PADDING; align_count = (4 - ((size + RXW_PADDING) % 4)) % 4; if (unlikely(rx_cmd_a & RX_CMD_A_RED)) { netif_dbg(dev, rx_err, dev->net, "Error rx_cmd_a=0x%08x", rx_cmd_a); dev->net->stats.rx_errors++; dev->net->stats.rx_dropped++; if (rx_cmd_a & RX_CMD_A_FCS) dev->net->stats.rx_crc_errors++; else if (rx_cmd_a & (RX_CMD_A_LONG | RX_CMD_A_RUNT)) dev->net->stats.rx_frame_errors++; } else { /* ETH_FRAME_LEN + 4(CRC) + 2(COE) + 4(Vlan) */ if (unlikely(size > (ETH_FRAME_LEN + 12))) { netif_dbg(dev, rx_err, dev->net, "size err rx_cmd_a=0x%08x", rx_cmd_a); return 0; } /* last frame in this batch */ if (skb->len == size) { smsc75xx_rx_csum_offload(dev, skb, rx_cmd_a, rx_cmd_b); skb_trim(skb, skb->len - 4); /* remove fcs */ skb->truesize = size + sizeof(struct sk_buff); return 1; } ax_skb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!ax_skb)) { netdev_warn(dev->net, "Error allocating skb"); return 0; } ax_skb->len = size; ax_skb->data = packet; skb_set_tail_pointer(ax_skb, size); smsc75xx_rx_csum_offload(dev, ax_skb, rx_cmd_a, rx_cmd_b); skb_trim(ax_skb, ax_skb->len - 4); /* remove fcs */ ax_skb->truesize = size + sizeof(struct sk_buff); usbnet_skb_return(dev, ax_skb); } skb_pull(skb, size); /* padding bytes before the next frame starts */ if (skb->len) skb_pull(skb, align_count); } if (unlikely(skb->len < 0)) { netdev_warn(dev->net, "invalid rx length<0 %d", skb->len); return 0; } return 1; } static struct sk_buff *smsc75xx_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { u32 tx_cmd_a, tx_cmd_b; skb_linearize(skb); if (skb_headroom(skb) < SMSC75XX_TX_OVERHEAD) { struct sk_buff *skb2 = skb_copy_expand(skb, SMSC75XX_TX_OVERHEAD, 0, flags); dev_kfree_skb_any(skb); skb = skb2; if (!skb) return NULL; } tx_cmd_a = (u32)(skb->len & TX_CMD_A_LEN) | TX_CMD_A_FCS; if (skb->ip_summed == CHECKSUM_PARTIAL) tx_cmd_a |= TX_CMD_A_IPE | TX_CMD_A_TPE; if (skb_is_gso(skb)) { u16 mss = max(skb_shinfo(skb)->gso_size, TX_MSS_MIN); tx_cmd_b = (mss << TX_CMD_B_MSS_SHIFT) & TX_CMD_B_MSS; tx_cmd_a |= TX_CMD_A_LSO; } else { tx_cmd_b = 0; } skb_push(skb, 4); cpu_to_le32s(&tx_cmd_b); memcpy(skb->data, &tx_cmd_b, 4); skb_push(skb, 4); cpu_to_le32s(&tx_cmd_a); memcpy(skb->data, &tx_cmd_a, 4); return skb; } static const struct driver_info smsc75xx_info = { .description = "smsc75xx USB 2.0 Gigabit Ethernet", .bind = smsc75xx_bind, .unbind = smsc75xx_unbind, .link_reset = smsc75xx_link_reset, .reset = smsc75xx_reset, .rx_fixup = smsc75xx_rx_fixup, .tx_fixup = smsc75xx_tx_fixup, .status = smsc75xx_status, .flags = FLAG_ETHER | FLAG_SEND_ZLP | FLAG_LINK_INTR, }; static const struct usb_device_id products[] = { { /* SMSC7500 USB Gigabit Ethernet Device */ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7500), .driver_info = (unsigned long) &smsc75xx_info, }, { /* SMSC7500 USB Gigabit Ethernet Device */ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7505), .driver_info = (unsigned long) &smsc75xx_info, }, { }, /* END */ }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver smsc75xx_driver = { .name = SMSC_CHIPNAME, .id_table = products, .probe = usbnet_probe, .suspend = smsc75xx_suspend, .resume = smsc75xx_resume, .reset_resume = smsc75xx_resume, .disconnect = usbnet_disconnect, .disable_hub_initiated_lpm = 1, }; module_usb_driver(smsc75xx_driver); MODULE_AUTHOR("Nancy Lin"); MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>"); MODULE_DESCRIPTION("SMSC75XX USB 2.0 Gigabit Ethernet Devices"); MODULE_LICENSE("GPL");