/* * Copyright (C) Freescale Semicondutor, Inc. 2006. All rights reserved. * * Author: Shlomi Gridish <gridish@freescale.com> * * Description: * UCC GETH Driver -- PHY handling * * Changelog: * Jun 28, 2006 Li Yang <LeoLi@freescale.com> * - Rearrange code and style fixes * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/version.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/uaccess.h> #include "ucc_geth.h" #include "ucc_geth_phy.h" #include <platforms/83xx/mpc8360e_pb.h> #define ugphy_printk(level, format, arg...) \ printk(level format "\n", ## arg) #define ugphy_dbg(format, arg...) \ ugphy_printk(KERN_DEBUG, format , ## arg) #define ugphy_err(format, arg...) \ ugphy_printk(KERN_ERR, format , ## arg) #define ugphy_info(format, arg...) \ ugphy_printk(KERN_INFO, format , ## arg) #define ugphy_warn(format, arg...) \ ugphy_printk(KERN_WARNING, format , ## arg) #ifdef UGETH_VERBOSE_DEBUG #define ugphy_vdbg ugphy_dbg #else #define ugphy_vdbg(fmt, args...) do { } while (0) #endif /* UGETH_VERBOSE_DEBUG */ static void config_genmii_advert(struct ugeth_mii_info *mii_info); static void genmii_setup_forced(struct ugeth_mii_info *mii_info); static void genmii_restart_aneg(struct ugeth_mii_info *mii_info); static int gbit_config_aneg(struct ugeth_mii_info *mii_info); static int genmii_config_aneg(struct ugeth_mii_info *mii_info); static int genmii_update_link(struct ugeth_mii_info *mii_info); static int genmii_read_status(struct ugeth_mii_info *mii_info); u16 phy_read(struct ugeth_mii_info *mii_info, u16 regnum); void phy_write(struct ugeth_mii_info *mii_info, u16 regnum, u16 val); static u8 *bcsr_regs = NULL; /* Write value to the PHY for this device to the register at regnum, */ /* waiting until the write is done before it returns. All PHY */ /* configuration has to be done through the TSEC1 MIIM regs */ void write_phy_reg(struct net_device *dev, int mii_id, int regnum, int value) { ucc_geth_private_t *ugeth = netdev_priv(dev); ucc_mii_mng_t *mii_regs; enet_tbi_mii_reg_e mii_reg = (enet_tbi_mii_reg_e) regnum; u32 tmp_reg; ugphy_vdbg("%s: IN", __FUNCTION__); spin_lock_irq(&ugeth->lock); mii_regs = ugeth->mii_info->mii_regs; /* Set this UCC to be the master of the MII managment */ ucc_set_qe_mux_mii_mng(ugeth->ug_info->uf_info.ucc_num); /* Stop the MII management read cycle */ out_be32(&mii_regs->miimcom, 0); /* Setting up the MII Mangement Address Register */ tmp_reg = ((u32) mii_id << MIIMADD_PHY_ADDRESS_SHIFT) | mii_reg; out_be32(&mii_regs->miimadd, tmp_reg); /* Setting up the MII Mangement Control Register with the value */ out_be32(&mii_regs->miimcon, (u32) value); /* Wait till MII management write is complete */ while ((in_be32(&mii_regs->miimind)) & MIIMIND_BUSY) cpu_relax(); spin_unlock_irq(&ugeth->lock); udelay(10000); } /* Reads from register regnum in the PHY for device dev, */ /* returning the value. Clears miimcom first. All PHY */ /* configuration has to be done through the TSEC1 MIIM regs */ int read_phy_reg(struct net_device *dev, int mii_id, int regnum) { ucc_geth_private_t *ugeth = netdev_priv(dev); ucc_mii_mng_t *mii_regs; enet_tbi_mii_reg_e mii_reg = (enet_tbi_mii_reg_e) regnum; u32 tmp_reg; u16 value; ugphy_vdbg("%s: IN", __FUNCTION__); spin_lock_irq(&ugeth->lock); mii_regs = ugeth->mii_info->mii_regs; /* Setting up the MII Mangement Address Register */ tmp_reg = ((u32) mii_id << MIIMADD_PHY_ADDRESS_SHIFT) | mii_reg; out_be32(&mii_regs->miimadd, tmp_reg); /* Perform an MII management read cycle */ out_be32(&mii_regs->miimcom, MIIMCOM_READ_CYCLE); /* Wait till MII management write is complete */ while ((in_be32(&mii_regs->miimind)) & MIIMIND_BUSY) cpu_relax(); udelay(10000); /* Read MII management status */ value = (u16) in_be32(&mii_regs->miimstat); out_be32(&mii_regs->miimcom, 0); if (value == 0xffff) ugphy_warn("read wrong value : mii_id %d,mii_reg %d, base %08x", mii_id, mii_reg, (u32) & (mii_regs->miimcfg)); spin_unlock_irq(&ugeth->lock); return (value); } void mii_clear_phy_interrupt(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); if (mii_info->phyinfo->ack_interrupt) mii_info->phyinfo->ack_interrupt(mii_info); } void mii_configure_phy_interrupt(struct ugeth_mii_info *mii_info, u32 interrupts) { ugphy_vdbg("%s: IN", __FUNCTION__); mii_info->interrupts = interrupts; if (mii_info->phyinfo->config_intr) mii_info->phyinfo->config_intr(mii_info); } /* Writes MII_ADVERTISE with the appropriate values, after * sanitizing advertise to make sure only supported features * are advertised */ static void config_genmii_advert(struct ugeth_mii_info *mii_info) { u32 advertise; u16 adv; ugphy_vdbg("%s: IN", __FUNCTION__); /* Only allow advertising what this PHY supports */ mii_info->advertising &= mii_info->phyinfo->features; advertise = mii_info->advertising; /* Setup standard advertisement */ adv = phy_read(mii_info, MII_ADVERTISE); adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); if (advertise & ADVERTISED_10baseT_Half) adv |= ADVERTISE_10HALF; if (advertise & ADVERTISED_10baseT_Full) adv |= ADVERTISE_10FULL; if (advertise & ADVERTISED_100baseT_Half) adv |= ADVERTISE_100HALF; if (advertise & ADVERTISED_100baseT_Full) adv |= ADVERTISE_100FULL; phy_write(mii_info, MII_ADVERTISE, adv); } static void genmii_setup_forced(struct ugeth_mii_info *mii_info) { u16 ctrl; u32 features = mii_info->phyinfo->features; ugphy_vdbg("%s: IN", __FUNCTION__); ctrl = phy_read(mii_info, MII_BMCR); ctrl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); ctrl |= BMCR_RESET; switch (mii_info->speed) { case SPEED_1000: if (features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)) { ctrl |= BMCR_SPEED1000; break; } mii_info->speed = SPEED_100; case SPEED_100: if (features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)) { ctrl |= BMCR_SPEED100; break; } mii_info->speed = SPEED_10; case SPEED_10: if (features & (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full)) break; default: /* Unsupported speed! */ ugphy_err("%s: Bad speed!", mii_info->dev->name); break; } phy_write(mii_info, MII_BMCR, ctrl); } /* Enable and Restart Autonegotiation */ static void genmii_restart_aneg(struct ugeth_mii_info *mii_info) { u16 ctl; ugphy_vdbg("%s: IN", __FUNCTION__); ctl = phy_read(mii_info, MII_BMCR); ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); phy_write(mii_info, MII_BMCR, ctl); } static int gbit_config_aneg(struct ugeth_mii_info *mii_info) { u16 adv; u32 advertise; ugphy_vdbg("%s: IN", __FUNCTION__); if (mii_info->autoneg) { /* Configure the ADVERTISE register */ config_genmii_advert(mii_info); advertise = mii_info->advertising; adv = phy_read(mii_info, MII_1000BASETCONTROL); adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP | MII_1000BASETCONTROL_HALFDUPLEXCAP); if (advertise & SUPPORTED_1000baseT_Half) adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP; if (advertise & SUPPORTED_1000baseT_Full) adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP; phy_write(mii_info, MII_1000BASETCONTROL, adv); /* Start/Restart aneg */ genmii_restart_aneg(mii_info); } else genmii_setup_forced(mii_info); return 0; } static int genmii_config_aneg(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); if (mii_info->autoneg) { config_genmii_advert(mii_info); genmii_restart_aneg(mii_info); } else genmii_setup_forced(mii_info); return 0; } static int genmii_update_link(struct ugeth_mii_info *mii_info) { u16 status; ugphy_vdbg("%s: IN", __FUNCTION__); /* Do a fake read */ phy_read(mii_info, MII_BMSR); /* Read link and autonegotiation status */ status = phy_read(mii_info, MII_BMSR); if ((status & BMSR_LSTATUS) == 0) mii_info->link = 0; else mii_info->link = 1; /* If we are autonegotiating, and not done, * return an error */ if (mii_info->autoneg && !(status & BMSR_ANEGCOMPLETE)) return -EAGAIN; return 0; } static int genmii_read_status(struct ugeth_mii_info *mii_info) { u16 status; int err; ugphy_vdbg("%s: IN", __FUNCTION__); /* Update the link, but return if there * was an error */ err = genmii_update_link(mii_info); if (err) return err; if (mii_info->autoneg) { status = phy_read(mii_info, MII_LPA); if (status & (LPA_10FULL | LPA_100FULL)) mii_info->duplex = DUPLEX_FULL; else mii_info->duplex = DUPLEX_HALF; if (status & (LPA_100FULL | LPA_100HALF)) mii_info->speed = SPEED_100; else mii_info->speed = SPEED_10; mii_info->pause = 0; } /* On non-aneg, we assume what we put in BMCR is the speed, * though magic-aneg shouldn't prevent this case from occurring */ return 0; } static int marvell_init(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); phy_write(mii_info, 0x14, 0x0cd2); phy_write(mii_info, MII_BMCR, phy_read(mii_info, MII_BMCR) | BMCR_RESET); msleep(4000); return 0; } static int marvell_config_aneg(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); /* The Marvell PHY has an errata which requires * that certain registers get written in order * to restart autonegotiation */ phy_write(mii_info, MII_BMCR, BMCR_RESET); phy_write(mii_info, 0x1d, 0x1f); phy_write(mii_info, 0x1e, 0x200c); phy_write(mii_info, 0x1d, 0x5); phy_write(mii_info, 0x1e, 0); phy_write(mii_info, 0x1e, 0x100); gbit_config_aneg(mii_info); return 0; } static int marvell_read_status(struct ugeth_mii_info *mii_info) { u16 status; int err; ugphy_vdbg("%s: IN", __FUNCTION__); /* Update the link, but return if there * was an error */ err = genmii_update_link(mii_info); if (err) return err; /* If the link is up, read the speed and duplex */ /* If we aren't autonegotiating, assume speeds * are as set */ if (mii_info->autoneg && mii_info->link) { int speed; status = phy_read(mii_info, MII_M1011_PHY_SPEC_STATUS); /* Get the duplexity */ if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX) mii_info->duplex = DUPLEX_FULL; else mii_info->duplex = DUPLEX_HALF; /* Get the speed */ speed = status & MII_M1011_PHY_SPEC_STATUS_SPD_MASK; switch (speed) { case MII_M1011_PHY_SPEC_STATUS_1000: mii_info->speed = SPEED_1000; break; case MII_M1011_PHY_SPEC_STATUS_100: mii_info->speed = SPEED_100; break; default: mii_info->speed = SPEED_10; break; } mii_info->pause = 0; } return 0; } static int marvell_ack_interrupt(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); /* Clear the interrupts by reading the reg */ phy_read(mii_info, MII_M1011_IEVENT); return 0; } static int marvell_config_intr(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); if (mii_info->interrupts == MII_INTERRUPT_ENABLED) phy_write(mii_info, MII_M1011_IMASK, MII_M1011_IMASK_INIT); else phy_write(mii_info, MII_M1011_IMASK, MII_M1011_IMASK_CLEAR); return 0; } static int cis820x_init(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); phy_write(mii_info, MII_CIS8201_AUX_CONSTAT, MII_CIS8201_AUXCONSTAT_INIT); phy_write(mii_info, MII_CIS8201_EXT_CON1, MII_CIS8201_EXTCON1_INIT); return 0; } static int cis820x_read_status(struct ugeth_mii_info *mii_info) { u16 status; int err; ugphy_vdbg("%s: IN", __FUNCTION__); /* Update the link, but return if there * was an error */ err = genmii_update_link(mii_info); if (err) return err; /* If the link is up, read the speed and duplex */ /* If we aren't autonegotiating, assume speeds * are as set */ if (mii_info->autoneg && mii_info->link) { int speed; status = phy_read(mii_info, MII_CIS8201_AUX_CONSTAT); if (status & MII_CIS8201_AUXCONSTAT_DUPLEX) mii_info->duplex = DUPLEX_FULL; else mii_info->duplex = DUPLEX_HALF; speed = status & MII_CIS8201_AUXCONSTAT_SPEED; switch (speed) { case MII_CIS8201_AUXCONSTAT_GBIT: mii_info->speed = SPEED_1000; break; case MII_CIS8201_AUXCONSTAT_100: mii_info->speed = SPEED_100; break; default: mii_info->speed = SPEED_10; break; } } return 0; } static int cis820x_ack_interrupt(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); phy_read(mii_info, MII_CIS8201_ISTAT); return 0; } static int cis820x_config_intr(struct ugeth_mii_info *mii_info) { ugphy_vdbg("%s: IN", __FUNCTION__); if (mii_info->interrupts == MII_INTERRUPT_ENABLED) phy_write(mii_info, MII_CIS8201_IMASK, MII_CIS8201_IMASK_MASK); else phy_write(mii_info, MII_CIS8201_IMASK, 0); return 0; } #define DM9161_DELAY 10 static int dm9161_read_status(struct ugeth_mii_info *mii_info) { u16 status; int err; ugphy_vdbg("%s: IN", __FUNCTION__); /* Update the link, but return if there * was an error */ err = genmii_update_link(mii_info); if (err) return err; /* If the link is up, read the speed and duplex */ /* If we aren't autonegotiating, assume speeds * are as set */ if (mii_info->autoneg && mii_info->link) { status = phy_read(mii_info, MII_DM9161_SCSR); if (status & (MII_DM9161_SCSR_100F | MII_DM9161_SCSR_100H)) mii_info->speed = SPEED_100; else mii_info->speed = SPEED_10; if (status & (MII_DM9161_SCSR_100F | MII_DM9161_SCSR_10F)) mii_info->duplex = DUPLEX_FULL; else mii_info->duplex = DUPLEX_HALF; } return 0; } static int dm9161_config_aneg(struct ugeth_mii_info *mii_info) { struct dm9161_private *priv = mii_info->priv; ugphy_vdbg("%s: IN", __FUNCTION__); if (0 == priv->resetdone) return -EAGAIN; return 0; } static void dm9161_timer(unsigned long data) { struct ugeth_mii_info *mii_info = (struct ugeth_mii_info *)data; struct dm9161_private *priv = mii_info->priv; u16 status = phy_read(mii_info, MII_BMSR); ugphy_vdbg("%s: IN", __FUNCTION__); if (status & BMSR_ANEGCOMPLETE) { priv->resetdone = 1; } else mod_timer(&priv->timer, jiffies + DM9161_DELAY * HZ); } static int dm9161_init(struct ugeth_mii_info *mii_info) { struct dm9161_private *priv; ugphy_vdbg("%s: IN", __FUNCTION__); /* Allocate the private data structure */ priv = kmalloc(sizeof(struct dm9161_private), GFP_KERNEL); if (NULL == priv) return -ENOMEM; mii_info->priv = priv; /* Reset is not done yet */ priv->resetdone = 0; phy_write(mii_info, MII_BMCR, phy_read(mii_info, MII_BMCR) | BMCR_RESET); phy_write(mii_info, MII_BMCR, phy_read(mii_info, MII_BMCR) & ~BMCR_ISOLATE); config_genmii_advert(mii_info); /* Start/Restart aneg */ genmii_config_aneg(mii_info); /* Start a timer for DM9161_DELAY seconds to wait * for the PHY to be ready */ init_timer(&priv->timer); priv->timer.function = &dm9161_timer; priv->timer.data = (unsigned long)mii_info; mod_timer(&priv->timer, jiffies + DM9161_DELAY * HZ); return 0; } static void dm9161_close(struct ugeth_mii_info *mii_info) { struct dm9161_private *priv = mii_info->priv; ugphy_vdbg("%s: IN", __FUNCTION__); del_timer_sync(&priv->timer); kfree(priv); } static int dm9161_ack_interrupt(struct ugeth_mii_info *mii_info) { /* FIXME: This lines are for BUG fixing in the mpc8325. Remove this from here when it's fixed */ if (bcsr_regs == NULL) bcsr_regs = (u8 *) ioremap(BCSR_PHYS_ADDR, BCSR_SIZE); bcsr_regs[14] |= 0x40; ugphy_vdbg("%s: IN", __FUNCTION__); /* Clear the interrupts by reading the reg */ phy_read(mii_info, MII_DM9161_INTR); return 0; } static int dm9161_config_intr(struct ugeth_mii_info *mii_info) { /* FIXME: This lines are for BUG fixing in the mpc8325. Remove this from here when it's fixed */ if (bcsr_regs == NULL) { bcsr_regs = (u8 *) ioremap(BCSR_PHYS_ADDR, BCSR_SIZE); bcsr_regs[14] &= ~0x40; } ugphy_vdbg("%s: IN", __FUNCTION__); if (mii_info->interrupts == MII_INTERRUPT_ENABLED) phy_write(mii_info, MII_DM9161_INTR, MII_DM9161_INTR_INIT); else phy_write(mii_info, MII_DM9161_INTR, MII_DM9161_INTR_STOP); return 0; } /* Cicada 820x */ static struct phy_info phy_info_cis820x = { .phy_id = 0x000fc440, .name = "Cicada Cis8204", .phy_id_mask = 0x000fffc0, .features = MII_GBIT_FEATURES, .init = &cis820x_init, .config_aneg = &gbit_config_aneg, .read_status = &cis820x_read_status, .ack_interrupt = &cis820x_ack_interrupt, .config_intr = &cis820x_config_intr, }; static struct phy_info phy_info_dm9161 = { .phy_id = 0x0181b880, .phy_id_mask = 0x0ffffff0, .name = "Davicom DM9161E", .init = dm9161_init, .config_aneg = dm9161_config_aneg, .read_status = dm9161_read_status, .close = dm9161_close, }; static struct phy_info phy_info_dm9161a = { .phy_id = 0x0181b8a0, .phy_id_mask = 0x0ffffff0, .name = "Davicom DM9161A", .features = MII_BASIC_FEATURES, .init = dm9161_init, .config_aneg = dm9161_config_aneg, .read_status = dm9161_read_status, .ack_interrupt = dm9161_ack_interrupt, .config_intr = dm9161_config_intr, .close = dm9161_close, }; static struct phy_info phy_info_marvell = { .phy_id = 0x01410c00, .phy_id_mask = 0xffffff00, .name = "Marvell 88E11x1", .features = MII_GBIT_FEATURES, .init = &marvell_init, .config_aneg = &marvell_config_aneg, .read_status = &marvell_read_status, .ack_interrupt = &marvell_ack_interrupt, .config_intr = &marvell_config_intr, }; static struct phy_info phy_info_genmii = { .phy_id = 0x00000000, .phy_id_mask = 0x00000000, .name = "Generic MII", .features = MII_BASIC_FEATURES, .config_aneg = genmii_config_aneg, .read_status = genmii_read_status, }; static struct phy_info *phy_info[] = { &phy_info_cis820x, &phy_info_marvell, &phy_info_dm9161, &phy_info_dm9161a, &phy_info_genmii, NULL }; u16 phy_read(struct ugeth_mii_info *mii_info, u16 regnum) { u16 retval; unsigned long flags; ugphy_vdbg("%s: IN", __FUNCTION__); spin_lock_irqsave(&mii_info->mdio_lock, flags); retval = mii_info->mdio_read(mii_info->dev, mii_info->mii_id, regnum); spin_unlock_irqrestore(&mii_info->mdio_lock, flags); return retval; } void phy_write(struct ugeth_mii_info *mii_info, u16 regnum, u16 val) { unsigned long flags; ugphy_vdbg("%s: IN", __FUNCTION__); spin_lock_irqsave(&mii_info->mdio_lock, flags); mii_info->mdio_write(mii_info->dev, mii_info->mii_id, regnum, val); spin_unlock_irqrestore(&mii_info->mdio_lock, flags); } /* Use the PHY ID registers to determine what type of PHY is attached * to device dev. return a struct phy_info structure describing that PHY */ struct phy_info *get_phy_info(struct ugeth_mii_info *mii_info) { u16 phy_reg; u32 phy_ID; int i; struct phy_info *theInfo = NULL; struct net_device *dev = mii_info->dev; ugphy_vdbg("%s: IN", __FUNCTION__); /* Grab the bits from PHYIR1, and put them in the upper half */ phy_reg = phy_read(mii_info, MII_PHYSID1); phy_ID = (phy_reg & 0xffff) << 16; /* Grab the bits from PHYIR2, and put them in the lower half */ phy_reg = phy_read(mii_info, MII_PHYSID2); phy_ID |= (phy_reg & 0xffff); /* loop through all the known PHY types, and find one that */ /* matches the ID we read from the PHY. */ for (i = 0; phy_info[i]; i++) if (phy_info[i]->phy_id == (phy_ID & phy_info[i]->phy_id_mask)){ theInfo = phy_info[i]; break; } /* This shouldn't happen, as we have generic PHY support */ if (theInfo == NULL) { ugphy_info("%s: PHY id %x is not supported!", dev->name, phy_ID); return NULL; } else { ugphy_info("%s: PHY is %s (%x)", dev->name, theInfo->name, phy_ID); } return theInfo; }