/* ========================================================================= r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver for Linux kernel 2.4.x. -------------------------------------------------------------------- History: Feb 4 2002 - created initially by ShuChen <shuchen@realtek.com.tw>. May 20 2002 - Add link status force-mode and TBI mode support. 2004 - Massive updates. See kernel SCM system for details. ========================================================================= 1. [DEPRECATED: use ethtool instead] The media can be forced in 5 modes. Command: 'insmod r8169 media = SET_MEDIA' Ex: 'insmod r8169 media = 0x04' will force PHY to operate in 100Mpbs Half-duplex. SET_MEDIA can be: _10_Half = 0x01 _10_Full = 0x02 _100_Half = 0x04 _100_Full = 0x08 _1000_Full = 0x10 2. Support TBI mode. ========================================================================= VERSION 1.1 <2002/10/4> The bit4:0 of MII register 4 is called "selector field", and have to be 00001b to indicate support of IEEE std 802.3 during NWay process of exchanging Link Code Word (FLP). VERSION 1.2 <2002/11/30> - Large style cleanup - Use ether_crc in stock kernel (linux/crc32.h) - Copy mc_filter setup code from 8139cp (includes an optimization, and avoids set_bit use) VERSION 1.6LK <2004/04/14> - Merge of Realtek's version 1.6 - Conversion to DMA API - Suspend/resume - Endianness - Misc Rx/Tx bugs VERSION 2.2LK <2005/01/25> - RX csum, TX csum/SG, TSO - VLAN - baby (< 7200) Jumbo frames support - Merge of Realtek's version 2.2 (new phy) */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/if_vlan.h> #include <linux/crc32.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/init.h> #include <linux/dma-mapping.h> #include <asm/io.h> #include <asm/irq.h> #ifdef CONFIG_R8169_NAPI #define NAPI_SUFFIX "-NAPI" #else #define NAPI_SUFFIX "" #endif #define RTL8169_VERSION "2.2LK" NAPI_SUFFIX #define MODULENAME "r8169" #define PFX MODULENAME ": " #ifdef RTL8169_DEBUG #define assert(expr) \ if(!(expr)) { \ printk( "Assertion failed! %s,%s,%s,line=%d\n", \ #expr,__FILE__,__FUNCTION__,__LINE__); \ } #define dprintk(fmt, args...) do { printk(PFX fmt, ## args); } while (0) #else #define assert(expr) do {} while (0) #define dprintk(fmt, args...) do {} while (0) #endif /* RTL8169_DEBUG */ #define R8169_MSG_DEFAULT \ (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN) #define TX_BUFFS_AVAIL(tp) \ (tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1) #ifdef CONFIG_R8169_NAPI #define rtl8169_rx_skb netif_receive_skb #define rtl8169_rx_hwaccel_skb vlan_hwaccel_receive_skb #define rtl8169_rx_quota(count, quota) min(count, quota) #else #define rtl8169_rx_skb netif_rx #define rtl8169_rx_hwaccel_skb vlan_hwaccel_rx #define rtl8169_rx_quota(count, quota) count #endif /* media options */ #define MAX_UNITS 8 static int media[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; static int num_media = 0; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 32; /* MAC address length */ #define MAC_ADDR_LEN 6 #define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */ #define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define EarlyTxThld 0x3F /* 0x3F means NO early transmit */ #define RxPacketMaxSize 0x3FE8 /* 16K - 1 - ETH_HLEN - VLAN - CRC... */ #define SafeMtu 0x1c20 /* ... actually life sucks beyond ~7k */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define R8169_REGS_SIZE 256 #define R8169_NAPI_WEIGHT 64 #define NUM_TX_DESC 64 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 256 /* Number of Rx descriptor registers */ #define RX_BUF_SIZE 1536 /* Rx Buffer size */ #define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc)) #define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc)) #define RTL8169_TX_TIMEOUT (6*HZ) #define RTL8169_PHY_TIMEOUT (10*HZ) /* write/read MMIO register */ #define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg)) #define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg)) #define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg)) #define RTL_R8(reg) readb (ioaddr + (reg)) #define RTL_R16(reg) readw (ioaddr + (reg)) #define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg))) enum mac_version { RTL_GIGA_MAC_VER_B = 0x00, /* RTL_GIGA_MAC_VER_C = 0x03, */ RTL_GIGA_MAC_VER_D = 0x01, RTL_GIGA_MAC_VER_E = 0x02, RTL_GIGA_MAC_VER_X = 0x04 /* Greater than RTL_GIGA_MAC_VER_E */ }; enum phy_version { RTL_GIGA_PHY_VER_C = 0x03, /* PHY Reg 0x03 bit0-3 == 0x0000 */ RTL_GIGA_PHY_VER_D = 0x04, /* PHY Reg 0x03 bit0-3 == 0x0000 */ RTL_GIGA_PHY_VER_E = 0x05, /* PHY Reg 0x03 bit0-3 == 0x0000 */ RTL_GIGA_PHY_VER_F = 0x06, /* PHY Reg 0x03 bit0-3 == 0x0001 */ RTL_GIGA_PHY_VER_G = 0x07, /* PHY Reg 0x03 bit0-3 == 0x0002 */ RTL_GIGA_PHY_VER_H = 0x08, /* PHY Reg 0x03 bit0-3 == 0x0003 */ }; #define _R(NAME,MAC,MASK) \ { .name = NAME, .mac_version = MAC, .RxConfigMask = MASK } const static struct { const char *name; u8 mac_version; u32 RxConfigMask; /* Clears the bits supported by this chip */ } rtl_chip_info[] = { _R("RTL8169", RTL_GIGA_MAC_VER_B, 0xff7e1880), _R("RTL8169s/8110s", RTL_GIGA_MAC_VER_D, 0xff7e1880), _R("RTL8169s/8110s", RTL_GIGA_MAC_VER_E, 0xff7e1880), _R("RTL8169s/8110s", RTL_GIGA_MAC_VER_X, 0xff7e1880), }; #undef _R static struct pci_device_id rtl8169_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), }, { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), }, { PCI_DEVICE(0x16ec, 0x0116), }, { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0024, }, {0,}, }; MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl); static int rx_copybreak = 200; static int use_dac; static struct { u32 msg_enable; } debug = { -1 }; enum RTL8169_registers { MAC0 = 0, /* Ethernet hardware address. */ MAR0 = 8, /* Multicast filter. */ CounterAddrLow = 0x10, CounterAddrHigh = 0x14, TxDescStartAddrLow = 0x20, TxDescStartAddrHigh = 0x24, TxHDescStartAddrLow = 0x28, TxHDescStartAddrHigh = 0x2c, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3C, IntrStatus = 0x3E, TxConfig = 0x40, RxConfig = 0x44, RxMissed = 0x4C, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, MultiIntr = 0x5C, PHYAR = 0x60, TBICSR = 0x64, TBI_ANAR = 0x68, TBI_LPAR = 0x6A, PHYstatus = 0x6C, RxMaxSize = 0xDA, CPlusCmd = 0xE0, IntrMitigate = 0xE2, RxDescAddrLow = 0xE4, RxDescAddrHigh = 0xE8, EarlyTxThres = 0xEC, FuncEvent = 0xF0, FuncEventMask = 0xF4, FuncPresetState = 0xF8, FuncForceEvent = 0xFC, }; enum RTL8169_register_content { /* InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x80, RxFIFOOver = 0x40, LinkChg = 0x20, RxOverflow = 0x10, TxErr = 0x08, TxOK = 0x04, RxErr = 0x02, RxOK = 0x01, /* RxStatusDesc */ RxRES = 0x00200000, RxCRC = 0x00080000, RxRUNT = 0x00100000, RxRWT = 0x00400000, /* ChipCmdBits */ CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /* Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xC0, /* rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, /* RxConfigBits */ RxCfgFIFOShift = 13, RxCfgDMAShift = 8, /* TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /* TBICSR p.28 */ TBIReset = 0x80000000, TBILoopback = 0x40000000, TBINwEnable = 0x20000000, TBINwRestart = 0x10000000, TBILinkOk = 0x02000000, TBINwComplete = 0x01000000, /* CPlusCmd p.31 */ RxVlan = (1 << 6), RxChkSum = (1 << 5), PCIDAC = (1 << 4), PCIMulRW = (1 << 3), /* rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /* GIGABIT_PHY_registers */ PHY_CTRL_REG = 0, PHY_STAT_REG = 1, PHY_AUTO_NEGO_REG = 4, PHY_1000_CTRL_REG = 9, /* GIGABIT_PHY_REG_BIT */ PHY_Restart_Auto_Nego = 0x0200, PHY_Enable_Auto_Nego = 0x1000, /* PHY_STAT_REG = 1 */ PHY_Auto_Neco_Comp = 0x0020, /* PHY_AUTO_NEGO_REG = 4 */ PHY_Cap_10_Half = 0x0020, PHY_Cap_10_Full = 0x0040, PHY_Cap_100_Half = 0x0080, PHY_Cap_100_Full = 0x0100, /* PHY_1000_CTRL_REG = 9 */ PHY_Cap_1000_Full = 0x0200, PHY_Cap_Null = 0x0, /* _MediaType */ _10_Half = 0x01, _10_Full = 0x02, _100_Half = 0x04, _100_Full = 0x08, _1000_Full = 0x10, /* _TBICSRBit */ TBILinkOK = 0x02000000, /* DumpCounterCommand */ CounterDump = 0x8, }; enum _DescStatusBit { DescOwn = (1 << 31), /* Descriptor is owned by NIC */ RingEnd = (1 << 30), /* End of descriptor ring */ FirstFrag = (1 << 29), /* First segment of a packet */ LastFrag = (1 << 28), /* Final segment of a packet */ /* Tx private */ LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */ MSSShift = 16, /* MSS value position */ MSSMask = 0xfff, /* MSS value + LargeSend bit: 12 bits */ IPCS = (1 << 18), /* Calculate IP checksum */ UDPCS = (1 << 17), /* Calculate UDP/IP checksum */ TCPCS = (1 << 16), /* Calculate TCP/IP checksum */ TxVlanTag = (1 << 17), /* Add VLAN tag */ /* Rx private */ PID1 = (1 << 18), /* Protocol ID bit 1/2 */ PID0 = (1 << 17), /* Protocol ID bit 2/2 */ #define RxProtoUDP (PID1) #define RxProtoTCP (PID0) #define RxProtoIP (PID1 | PID0) #define RxProtoMask RxProtoIP IPFail = (1 << 16), /* IP checksum failed */ UDPFail = (1 << 15), /* UDP/IP checksum failed */ TCPFail = (1 << 14), /* TCP/IP checksum failed */ RxVlanTag = (1 << 16), /* VLAN tag available */ }; #define RsvdMask 0x3fffc000 struct TxDesc { u32 opts1; u32 opts2; u64 addr; }; struct RxDesc { u32 opts1; u32 opts2; u64 addr; }; struct ring_info { struct sk_buff *skb; u32 len; u8 __pad[sizeof(void *) - sizeof(u32)]; }; struct rtl8169_private { void __iomem *mmio_addr; /* memory map physical address */ struct pci_dev *pci_dev; /* Index of PCI device */ struct net_device_stats stats; /* statistics of net device */ spinlock_t lock; /* spin lock flag */ u32 msg_enable; int chipset; int mac_version; int phy_version; u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ u32 dirty_rx; u32 dirty_tx; struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */ struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */ dma_addr_t TxPhyAddr; dma_addr_t RxPhyAddr; struct sk_buff *Rx_skbuff[NUM_RX_DESC]; /* Rx data buffers */ struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */ unsigned rx_buf_sz; struct timer_list timer; u16 cp_cmd; u16 intr_mask; int phy_auto_nego_reg; int phy_1000_ctrl_reg; #ifdef CONFIG_R8169_VLAN struct vlan_group *vlgrp; #endif int (*set_speed)(struct net_device *, u8 autoneg, u16 speed, u8 duplex); void (*get_settings)(struct net_device *, struct ethtool_cmd *); void (*phy_reset_enable)(void __iomem *); unsigned int (*phy_reset_pending)(void __iomem *); unsigned int (*link_ok)(void __iomem *); struct work_struct task; }; MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>"); MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver"); module_param_array(media, int, &num_media, 0); MODULE_PARM_DESC(media, "force phy operation. Deprecated by ethtool (8)."); module_param(rx_copybreak, int, 0); MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); module_param(use_dac, int, 0); MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot."); module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)"); MODULE_LICENSE("GPL"); MODULE_VERSION(RTL8169_VERSION); static int rtl8169_open(struct net_device *dev); static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev); static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static int rtl8169_init_ring(struct net_device *dev); static void rtl8169_hw_start(struct net_device *dev); static int rtl8169_close(struct net_device *dev); static void rtl8169_set_rx_mode(struct net_device *dev); static void rtl8169_tx_timeout(struct net_device *dev); static struct net_device_stats *rtl8169_get_stats(struct net_device *dev); static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *, void __iomem *); static int rtl8169_change_mtu(struct net_device *dev, int new_mtu); static void rtl8169_down(struct net_device *dev); #ifdef CONFIG_R8169_NAPI static int rtl8169_poll(struct net_device *dev, int *budget); #endif static const u16 rtl8169_intr_mask = SYSErr | LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK; static const u16 rtl8169_napi_event = RxOK | RxOverflow | RxFIFOOver | TxOK | TxErr; static const unsigned int rtl8169_rx_config = (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift); #define PHY_Cap_10_Half_Or_Less PHY_Cap_10_Half #define PHY_Cap_10_Full_Or_Less PHY_Cap_10_Full | PHY_Cap_10_Half_Or_Less #define PHY_Cap_100_Half_Or_Less PHY_Cap_100_Half | PHY_Cap_10_Full_Or_Less #define PHY_Cap_100_Full_Or_Less PHY_Cap_100_Full | PHY_Cap_100_Half_Or_Less static void mdio_write(void __iomem *ioaddr, int RegAddr, int value) { int i; RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value); udelay(1000); for (i = 2000; i > 0; i--) { /* Check if the RTL8169 has completed writing to the specified MII register */ if (!(RTL_R32(PHYAR) & 0x80000000)) break; udelay(100); } } static int mdio_read(void __iomem *ioaddr, int RegAddr) { int i, value = -1; RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16); udelay(1000); for (i = 2000; i > 0; i--) { /* Check if the RTL8169 has completed retrieving data from the specified MII register */ if (RTL_R32(PHYAR) & 0x80000000) { value = (int) (RTL_R32(PHYAR) & 0xFFFF); break; } udelay(100); } return value; } static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr) { RTL_W16(IntrMask, 0x0000); RTL_W16(IntrStatus, 0xffff); } static void rtl8169_asic_down(void __iomem *ioaddr) { RTL_W8(ChipCmd, 0x00); rtl8169_irq_mask_and_ack(ioaddr); RTL_R16(CPlusCmd); } static unsigned int rtl8169_tbi_reset_pending(void __iomem *ioaddr) { return RTL_R32(TBICSR) & TBIReset; } static unsigned int rtl8169_xmii_reset_pending(void __iomem *ioaddr) { return mdio_read(ioaddr, 0) & 0x8000; } static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr) { return RTL_R32(TBICSR) & TBILinkOk; } static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr) { return RTL_R8(PHYstatus) & LinkStatus; } static void rtl8169_tbi_reset_enable(void __iomem *ioaddr) { RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset); } static void rtl8169_xmii_reset_enable(void __iomem *ioaddr) { unsigned int val; val = (mdio_read(ioaddr, PHY_CTRL_REG) | 0x8000) & 0xffff; mdio_write(ioaddr, PHY_CTRL_REG, val); } static void rtl8169_check_link_status(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (tp->link_ok(ioaddr)) { netif_carrier_on(dev); if (netif_msg_ifup(tp)) printk(KERN_INFO PFX "%s: link up\n", dev->name); } else { if (netif_msg_ifdown(tp)) printk(KERN_INFO PFX "%s: link down\n", dev->name); netif_carrier_off(dev); } spin_unlock_irqrestore(&tp->lock, flags); } static void rtl8169_link_option(int idx, u8 *autoneg, u16 *speed, u8 *duplex) { struct { u16 speed; u8 duplex; u8 autoneg; u8 media; } link_settings[] = { { SPEED_10, DUPLEX_HALF, AUTONEG_DISABLE, _10_Half }, { SPEED_10, DUPLEX_FULL, AUTONEG_DISABLE, _10_Full }, { SPEED_100, DUPLEX_HALF, AUTONEG_DISABLE, _100_Half }, { SPEED_100, DUPLEX_FULL, AUTONEG_DISABLE, _100_Full }, { SPEED_1000, DUPLEX_FULL, AUTONEG_DISABLE, _1000_Full }, /* Make TBI happy */ { SPEED_1000, DUPLEX_FULL, AUTONEG_ENABLE, 0xff } }, *p; unsigned char option; option = ((idx < MAX_UNITS) && (idx >= 0)) ? media[idx] : 0xff; if ((option != 0xff) && !idx && netif_msg_drv(&debug)) printk(KERN_WARNING PFX "media option is deprecated.\n"); for (p = link_settings; p->media != 0xff; p++) { if (p->media == option) break; } *autoneg = p->autoneg; *speed = p->speed; *duplex = p->duplex; } static void rtl8169_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct rtl8169_private *tp = netdev_priv(dev); strcpy(info->driver, MODULENAME); strcpy(info->version, RTL8169_VERSION); strcpy(info->bus_info, pci_name(tp->pci_dev)); } static int rtl8169_get_regs_len(struct net_device *dev) { return R8169_REGS_SIZE; } static int rtl8169_set_speed_tbi(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int ret = 0; u32 reg; reg = RTL_R32(TBICSR); if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) && (duplex == DUPLEX_FULL)) { RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart)); } else if (autoneg == AUTONEG_ENABLE) RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart); else { if (netif_msg_link(tp)) { printk(KERN_WARNING "%s: " "incorrect speed setting refused in TBI mode\n", dev->name); } ret = -EOPNOTSUPP; } return ret; } static int rtl8169_set_speed_xmii(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int auto_nego, giga_ctrl; auto_nego = mdio_read(ioaddr, PHY_AUTO_NEGO_REG); auto_nego &= ~(PHY_Cap_10_Half | PHY_Cap_10_Full | PHY_Cap_100_Half | PHY_Cap_100_Full); giga_ctrl = mdio_read(ioaddr, PHY_1000_CTRL_REG); giga_ctrl &= ~(PHY_Cap_1000_Full | PHY_Cap_Null); if (autoneg == AUTONEG_ENABLE) { auto_nego |= (PHY_Cap_10_Half | PHY_Cap_10_Full | PHY_Cap_100_Half | PHY_Cap_100_Full); giga_ctrl |= PHY_Cap_1000_Full; } else { if (speed == SPEED_10) auto_nego |= PHY_Cap_10_Half | PHY_Cap_10_Full; else if (speed == SPEED_100) auto_nego |= PHY_Cap_100_Half | PHY_Cap_100_Full; else if (speed == SPEED_1000) giga_ctrl |= PHY_Cap_1000_Full; if (duplex == DUPLEX_HALF) auto_nego &= ~(PHY_Cap_10_Full | PHY_Cap_100_Full); } tp->phy_auto_nego_reg = auto_nego; tp->phy_1000_ctrl_reg = giga_ctrl; mdio_write(ioaddr, PHY_AUTO_NEGO_REG, auto_nego); mdio_write(ioaddr, PHY_1000_CTRL_REG, giga_ctrl); mdio_write(ioaddr, PHY_CTRL_REG, PHY_Enable_Auto_Nego | PHY_Restart_Auto_Nego); return 0; } static int rtl8169_set_speed(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); int ret; ret = tp->set_speed(dev, autoneg, speed, duplex); if (netif_running(dev) && (tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full)) mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT); return ret; } static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; int ret; spin_lock_irqsave(&tp->lock, flags); ret = rtl8169_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex); spin_unlock_irqrestore(&tp->lock, flags); return ret; } static u32 rtl8169_get_rx_csum(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->cp_cmd & RxChkSum; } static int rtl8169_set_rx_csum(struct net_device *dev, u32 data) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (data) tp->cp_cmd |= RxChkSum; else tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } #ifdef CONFIG_R8169_VLAN static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp, struct sk_buff *skb) { return (tp->vlgrp && vlan_tx_tag_present(skb)) ? TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00; } static void rtl8169_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); tp->vlgrp = grp; if (tp->vlgrp) tp->cp_cmd |= RxVlan; else tp->cp_cmd &= ~RxVlan; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); } static void rtl8169_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (tp->vlgrp) tp->vlgrp->vlan_devices[vid] = NULL; spin_unlock_irqrestore(&tp->lock, flags); } static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); int ret; if (tp->vlgrp && (opts2 & RxVlanTag)) { rtl8169_rx_hwaccel_skb(skb, tp->vlgrp, swab16(opts2 & 0xffff)); ret = 0; } else ret = -1; desc->opts2 = 0; return ret; } #else /* !CONFIG_R8169_VLAN */ static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp, struct sk_buff *skb) { return 0; } static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc, struct sk_buff *skb) { return -1; } #endif static void rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u32 status; cmd->supported = SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE; cmd->port = PORT_FIBRE; cmd->transceiver = XCVR_INTERNAL; status = RTL_R32(TBICSR); cmd->advertising = (status & TBINwEnable) ? ADVERTISED_Autoneg : 0; cmd->autoneg = !!(status & TBINwEnable); cmd->speed = SPEED_1000; cmd->duplex = DUPLEX_FULL; /* Always set */ } static void rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 status; cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP; cmd->autoneg = 1; cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; if (tp->phy_auto_nego_reg & PHY_Cap_10_Half) cmd->advertising |= ADVERTISED_10baseT_Half; if (tp->phy_auto_nego_reg & PHY_Cap_10_Full) cmd->advertising |= ADVERTISED_10baseT_Full; if (tp->phy_auto_nego_reg & PHY_Cap_100_Half) cmd->advertising |= ADVERTISED_100baseT_Half; if (tp->phy_auto_nego_reg & PHY_Cap_100_Full) cmd->advertising |= ADVERTISED_100baseT_Full; if (tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full) cmd->advertising |= ADVERTISED_1000baseT_Full; status = RTL_R8(PHYstatus); if (status & _1000bpsF) cmd->speed = SPEED_1000; else if (status & _100bps) cmd->speed = SPEED_100; else if (status & _10bps) cmd->speed = SPEED_10; cmd->duplex = ((status & _1000bpsF) || (status & FullDup)) ? DUPLEX_FULL : DUPLEX_HALF; } static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&tp->lock, flags); tp->get_settings(dev, cmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; if (regs->len > R8169_REGS_SIZE) regs->len = R8169_REGS_SIZE; spin_lock_irqsave(&tp->lock, flags); memcpy_fromio(p, tp->mmio_addr, regs->len); spin_unlock_irqrestore(&tp->lock, flags); } static u32 rtl8169_get_msglevel(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8169_set_msglevel(struct net_device *dev, u32 value) { struct rtl8169_private *tp = netdev_priv(dev); tp->msg_enable = value; } static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "unicast", "broadcast", "multicast", "tx_aborted", "tx_underrun", }; struct rtl8169_counters { u64 tx_packets; u64 rx_packets; u64 tx_errors; u32 rx_errors; u16 rx_missed; u16 align_errors; u32 tx_one_collision; u32 tx_multi_collision; u64 rx_unicast; u64 rx_broadcast; u32 rx_multicast; u16 tx_aborted; u16 tx_underun; }; static int rtl8169_get_stats_count(struct net_device *dev) { return ARRAY_SIZE(rtl8169_gstrings); } static void rtl8169_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct rtl8169_counters *counters; dma_addr_t paddr; u32 cmd; ASSERT_RTNL(); counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr); if (!counters) return; RTL_W32(CounterAddrHigh, (u64)paddr >> 32); cmd = (u64)paddr & DMA_32BIT_MASK; RTL_W32(CounterAddrLow, cmd); RTL_W32(CounterAddrLow, cmd | CounterDump); while (RTL_R32(CounterAddrLow) & CounterDump) { if (msleep_interruptible(1)) break; } RTL_W32(CounterAddrLow, 0); RTL_W32(CounterAddrHigh, 0); data[0] = le64_to_cpu(counters->tx_packets); data[1] = le64_to_cpu(counters->rx_packets); data[2] = le64_to_cpu(counters->tx_errors); data[3] = le32_to_cpu(counters->rx_errors); data[4] = le16_to_cpu(counters->rx_missed); data[5] = le16_to_cpu(counters->align_errors); data[6] = le32_to_cpu(counters->tx_one_collision); data[7] = le32_to_cpu(counters->tx_multi_collision); data[8] = le64_to_cpu(counters->rx_unicast); data[9] = le64_to_cpu(counters->rx_broadcast); data[10] = le32_to_cpu(counters->rx_multicast); data[11] = le16_to_cpu(counters->tx_aborted); data[12] = le16_to_cpu(counters->tx_underun); pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr); } static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings)); break; } } static struct ethtool_ops rtl8169_ethtool_ops = { .get_drvinfo = rtl8169_get_drvinfo, .get_regs_len = rtl8169_get_regs_len, .get_link = ethtool_op_get_link, .get_settings = rtl8169_get_settings, .set_settings = rtl8169_set_settings, .get_msglevel = rtl8169_get_msglevel, .set_msglevel = rtl8169_set_msglevel, .get_rx_csum = rtl8169_get_rx_csum, .set_rx_csum = rtl8169_set_rx_csum, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = ethtool_op_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, .get_regs = rtl8169_get_regs, .get_strings = rtl8169_get_strings, .get_stats_count = rtl8169_get_stats_count, .get_ethtool_stats = rtl8169_get_ethtool_stats, .get_perm_addr = ethtool_op_get_perm_addr, }; static void rtl8169_write_gmii_reg_bit(void __iomem *ioaddr, int reg, int bitnum, int bitval) { int val; val = mdio_read(ioaddr, reg); val = (bitval == 1) ? val | (bitval << bitnum) : val & ~(0x0001 << bitnum); mdio_write(ioaddr, reg, val & 0xffff); } static void rtl8169_get_mac_version(struct rtl8169_private *tp, void __iomem *ioaddr) { const struct { u32 mask; int mac_version; } mac_info[] = { { 0x1 << 28, RTL_GIGA_MAC_VER_X }, { 0x1 << 26, RTL_GIGA_MAC_VER_E }, { 0x1 << 23, RTL_GIGA_MAC_VER_D }, { 0x00000000, RTL_GIGA_MAC_VER_B } /* Catch-all */ }, *p = mac_info; u32 reg; reg = RTL_R32(TxConfig) & 0x7c800000; while ((reg & p->mask) != p->mask) p++; tp->mac_version = p->mac_version; } static void rtl8169_print_mac_version(struct rtl8169_private *tp) { struct { int version; char *msg; } mac_print[] = { { RTL_GIGA_MAC_VER_E, "RTL_GIGA_MAC_VER_E" }, { RTL_GIGA_MAC_VER_D, "RTL_GIGA_MAC_VER_D" }, { RTL_GIGA_MAC_VER_B, "RTL_GIGA_MAC_VER_B" }, { 0, NULL } }, *p; for (p = mac_print; p->msg; p++) { if (tp->mac_version == p->version) { dprintk("mac_version == %s (%04d)\n", p->msg, p->version); return; } } dprintk("mac_version == Unknown\n"); } static void rtl8169_get_phy_version(struct rtl8169_private *tp, void __iomem *ioaddr) { const struct { u16 mask; u16 set; int phy_version; } phy_info[] = { { 0x000f, 0x0002, RTL_GIGA_PHY_VER_G }, { 0x000f, 0x0001, RTL_GIGA_PHY_VER_F }, { 0x000f, 0x0000, RTL_GIGA_PHY_VER_E }, { 0x0000, 0x0000, RTL_GIGA_PHY_VER_D } /* Catch-all */ }, *p = phy_info; u16 reg; reg = mdio_read(ioaddr, 3) & 0xffff; while ((reg & p->mask) != p->set) p++; tp->phy_version = p->phy_version; } static void rtl8169_print_phy_version(struct rtl8169_private *tp) { struct { int version; char *msg; u32 reg; } phy_print[] = { { RTL_GIGA_PHY_VER_G, "RTL_GIGA_PHY_VER_G", 0x0002 }, { RTL_GIGA_PHY_VER_F, "RTL_GIGA_PHY_VER_F", 0x0001 }, { RTL_GIGA_PHY_VER_E, "RTL_GIGA_PHY_VER_E", 0x0000 }, { RTL_GIGA_PHY_VER_D, "RTL_GIGA_PHY_VER_D", 0x0000 }, { 0, NULL, 0x0000 } }, *p; for (p = phy_print; p->msg; p++) { if (tp->phy_version == p->version) { dprintk("phy_version == %s (%04x)\n", p->msg, p->reg); return; } } dprintk("phy_version == Unknown\n"); } static void rtl8169_hw_phy_config(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct { u16 regs[5]; /* Beware of bit-sign propagation */ } phy_magic[5] = { { { 0x0000, //w 4 15 12 0 0x00a1, //w 3 15 0 00a1 0x0008, //w 2 15 0 0008 0x1020, //w 1 15 0 1020 0x1000 } },{ //w 0 15 0 1000 { 0x7000, //w 4 15 12 7 0xff41, //w 3 15 0 ff41 0xde60, //w 2 15 0 de60 0x0140, //w 1 15 0 0140 0x0077 } },{ //w 0 15 0 0077 { 0xa000, //w 4 15 12 a 0xdf01, //w 3 15 0 df01 0xdf20, //w 2 15 0 df20 0xff95, //w 1 15 0 ff95 0xfa00 } },{ //w 0 15 0 fa00 { 0xb000, //w 4 15 12 b 0xff41, //w 3 15 0 ff41 0xde20, //w 2 15 0 de20 0x0140, //w 1 15 0 0140 0x00bb } },{ //w 0 15 0 00bb { 0xf000, //w 4 15 12 f 0xdf01, //w 3 15 0 df01 0xdf20, //w 2 15 0 df20 0xff95, //w 1 15 0 ff95 0xbf00 } //w 0 15 0 bf00 } }, *p = phy_magic; int i; rtl8169_print_mac_version(tp); rtl8169_print_phy_version(tp); if (tp->mac_version <= RTL_GIGA_MAC_VER_B) return; if (tp->phy_version >= RTL_GIGA_PHY_VER_H) return; dprintk("MAC version != 0 && PHY version == 0 or 1\n"); dprintk("Do final_reg2.cfg\n"); /* Shazam ! */ if (tp->mac_version == RTL_GIGA_MAC_VER_X) { mdio_write(ioaddr, 31, 0x0001); mdio_write(ioaddr, 9, 0x273a); mdio_write(ioaddr, 14, 0x7bfb); mdio_write(ioaddr, 27, 0x841e); mdio_write(ioaddr, 31, 0x0002); mdio_write(ioaddr, 1, 0x90d0); mdio_write(ioaddr, 31, 0x0000); return; } /* phy config for RTL8169s mac_version C chip */ mdio_write(ioaddr, 31, 0x0001); //w 31 2 0 1 mdio_write(ioaddr, 21, 0x1000); //w 21 15 0 1000 mdio_write(ioaddr, 24, 0x65c7); //w 24 15 0 65c7 rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0 for (i = 0; i < ARRAY_SIZE(phy_magic); i++, p++) { int val, pos = 4; val = (mdio_read(ioaddr, pos) & 0x0fff) | (p->regs[0] & 0xffff); mdio_write(ioaddr, pos, val); while (--pos >= 0) mdio_write(ioaddr, pos, p->regs[4 - pos] & 0xffff); rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 1); //w 4 11 11 1 rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0 } mdio_write(ioaddr, 31, 0x0000); //w 31 2 0 0 } static void rtl8169_phy_timer(unsigned long __opaque) { struct net_device *dev = (struct net_device *)__opaque; struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; void __iomem *ioaddr = tp->mmio_addr; unsigned long timeout = RTL8169_PHY_TIMEOUT; assert(tp->mac_version > RTL_GIGA_MAC_VER_B); assert(tp->phy_version < RTL_GIGA_PHY_VER_H); if (!(tp->phy_1000_ctrl_reg & PHY_Cap_1000_Full)) return; spin_lock_irq(&tp->lock); if (tp->phy_reset_pending(ioaddr)) { /* * A busy loop could burn quite a few cycles on nowadays CPU. * Let's delay the execution of the timer for a few ticks. */ timeout = HZ/10; goto out_mod_timer; } if (tp->link_ok(ioaddr)) goto out_unlock; if (netif_msg_link(tp)) printk(KERN_WARNING "%s: PHY reset until link up\n", dev->name); tp->phy_reset_enable(ioaddr); out_mod_timer: mod_timer(timer, jiffies + timeout); out_unlock: spin_unlock_irq(&tp->lock); } static inline void rtl8169_delete_timer(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; if ((tp->mac_version <= RTL_GIGA_MAC_VER_B) || (tp->phy_version >= RTL_GIGA_PHY_VER_H)) return; del_timer_sync(timer); } static inline void rtl8169_request_timer(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; if ((tp->mac_version <= RTL_GIGA_MAC_VER_B) || (tp->phy_version >= RTL_GIGA_PHY_VER_H)) return; init_timer(timer); timer->expires = jiffies + RTL8169_PHY_TIMEOUT; timer->data = (unsigned long)(dev); timer->function = rtl8169_phy_timer; add_timer(timer); } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void rtl8169_netpoll(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; disable_irq(pdev->irq); rtl8169_interrupt(pdev->irq, dev, NULL); enable_irq(pdev->irq); } #endif static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev, void __iomem *ioaddr) { iounmap(ioaddr); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(dev); } static int __devinit rtl8169_init_board(struct pci_dev *pdev, struct net_device **dev_out, void __iomem **ioaddr_out) { void __iomem *ioaddr; struct net_device *dev; struct rtl8169_private *tp; int rc = -ENOMEM, i, acpi_idle_state = 0, pm_cap; assert(ioaddr_out != NULL); /* dev zeroed in alloc_etherdev */ dev = alloc_etherdev(sizeof (*tp)); if (dev == NULL) { if (netif_msg_drv(&debug)) printk(KERN_ERR PFX "unable to alloc new ethernet\n"); goto err_out; } SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); tp = netdev_priv(dev); tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT); /* enable device (incl. PCI PM wakeup and hotplug setup) */ rc = pci_enable_device(pdev); if (rc < 0) { if (netif_msg_probe(tp)) { printk(KERN_ERR PFX "%s: enable failure\n", pci_name(pdev)); } goto err_out_free_dev; } rc = pci_set_mwi(pdev); if (rc < 0) goto err_out_disable; /* save power state before pci_enable_device overwrites it */ pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); if (pm_cap) { u16 pwr_command; pci_read_config_word(pdev, pm_cap + PCI_PM_CTRL, &pwr_command); acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK; } else { if (netif_msg_probe(tp)) { printk(KERN_ERR PFX "Cannot find PowerManagement capability. " "Aborting.\n"); } goto err_out_mwi; } /* make sure PCI base addr 1 is MMIO */ if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { if (netif_msg_probe(tp)) { printk(KERN_ERR PFX "region #1 not an MMIO resource, aborting\n"); } rc = -ENODEV; goto err_out_mwi; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, 1) < R8169_REGS_SIZE) { if (netif_msg_probe(tp)) { printk(KERN_ERR PFX "Invalid PCI region size(s), aborting\n"); } rc = -ENODEV; goto err_out_mwi; } rc = pci_request_regions(pdev, MODULENAME); if (rc < 0) { if (netif_msg_probe(tp)) { printk(KERN_ERR PFX "%s: could not request regions.\n", pci_name(pdev)); } goto err_out_mwi; } tp->cp_cmd = PCIMulRW | RxChkSum; if ((sizeof(dma_addr_t) > 4) && !pci_set_dma_mask(pdev, DMA_64BIT_MASK) && use_dac) { tp->cp_cmd |= PCIDAC; dev->features |= NETIF_F_HIGHDMA; } else { rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (rc < 0) { if (netif_msg_probe(tp)) { printk(KERN_ERR PFX "DMA configuration failed.\n"); } goto err_out_free_res; } } pci_set_master(pdev); /* ioremap MMIO region */ ioaddr = ioremap(pci_resource_start(pdev, 1), R8169_REGS_SIZE); if (ioaddr == NULL) { if (netif_msg_probe(tp)) printk(KERN_ERR PFX "cannot remap MMIO, aborting\n"); rc = -EIO; goto err_out_free_res; } /* Unneeded ? Don't mess with Mrs. Murphy. */ rtl8169_irq_mask_and_ack(ioaddr); /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; udelay(10); } /* Identify chip attached to board */ rtl8169_get_mac_version(tp, ioaddr); rtl8169_get_phy_version(tp, ioaddr); rtl8169_print_mac_version(tp); rtl8169_print_phy_version(tp); for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) { if (tp->mac_version == rtl_chip_info[i].mac_version) break; } if (i < 0) { /* Unknown chip: assume array element #0, original RTL-8169 */ if (netif_msg_probe(tp)) { printk(KERN_DEBUG PFX "PCI device %s: " "unknown chip version, assuming %s\n", pci_name(pdev), rtl_chip_info[0].name); } i++; } tp->chipset = i; *ioaddr_out = ioaddr; *dev_out = dev; out: return rc; err_out_free_res: pci_release_regions(pdev); err_out_mwi: pci_clear_mwi(pdev); err_out_disable: pci_disable_device(pdev); err_out_free_dev: free_netdev(dev); err_out: *ioaddr_out = NULL; *dev_out = NULL; goto out; } static int __devinit rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev = NULL; struct rtl8169_private *tp; void __iomem *ioaddr = NULL; static int board_idx = -1; u8 autoneg, duplex; u16 speed; int i, rc; assert(pdev != NULL); assert(ent != NULL); board_idx++; if (netif_msg_drv(&debug)) { printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n", MODULENAME, RTL8169_VERSION); } rc = rtl8169_init_board(pdev, &dev, &ioaddr); if (rc) return rc; tp = netdev_priv(dev); assert(ioaddr != NULL); if (RTL_R8(PHYstatus) & TBI_Enable) { tp->set_speed = rtl8169_set_speed_tbi; tp->get_settings = rtl8169_gset_tbi; tp->phy_reset_enable = rtl8169_tbi_reset_enable; tp->phy_reset_pending = rtl8169_tbi_reset_pending; tp->link_ok = rtl8169_tbi_link_ok; tp->phy_1000_ctrl_reg = PHY_Cap_1000_Full; /* Implied by TBI */ } else { tp->set_speed = rtl8169_set_speed_xmii; tp->get_settings = rtl8169_gset_xmii; tp->phy_reset_enable = rtl8169_xmii_reset_enable; tp->phy_reset_pending = rtl8169_xmii_reset_pending; tp->link_ok = rtl8169_xmii_link_ok; } /* Get MAC address. FIXME: read EEPROM */ for (i = 0; i < MAC_ADDR_LEN; i++) dev->dev_addr[i] = RTL_R8(MAC0 + i); memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); dev->open = rtl8169_open; dev->hard_start_xmit = rtl8169_start_xmit; dev->get_stats = rtl8169_get_stats; SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops); dev->stop = rtl8169_close; dev->tx_timeout = rtl8169_tx_timeout; dev->set_multicast_list = rtl8169_set_rx_mode; dev->watchdog_timeo = RTL8169_TX_TIMEOUT; dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; dev->change_mtu = rtl8169_change_mtu; #ifdef CONFIG_R8169_NAPI dev->poll = rtl8169_poll; dev->weight = R8169_NAPI_WEIGHT; #endif #ifdef CONFIG_R8169_VLAN dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; dev->vlan_rx_register = rtl8169_vlan_rx_register; dev->vlan_rx_kill_vid = rtl8169_vlan_rx_kill_vid; #endif #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = rtl8169_netpoll; #endif tp->intr_mask = 0xffff; tp->pci_dev = pdev; tp->mmio_addr = ioaddr; spin_lock_init(&tp->lock); rc = register_netdev(dev); if (rc) { rtl8169_release_board(pdev, dev, ioaddr); return rc; } if (netif_msg_probe(tp)) { printk(KERN_DEBUG "%s: Identified chip type is '%s'.\n", dev->name, rtl_chip_info[tp->chipset].name); } pci_set_drvdata(pdev, dev); if (netif_msg_probe(tp)) { printk(KERN_INFO "%s: %s at 0x%lx, " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, " "IRQ %d\n", dev->name, rtl_chip_info[ent->driver_data].name, dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq); } rtl8169_hw_phy_config(dev); dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); if (tp->mac_version < RTL_GIGA_MAC_VER_E) { dprintk("Set PCI Latency=0x40\n"); pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x40); } if (tp->mac_version == RTL_GIGA_MAC_VER_D) { dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); dprintk("Set PHY Reg 0x0bh = 0x00h\n"); mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0 } rtl8169_link_option(board_idx, &autoneg, &speed, &duplex); rtl8169_set_speed(dev, autoneg, speed, duplex); if ((RTL_R8(PHYstatus) & TBI_Enable) && netif_msg_link(tp)) printk(KERN_INFO PFX "%s: TBI auto-negotiating\n", dev->name); return 0; } static void __devexit rtl8169_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); assert(dev != NULL); assert(tp != NULL); unregister_netdev(dev); rtl8169_release_board(pdev, dev, tp->mmio_addr); pci_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static int rtl8169_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; if (!netif_running(dev)) return 0; netif_device_detach(dev); netif_stop_queue(dev); spin_lock_irqsave(&tp->lock, flags); /* Disable interrupts, stop Rx and Tx */ RTL_W16(IntrMask, 0); RTL_W8(ChipCmd, 0); /* Update the error counts. */ tp->stats.rx_missed_errors += RTL_R32(RxMissed); RTL_W32(RxMissed, 0); spin_unlock_irqrestore(&tp->lock, flags); return 0; } static int rtl8169_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (!netif_running(dev)) return 0; netif_device_attach(dev); rtl8169_hw_start(dev); return 0; } #endif /* CONFIG_PM */ static void rtl8169_set_rxbufsize(struct rtl8169_private *tp, struct net_device *dev) { unsigned int mtu = dev->mtu; tp->rx_buf_sz = (mtu > RX_BUF_SIZE) ? mtu + ETH_HLEN + 8 : RX_BUF_SIZE; } static int rtl8169_open(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; int retval; rtl8169_set_rxbufsize(tp, dev); retval = request_irq(dev->irq, rtl8169_interrupt, SA_SHIRQ, dev->name, dev); if (retval < 0) goto out; retval = -ENOMEM; /* * Rx and Tx desscriptors needs 256 bytes alignment. * pci_alloc_consistent provides more. */ tp->TxDescArray = pci_alloc_consistent(pdev, R8169_TX_RING_BYTES, &tp->TxPhyAddr); if (!tp->TxDescArray) goto err_free_irq; tp->RxDescArray = pci_alloc_consistent(pdev, R8169_RX_RING_BYTES, &tp->RxPhyAddr); if (!tp->RxDescArray) goto err_free_tx; retval = rtl8169_init_ring(dev); if (retval < 0) goto err_free_rx; INIT_WORK(&tp->task, NULL, dev); rtl8169_hw_start(dev); rtl8169_request_timer(dev); rtl8169_check_link_status(dev, tp, tp->mmio_addr); out: return retval; err_free_rx: pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); err_free_tx: pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); err_free_irq: free_irq(dev->irq, dev); goto out; } static void rtl8169_hw_reset(void __iomem *ioaddr) { /* Disable interrupts */ rtl8169_irq_mask_and_ack(ioaddr); /* Reset the chipset */ RTL_W8(ChipCmd, CmdReset); /* PCI commit */ RTL_R8(ChipCmd); } static void rtl8169_hw_start(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u32 i; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; udelay(10); } RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(EarlyTxThres, EarlyTxThld); /* Low hurts. Let's disable the filtering. */ RTL_W16(RxMaxSize, 16383); /* Set Rx Config register */ i = rtl8169_rx_config | (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask); RTL_W32(RxConfig, i); /* Set DMA burst size and Interframe Gap Time */ RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); tp->cp_cmd |= RTL_R16(CPlusCmd); RTL_W16(CPlusCmd, tp->cp_cmd); if ((tp->mac_version == RTL_GIGA_MAC_VER_D) || (tp->mac_version == RTL_GIGA_MAC_VER_E)) { dprintk(KERN_INFO PFX "Set MAC Reg C+CR Offset 0xE0. " "Bit-3 and bit-14 MUST be 1\n"); tp->cp_cmd |= (1 << 14) | PCIMulRW; RTL_W16(CPlusCmd, tp->cp_cmd); } /* * Undocumented corner. Supposedly: * (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets */ RTL_W16(IntrMitigate, 0x0000); RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr & DMA_32BIT_MASK)); RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr >> 32)); RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr & DMA_32BIT_MASK)); RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr >> 32)); RTL_W8(Cfg9346, Cfg9346_Lock); udelay(10); RTL_W32(RxMissed, 0); rtl8169_set_rx_mode(dev); /* no early-rx interrupts */ RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); /* Enable all known interrupts by setting the interrupt mask. */ RTL_W16(IntrMask, rtl8169_intr_mask); netif_start_queue(dev); } static int rtl8169_change_mtu(struct net_device *dev, int new_mtu) { struct rtl8169_private *tp = netdev_priv(dev); int ret = 0; if (new_mtu < ETH_ZLEN || new_mtu > SafeMtu) return -EINVAL; dev->mtu = new_mtu; if (!netif_running(dev)) goto out; rtl8169_down(dev); rtl8169_set_rxbufsize(tp, dev); ret = rtl8169_init_ring(dev); if (ret < 0) goto out; netif_poll_enable(dev); rtl8169_hw_start(dev); rtl8169_request_timer(dev); out: return ret; } static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc) { desc->addr = 0x0badbadbadbadbadull; desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask); } static void rtl8169_free_rx_skb(struct rtl8169_private *tp, struct sk_buff **sk_buff, struct RxDesc *desc) { struct pci_dev *pdev = tp->pci_dev; pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(*sk_buff); *sk_buff = NULL; rtl8169_make_unusable_by_asic(desc); } static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz) { u32 eor = le32_to_cpu(desc->opts1) & RingEnd; desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz); } static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping, u32 rx_buf_sz) { desc->addr = cpu_to_le64(mapping); wmb(); rtl8169_mark_to_asic(desc, rx_buf_sz); } static int rtl8169_alloc_rx_skb(struct pci_dev *pdev, struct sk_buff **sk_buff, struct RxDesc *desc, int rx_buf_sz) { struct sk_buff *skb; dma_addr_t mapping; int ret = 0; skb = dev_alloc_skb(rx_buf_sz + NET_IP_ALIGN); if (!skb) goto err_out; skb_reserve(skb, NET_IP_ALIGN); *sk_buff = skb; mapping = pci_map_single(pdev, skb->data, rx_buf_sz, PCI_DMA_FROMDEVICE); rtl8169_map_to_asic(desc, mapping, rx_buf_sz); out: return ret; err_out: ret = -ENOMEM; rtl8169_make_unusable_by_asic(desc); goto out; } static void rtl8169_rx_clear(struct rtl8169_private *tp) { int i; for (i = 0; i < NUM_RX_DESC; i++) { if (tp->Rx_skbuff[i]) { rtl8169_free_rx_skb(tp, tp->Rx_skbuff + i, tp->RxDescArray + i); } } } static u32 rtl8169_rx_fill(struct rtl8169_private *tp, struct net_device *dev, u32 start, u32 end) { u32 cur; for (cur = start; end - cur > 0; cur++) { int ret, i = cur % NUM_RX_DESC; if (tp->Rx_skbuff[i]) continue; ret = rtl8169_alloc_rx_skb(tp->pci_dev, tp->Rx_skbuff + i, tp->RxDescArray + i, tp->rx_buf_sz); if (ret < 0) break; } return cur - start; } static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc) { desc->opts1 |= cpu_to_le32(RingEnd); } static void rtl8169_init_ring_indexes(struct rtl8169_private *tp) { tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0; } static int rtl8169_init_ring(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_init_ring_indexes(tp); memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info)); memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *)); if (rtl8169_rx_fill(tp, dev, 0, NUM_RX_DESC) != NUM_RX_DESC) goto err_out; rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1); return 0; err_out: rtl8169_rx_clear(tp); return -ENOMEM; } static void rtl8169_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb, struct TxDesc *desc) { unsigned int len = tx_skb->len; pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE); desc->opts1 = 0x00; desc->opts2 = 0x00; desc->addr = 0x00; tx_skb->len = 0; } static void rtl8169_tx_clear(struct rtl8169_private *tp) { unsigned int i; for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) { unsigned int entry = i % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; unsigned int len = tx_skb->len; if (len) { struct sk_buff *skb = tx_skb->skb; rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (skb) { dev_kfree_skb(skb); tx_skb->skb = NULL; } tp->stats.tx_dropped++; } } tp->cur_tx = tp->dirty_tx = 0; } static void rtl8169_schedule_work(struct net_device *dev, void (*task)(void *)) { struct rtl8169_private *tp = netdev_priv(dev); PREPARE_WORK(&tp->task, task, dev); schedule_delayed_work(&tp->task, 4); } static void rtl8169_wait_for_quiescence(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; synchronize_irq(dev->irq); /* Wait for any pending NAPI task to complete */ netif_poll_disable(dev); rtl8169_irq_mask_and_ack(ioaddr); netif_poll_enable(dev); } static void rtl8169_reinit_task(void *_data) { struct net_device *dev = _data; int ret; if (netif_running(dev)) { rtl8169_wait_for_quiescence(dev); rtl8169_close(dev); } ret = rtl8169_open(dev); if (unlikely(ret < 0)) { if (net_ratelimit()) { struct rtl8169_private *tp = netdev_priv(dev); if (netif_msg_drv(tp)) { printk(PFX KERN_ERR "%s: reinit failure (status = %d)." " Rescheduling.\n", dev->name, ret); } } rtl8169_schedule_work(dev, rtl8169_reinit_task); } } static void rtl8169_reset_task(void *_data) { struct net_device *dev = _data; struct rtl8169_private *tp = netdev_priv(dev); if (!netif_running(dev)) return; rtl8169_wait_for_quiescence(dev); rtl8169_rx_interrupt(dev, tp, tp->mmio_addr); rtl8169_tx_clear(tp); if (tp->dirty_rx == tp->cur_rx) { rtl8169_init_ring_indexes(tp); rtl8169_hw_start(dev); netif_wake_queue(dev); } else { if (net_ratelimit()) { struct rtl8169_private *tp = netdev_priv(dev); if (netif_msg_intr(tp)) { printk(PFX KERN_EMERG "%s: Rx buffers shortage\n", dev->name); } } rtl8169_schedule_work(dev, rtl8169_reset_task); } } static void rtl8169_tx_timeout(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_hw_reset(tp->mmio_addr); /* Let's wait a bit while any (async) irq lands on */ rtl8169_schedule_work(dev, rtl8169_reset_task); } static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb, u32 opts1) { struct skb_shared_info *info = skb_shinfo(skb); unsigned int cur_frag, entry; struct TxDesc *txd; entry = tp->cur_tx; for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) { skb_frag_t *frag = info->frags + cur_frag; dma_addr_t mapping; u32 status, len; void *addr; entry = (entry + 1) % NUM_TX_DESC; txd = tp->TxDescArray + entry; len = frag->size; addr = ((void *) page_address(frag->page)) + frag->page_offset; mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE); /* anti gcc 2.95.3 bugware (sic) */ status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); txd->addr = cpu_to_le64(mapping); tp->tx_skb[entry].len = len; } if (cur_frag) { tp->tx_skb[entry].skb = skb; txd->opts1 |= cpu_to_le32(LastFrag); } return cur_frag; } static inline u32 rtl8169_tso_csum(struct sk_buff *skb, struct net_device *dev) { if (dev->features & NETIF_F_TSO) { u32 mss = skb_shinfo(skb)->tso_size; if (mss) return LargeSend | ((mss & MSSMask) << MSSShift); } if (skb->ip_summed == CHECKSUM_HW) { const struct iphdr *ip = skb->nh.iph; if (ip->protocol == IPPROTO_TCP) return IPCS | TCPCS; else if (ip->protocol == IPPROTO_UDP) return IPCS | UDPCS; WARN_ON(1); /* we need a WARN() */ } return 0; } static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC; struct TxDesc *txd = tp->TxDescArray + entry; void __iomem *ioaddr = tp->mmio_addr; dma_addr_t mapping; u32 status, len; u32 opts1; int ret = 0; if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) { if (netif_msg_drv(tp)) { printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", dev->name); } goto err_stop; } if (unlikely(le32_to_cpu(txd->opts1) & DescOwn)) goto err_stop; opts1 = DescOwn | rtl8169_tso_csum(skb, dev); frags = rtl8169_xmit_frags(tp, skb, opts1); if (frags) { len = skb_headlen(skb); opts1 |= FirstFrag; } else { len = skb->len; if (unlikely(len < ETH_ZLEN)) { skb = skb_padto(skb, ETH_ZLEN); if (!skb) goto err_update_stats; len = ETH_ZLEN; } opts1 |= FirstFrag | LastFrag; tp->tx_skb[entry].skb = skb; } mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE); tp->tx_skb[entry].len = len; txd->addr = cpu_to_le64(mapping); txd->opts2 = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb)); wmb(); /* anti gcc 2.95.3 bugware (sic) */ status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); dev->trans_start = jiffies; tp->cur_tx += frags + 1; smp_wmb(); RTL_W8(TxPoll, 0x40); /* set polling bit */ if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) { netif_stop_queue(dev); smp_rmb(); if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS) netif_wake_queue(dev); } out: return ret; err_stop: netif_stop_queue(dev); ret = 1; err_update_stats: tp->stats.tx_dropped++; goto out; } static void rtl8169_pcierr_interrupt(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; void __iomem *ioaddr = tp->mmio_addr; u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); if (netif_msg_intr(tp)) { printk(KERN_ERR "%s: PCI error (cmd = 0x%04x, status = 0x%04x).\n", dev->name, pci_cmd, pci_status); } /* * The recovery sequence below admits a very elaborated explanation: * - it seems to work; * - I did not see what else could be done. * * Feel free to adjust to your needs. */ pci_write_config_word(pdev, PCI_COMMAND, pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); pci_write_config_word(pdev, PCI_STATUS, pci_status & (PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT)); /* The infamous DAC f*ckup only happens at boot time */ if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) { if (netif_msg_intr(tp)) printk(KERN_INFO "%s: disabling PCI DAC.\n", dev->name); tp->cp_cmd &= ~PCIDAC; RTL_W16(CPlusCmd, tp->cp_cmd); dev->features &= ~NETIF_F_HIGHDMA; rtl8169_schedule_work(dev, rtl8169_reinit_task); } rtl8169_hw_reset(ioaddr); } static void rtl8169_tx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned int dirty_tx, tx_left; assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); dirty_tx = tp->dirty_tx; smp_rmb(); tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { unsigned int entry = dirty_tx % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; u32 len = tx_skb->len; u32 status; rmb(); status = le32_to_cpu(tp->TxDescArray[entry].opts1); if (status & DescOwn) break; tp->stats.tx_bytes += len; tp->stats.tx_packets++; rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (status & LastFrag) { dev_kfree_skb_irq(tx_skb->skb); tx_skb->skb = NULL; } dirty_tx++; tx_left--; } if (tp->dirty_tx != dirty_tx) { tp->dirty_tx = dirty_tx; smp_wmb(); if (netif_queue_stopped(dev) && (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) { netif_wake_queue(dev); } } } static inline int rtl8169_fragmented_frame(u32 status) { return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag); } static inline void rtl8169_rx_csum(struct sk_buff *skb, struct RxDesc *desc) { u32 opts1 = le32_to_cpu(desc->opts1); u32 status = opts1 & RxProtoMask; if (((status == RxProtoTCP) && !(opts1 & TCPFail)) || ((status == RxProtoUDP) && !(opts1 & UDPFail)) || ((status == RxProtoIP) && !(opts1 & IPFail))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } static inline int rtl8169_try_rx_copy(struct sk_buff **sk_buff, int pkt_size, struct RxDesc *desc, int rx_buf_sz) { int ret = -1; if (pkt_size < rx_copybreak) { struct sk_buff *skb; skb = dev_alloc_skb(pkt_size + NET_IP_ALIGN); if (skb) { skb_reserve(skb, NET_IP_ALIGN); eth_copy_and_sum(skb, sk_buff[0]->data, pkt_size, 0); *sk_buff = skb; rtl8169_mark_to_asic(desc, rx_buf_sz); ret = 0; } } return ret; } static int rtl8169_rx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned int cur_rx, rx_left; unsigned int delta, count; assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); cur_rx = tp->cur_rx; rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx; rx_left = rtl8169_rx_quota(rx_left, (u32) dev->quota); for (; rx_left > 0; rx_left--, cur_rx++) { unsigned int entry = cur_rx % NUM_RX_DESC; struct RxDesc *desc = tp->RxDescArray + entry; u32 status; rmb(); status = le32_to_cpu(desc->opts1); if (status & DescOwn) break; if (unlikely(status & RxRES)) { if (netif_msg_rx_err(tp)) { printk(KERN_INFO "%s: Rx ERROR. status = %08x\n", dev->name, status); } tp->stats.rx_errors++; if (status & (RxRWT | RxRUNT)) tp->stats.rx_length_errors++; if (status & RxCRC) tp->stats.rx_crc_errors++; rtl8169_mark_to_asic(desc, tp->rx_buf_sz); } else { struct sk_buff *skb = tp->Rx_skbuff[entry]; int pkt_size = (status & 0x00001FFF) - 4; void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int) = pci_dma_sync_single_for_device; /* * The driver does not support incoming fragmented * frames. They are seen as a symptom of over-mtu * sized frames. */ if (unlikely(rtl8169_fragmented_frame(status))) { tp->stats.rx_dropped++; tp->stats.rx_length_errors++; rtl8169_mark_to_asic(desc, tp->rx_buf_sz); continue; } rtl8169_rx_csum(skb, desc); pci_dma_sync_single_for_cpu(tp->pci_dev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); if (rtl8169_try_rx_copy(&skb, pkt_size, desc, tp->rx_buf_sz)) { pci_action = pci_unmap_single; tp->Rx_skbuff[entry] = NULL; } pci_action(tp->pci_dev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); skb->dev = dev; skb_put(skb, pkt_size); skb->protocol = eth_type_trans(skb, dev); if (rtl8169_rx_vlan_skb(tp, desc, skb) < 0) rtl8169_rx_skb(skb); dev->last_rx = jiffies; tp->stats.rx_bytes += pkt_size; tp->stats.rx_packets++; } } count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; delta = rtl8169_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx); if (!delta && count && netif_msg_intr(tp)) printk(KERN_INFO "%s: no Rx buffer allocated\n", dev->name); tp->dirty_rx += delta; /* * FIXME: until there is periodic timer to try and refill the ring, * a temporary shortage may definitely kill the Rx process. * - disable the asic to try and avoid an overflow and kick it again * after refill ? * - how do others driver handle this condition (Uh oh...). */ if ((tp->dirty_rx + NUM_RX_DESC == tp->cur_rx) && netif_msg_intr(tp)) printk(KERN_EMERG "%s: Rx buffers exhausted\n", dev->name); return count; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_instance; struct rtl8169_private *tp = netdev_priv(dev); int boguscnt = max_interrupt_work; void __iomem *ioaddr = tp->mmio_addr; int status; int handled = 0; do { status = RTL_R16(IntrStatus); /* hotplug/major error/no more work/shared irq */ if ((status == 0xFFFF) || !status) break; handled = 1; if (unlikely(!netif_running(dev))) { rtl8169_asic_down(ioaddr); goto out; } status &= tp->intr_mask; RTL_W16(IntrStatus, (status & RxFIFOOver) ? (status | RxOverflow) : status); if (!(status & rtl8169_intr_mask)) break; if (unlikely(status & SYSErr)) { rtl8169_pcierr_interrupt(dev); break; } if (status & LinkChg) rtl8169_check_link_status(dev, tp, ioaddr); #ifdef CONFIG_R8169_NAPI RTL_W16(IntrMask, rtl8169_intr_mask & ~rtl8169_napi_event); tp->intr_mask = ~rtl8169_napi_event; if (likely(netif_rx_schedule_prep(dev))) __netif_rx_schedule(dev); else if (netif_msg_intr(tp)) { printk(KERN_INFO "%s: interrupt %04x taken in poll\n", dev->name, status); } break; #else /* Rx interrupt */ if (status & (RxOK | RxOverflow | RxFIFOOver)) { rtl8169_rx_interrupt(dev, tp, ioaddr); } /* Tx interrupt */ if (status & (TxOK | TxErr)) rtl8169_tx_interrupt(dev, tp, ioaddr); #endif boguscnt--; } while (boguscnt > 0); if (boguscnt <= 0) { if (net_ratelimit() && netif_msg_intr(tp)) { printk(KERN_WARNING "%s: Too much work at interrupt!\n", dev->name); } /* Clear all interrupt sources. */ RTL_W16(IntrStatus, 0xffff); } out: return IRQ_RETVAL(handled); } #ifdef CONFIG_R8169_NAPI static int rtl8169_poll(struct net_device *dev, int *budget) { unsigned int work_done, work_to_do = min(*budget, dev->quota); struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; work_done = rtl8169_rx_interrupt(dev, tp, ioaddr); rtl8169_tx_interrupt(dev, tp, ioaddr); *budget -= work_done; dev->quota -= work_done; if (work_done < work_to_do) { netif_rx_complete(dev); tp->intr_mask = 0xffff; /* * 20040426: the barrier is not strictly required but the * behavior of the irq handler could be less predictable * without it. Btw, the lack of flush for the posted pci * write is safe - FR */ smp_wmb(); RTL_W16(IntrMask, rtl8169_intr_mask); } return (work_done >= work_to_do); } #endif static void rtl8169_down(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned int poll_locked = 0; rtl8169_delete_timer(dev); netif_stop_queue(dev); flush_scheduled_work(); core_down: spin_lock_irq(&tp->lock); rtl8169_asic_down(ioaddr); /* Update the error counts. */ tp->stats.rx_missed_errors += RTL_R32(RxMissed); RTL_W32(RxMissed, 0); spin_unlock_irq(&tp->lock); synchronize_irq(dev->irq); if (!poll_locked) { netif_poll_disable(dev); poll_locked++; } /* Give a racing hard_start_xmit a few cycles to complete. */ synchronize_sched(); /* FIXME: should this be synchronize_irq()? */ /* * And now for the 50k$ question: are IRQ disabled or not ? * * Two paths lead here: * 1) dev->close * -> netif_running() is available to sync the current code and the * IRQ handler. See rtl8169_interrupt for details. * 2) dev->change_mtu * -> rtl8169_poll can not be issued again and re-enable the * interruptions. Let's simply issue the IRQ down sequence again. */ if (RTL_R16(IntrMask)) goto core_down; rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); } static int rtl8169_close(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; rtl8169_down(dev); free_irq(dev->irq, dev); netif_poll_enable(dev); pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; tp->RxDescArray = NULL; return 0; } static void rtl8169_set_rx_mode(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; u32 mc_filter[2]; /* Multicast hash filter */ int i, rx_mode; u32 tmp = 0; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ if (netif_msg_link(tp)) { printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); } rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else { struct dev_mc_list *mclist; rx_mode = AcceptBroadcast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); rx_mode |= AcceptMulticast; } } spin_lock_irqsave(&tp->lock, flags); tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask); RTL_W32(RxConfig, tmp); RTL_W32(MAR0 + 0, mc_filter[0]); RTL_W32(MAR0 + 4, mc_filter[1]); spin_unlock_irqrestore(&tp->lock, flags); } /** * rtl8169_get_stats - Get rtl8169 read/write statistics * @dev: The Ethernet Device to get statistics for * * Get TX/RX statistics for rtl8169 */ static struct net_device_stats *rtl8169_get_stats(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; if (netif_running(dev)) { spin_lock_irqsave(&tp->lock, flags); tp->stats.rx_missed_errors += RTL_R32(RxMissed); RTL_W32(RxMissed, 0); spin_unlock_irqrestore(&tp->lock, flags); } return &tp->stats; } static struct pci_driver rtl8169_pci_driver = { .name = MODULENAME, .id_table = rtl8169_pci_tbl, .probe = rtl8169_init_one, .remove = __devexit_p(rtl8169_remove_one), #ifdef CONFIG_PM .suspend = rtl8169_suspend, .resume = rtl8169_resume, #endif }; static int __init rtl8169_init_module(void) { return pci_module_init(&rtl8169_pci_driver); } static void __exit rtl8169_cleanup_module(void) { pci_unregister_driver(&rtl8169_pci_driver); } module_init(rtl8169_init_module); module_exit(rtl8169_cleanup_module);