/* myri_sbus.h: MyriCOM MyriNET SBUS card driver. * * Copyright (C) 1996, 1999 David S. Miller (davem@redhat.com) */ static char version[] = "myri_sbus.c:v1.9 12/Sep/99 David S. Miller (davem@redhat.com)\n"; #include <linux/module.h> #include <linux/config.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/bitops.h> #include <net/dst.h> #include <net/arp.h> #include <net/sock.h> #include <net/ipv6.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/byteorder.h> #include <asm/idprom.h> #include <asm/sbus.h> #include <asm/openprom.h> #include <asm/oplib.h> #include <asm/auxio.h> #include <asm/pgtable.h> #include <asm/irq.h> #include <asm/checksum.h> #include "myri_sbus.h" #include "myri_code.h" /* #define DEBUG_DETECT */ /* #define DEBUG_IRQ */ /* #define DEBUG_TRANSMIT */ /* #define DEBUG_RECEIVE */ /* #define DEBUG_HEADER */ #ifdef DEBUG_DETECT #define DET(x) printk x #else #define DET(x) #endif #ifdef DEBUG_IRQ #define DIRQ(x) printk x #else #define DIRQ(x) #endif #ifdef DEBUG_TRANSMIT #define DTX(x) printk x #else #define DTX(x) #endif #ifdef DEBUG_RECEIVE #define DRX(x) printk x #else #define DRX(x) #endif #ifdef DEBUG_HEADER #define DHDR(x) printk x #else #define DHDR(x) #endif #ifdef MODULE static struct myri_eth *root_myri_dev; #endif static void myri_reset_off(void __iomem *lp, void __iomem *cregs) { /* Clear IRQ mask. */ sbus_writel(0, lp + LANAI_EIMASK); /* Turn RESET function off. */ sbus_writel(CONTROL_ROFF, cregs + MYRICTRL_CTRL); } static void myri_reset_on(void __iomem *cregs) { /* Enable RESET function. */ sbus_writel(CONTROL_RON, cregs + MYRICTRL_CTRL); /* Disable IRQ's. */ sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL); } static void myri_disable_irq(void __iomem *lp, void __iomem *cregs) { sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL); sbus_writel(0, lp + LANAI_EIMASK); sbus_writel(ISTAT_HOST, lp + LANAI_ISTAT); } static void myri_enable_irq(void __iomem *lp, void __iomem *cregs) { sbus_writel(CONTROL_EIRQ, cregs + MYRICTRL_CTRL); sbus_writel(ISTAT_HOST, lp + LANAI_EIMASK); } static inline void bang_the_chip(struct myri_eth *mp) { struct myri_shmem __iomem *shmem = mp->shmem; void __iomem *cregs = mp->cregs; sbus_writel(1, &shmem->send); sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL); } static int myri_do_handshake(struct myri_eth *mp) { struct myri_shmem __iomem *shmem = mp->shmem; void __iomem *cregs = mp->cregs; struct myri_channel __iomem *chan = &shmem->channel; int tick = 0; DET(("myri_do_handshake: ")); if (sbus_readl(&chan->state) == STATE_READY) { DET(("Already STATE_READY, failed.\n")); return -1; /* We're hosed... */ } myri_disable_irq(mp->lregs, cregs); while (tick++ <= 25) { u32 softstate; /* Wake it up. */ DET(("shakedown, CONTROL_WON, ")); sbus_writel(1, &shmem->shakedown); sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL); softstate = sbus_readl(&chan->state); DET(("chanstate[%08x] ", softstate)); if (softstate == STATE_READY) { DET(("wakeup successful, ")); break; } if (softstate != STATE_WFN) { DET(("not WFN setting that, ")); sbus_writel(STATE_WFN, &chan->state); } udelay(20); } myri_enable_irq(mp->lregs, cregs); if (tick > 25) { DET(("25 ticks we lose, failure.\n")); return -1; } DET(("success\n")); return 0; } static int myri_load_lanai(struct myri_eth *mp) { struct net_device *dev = mp->dev; struct myri_shmem __iomem *shmem = mp->shmem; void __iomem *rptr; int i; myri_disable_irq(mp->lregs, mp->cregs); myri_reset_on(mp->cregs); rptr = mp->lanai; for (i = 0; i < mp->eeprom.ramsz; i++) sbus_writeb(0, rptr + i); if (mp->eeprom.cpuvers >= CPUVERS_3_0) sbus_writel(mp->eeprom.cval, mp->lregs + LANAI_CVAL); /* Load executable code. */ for (i = 0; i < sizeof(lanai4_code); i++) sbus_writeb(lanai4_code[i], rptr + (lanai4_code_off * 2) + i); /* Load data segment. */ for (i = 0; i < sizeof(lanai4_data); i++) sbus_writeb(lanai4_data[i], rptr + (lanai4_data_off * 2) + i); /* Set device address. */ sbus_writeb(0, &shmem->addr[0]); sbus_writeb(0, &shmem->addr[1]); for (i = 0; i < 6; i++) sbus_writeb(dev->dev_addr[i], &shmem->addr[i + 2]); /* Set SBUS bursts and interrupt mask. */ sbus_writel(((mp->myri_bursts & 0xf8) >> 3), &shmem->burst); sbus_writel(SHMEM_IMASK_RX, &shmem->imask); /* Release the LANAI. */ myri_disable_irq(mp->lregs, mp->cregs); myri_reset_off(mp->lregs, mp->cregs); myri_disable_irq(mp->lregs, mp->cregs); /* Wait for the reset to complete. */ for (i = 0; i < 5000; i++) { if (sbus_readl(&shmem->channel.state) != STATE_READY) break; else udelay(10); } if (i == 5000) printk(KERN_ERR "myricom: Chip would not reset after firmware load.\n"); i = myri_do_handshake(mp); if (i) printk(KERN_ERR "myricom: Handshake with LANAI failed.\n"); if (mp->eeprom.cpuvers == CPUVERS_4_0) sbus_writel(0, mp->lregs + LANAI_VERS); return i; } static void myri_clean_rings(struct myri_eth *mp) { struct sendq __iomem *sq = mp->sq; struct recvq __iomem *rq = mp->rq; int i; sbus_writel(0, &rq->tail); sbus_writel(0, &rq->head); for (i = 0; i < (RX_RING_SIZE+1); i++) { if (mp->rx_skbs[i] != NULL) { struct myri_rxd __iomem *rxd = &rq->myri_rxd[i]; u32 dma_addr; dma_addr = sbus_readl(&rxd->myri_scatters[0].addr); sbus_unmap_single(mp->myri_sdev, dma_addr, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE); dev_kfree_skb(mp->rx_skbs[i]); mp->rx_skbs[i] = NULL; } } mp->tx_old = 0; sbus_writel(0, &sq->tail); sbus_writel(0, &sq->head); for (i = 0; i < TX_RING_SIZE; i++) { if (mp->tx_skbs[i] != NULL) { struct sk_buff *skb = mp->tx_skbs[i]; struct myri_txd __iomem *txd = &sq->myri_txd[i]; u32 dma_addr; dma_addr = sbus_readl(&txd->myri_gathers[0].addr); sbus_unmap_single(mp->myri_sdev, dma_addr, (skb->len + 3) & ~3, SBUS_DMA_TODEVICE); dev_kfree_skb(mp->tx_skbs[i]); mp->tx_skbs[i] = NULL; } } } static void myri_init_rings(struct myri_eth *mp, int from_irq) { struct recvq __iomem *rq = mp->rq; struct myri_rxd __iomem *rxd = &rq->myri_rxd[0]; struct net_device *dev = mp->dev; gfp_t gfp_flags = GFP_KERNEL; int i; if (from_irq || in_interrupt()) gfp_flags = GFP_ATOMIC; myri_clean_rings(mp); for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = myri_alloc_skb(RX_ALLOC_SIZE, gfp_flags); u32 dma_addr; if (!skb) continue; mp->rx_skbs[i] = skb; skb->dev = dev; skb_put(skb, RX_ALLOC_SIZE); dma_addr = sbus_map_single(mp->myri_sdev, skb->data, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE); sbus_writel(dma_addr, &rxd[i].myri_scatters[0].addr); sbus_writel(RX_ALLOC_SIZE, &rxd[i].myri_scatters[0].len); sbus_writel(i, &rxd[i].ctx); sbus_writel(1, &rxd[i].num_sg); } sbus_writel(0, &rq->head); sbus_writel(RX_RING_SIZE, &rq->tail); } static int myri_init(struct myri_eth *mp, int from_irq) { myri_init_rings(mp, from_irq); return 0; } static void myri_is_not_so_happy(struct myri_eth *mp) { } #ifdef DEBUG_HEADER static void dump_ehdr(struct ethhdr *ehdr) { printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)" "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n", ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2], ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4], ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2], ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4], ehdr->h_proto); } static void dump_ehdr_and_myripad(unsigned char *stuff) { struct ethhdr *ehdr = (struct ethhdr *) (stuff + 2); printk("pad[%02x:%02x]", stuff[0], stuff[1]); printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)" "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n", ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2], ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4], ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2], ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4], ehdr->h_proto); } #endif static void myri_tx(struct myri_eth *mp, struct net_device *dev) { struct sendq __iomem *sq= mp->sq; int entry = mp->tx_old; int limit = sbus_readl(&sq->head); DTX(("entry[%d] limit[%d] ", entry, limit)); if (entry == limit) return; while (entry != limit) { struct sk_buff *skb = mp->tx_skbs[entry]; u32 dma_addr; DTX(("SKB[%d] ", entry)); dma_addr = sbus_readl(&sq->myri_txd[entry].myri_gathers[0].addr); sbus_unmap_single(mp->myri_sdev, dma_addr, skb->len, SBUS_DMA_TODEVICE); dev_kfree_skb(skb); mp->tx_skbs[entry] = NULL; mp->enet_stats.tx_packets++; entry = NEXT_TX(entry); } mp->tx_old = entry; } /* Determine the packet's protocol ID. The rule here is that we * assume 802.3 if the type field is short enough to be a length. * This is normal practice and works for any 'now in use' protocol. */ static __be16 myri_type_trans(struct sk_buff *skb, struct net_device *dev) { struct ethhdr *eth; unsigned char *rawp; skb->mac.raw = (((unsigned char *)skb->data) + MYRI_PAD_LEN); skb_pull(skb, dev->hard_header_len); eth = eth_hdr(skb); #ifdef DEBUG_HEADER DHDR(("myri_type_trans: ")); dump_ehdr(eth); #endif if (*eth->h_dest & 1) { if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN)==0) skb->pkt_type = PACKET_BROADCAST; else skb->pkt_type = PACKET_MULTICAST; } else if (dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) { if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN)) skb->pkt_type = PACKET_OTHERHOST; } if (ntohs(eth->h_proto) >= 1536) return eth->h_proto; rawp = skb->data; /* This is a magic hack to spot IPX packets. Older Novell breaks * the protocol design and runs IPX over 802.3 without an 802.2 LLC * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This * won't work for fault tolerant netware but does for the rest. */ if (*(unsigned short *)rawp == 0xFFFF) return htons(ETH_P_802_3); /* Real 802.2 LLC */ return htons(ETH_P_802_2); } static void myri_rx(struct myri_eth *mp, struct net_device *dev) { struct recvq __iomem *rq = mp->rq; struct recvq __iomem *rqa = mp->rqack; int entry = sbus_readl(&rqa->head); int limit = sbus_readl(&rqa->tail); int drops; DRX(("entry[%d] limit[%d] ", entry, limit)); if (entry == limit) return; drops = 0; DRX(("\n")); while (entry != limit) { struct myri_rxd __iomem *rxdack = &rqa->myri_rxd[entry]; u32 csum = sbus_readl(&rxdack->csum); int len = sbus_readl(&rxdack->myri_scatters[0].len); int index = sbus_readl(&rxdack->ctx); struct myri_rxd __iomem *rxd = &rq->myri_rxd[sbus_readl(&rq->tail)]; struct sk_buff *skb = mp->rx_skbs[index]; /* Ack it. */ sbus_writel(NEXT_RX(entry), &rqa->head); /* Check for errors. */ DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry, rxd, len, csum)); sbus_dma_sync_single_for_cpu(mp->myri_sdev, sbus_readl(&rxd->myri_scatters[0].addr), RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE); if (len < (ETH_HLEN + MYRI_PAD_LEN) || (skb->data[0] != MYRI_PAD_LEN)) { DRX(("ERROR[")); mp->enet_stats.rx_errors++; if (len < (ETH_HLEN + MYRI_PAD_LEN)) { DRX(("BAD_LENGTH] ")); mp->enet_stats.rx_length_errors++; } else { DRX(("NO_PADDING] ")); mp->enet_stats.rx_frame_errors++; } /* Return it to the LANAI. */ drop_it: drops++; DRX(("DROP ")); mp->enet_stats.rx_dropped++; sbus_dma_sync_single_for_device(mp->myri_sdev, sbus_readl(&rxd->myri_scatters[0].addr), RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE); sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len); sbus_writel(index, &rxd->ctx); sbus_writel(1, &rxd->num_sg); sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail); goto next; } DRX(("len[%d] ", len)); if (len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; u32 dma_addr; DRX(("BIGBUFF ")); new_skb = myri_alloc_skb(RX_ALLOC_SIZE, GFP_ATOMIC); if (new_skb == NULL) { DRX(("skb_alloc(FAILED) ")); goto drop_it; } sbus_unmap_single(mp->myri_sdev, sbus_readl(&rxd->myri_scatters[0].addr), RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE); mp->rx_skbs[index] = new_skb; new_skb->dev = dev; skb_put(new_skb, RX_ALLOC_SIZE); dma_addr = sbus_map_single(mp->myri_sdev, new_skb->data, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE); sbus_writel(dma_addr, &rxd->myri_scatters[0].addr); sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len); sbus_writel(index, &rxd->ctx); sbus_writel(1, &rxd->num_sg); sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail); /* Trim the original skb for the netif. */ DRX(("trim(%d) ", len)); skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len); DRX(("SMALLBUFF ")); if (copy_skb == NULL) { DRX(("dev_alloc_skb(FAILED) ")); goto drop_it; } /* DMA sync already done above. */ copy_skb->dev = dev; DRX(("resv_and_put ")); skb_put(copy_skb, len); memcpy(copy_skb->data, skb->data, len); /* Reuse original ring buffer. */ DRX(("reuse ")); sbus_dma_sync_single_for_device(mp->myri_sdev, sbus_readl(&rxd->myri_scatters[0].addr), RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE); sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len); sbus_writel(index, &rxd->ctx); sbus_writel(1, &rxd->num_sg); sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail); skb = copy_skb; } /* Just like the happy meal we get checksums from this card. */ skb->csum = csum; skb->ip_summed = CHECKSUM_UNNECESSARY; /* XXX */ skb->protocol = myri_type_trans(skb, dev); DRX(("prot[%04x] netif_rx ", skb->protocol)); netif_rx(skb); dev->last_rx = jiffies; mp->enet_stats.rx_packets++; mp->enet_stats.rx_bytes += len; next: DRX(("NEXT\n")); entry = NEXT_RX(entry); } } static irqreturn_t myri_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; struct myri_eth *mp = (struct myri_eth *) dev->priv; void __iomem *lregs = mp->lregs; struct myri_channel __iomem *chan = &mp->shmem->channel; unsigned long flags; u32 status; int handled = 0; spin_lock_irqsave(&mp->irq_lock, flags); status = sbus_readl(lregs + LANAI_ISTAT); DIRQ(("myri_interrupt: status[%08x] ", status)); if (status & ISTAT_HOST) { u32 softstate; handled = 1; DIRQ(("IRQ_DISAB ")); myri_disable_irq(lregs, mp->cregs); softstate = sbus_readl(&chan->state); DIRQ(("state[%08x] ", softstate)); if (softstate != STATE_READY) { DIRQ(("myri_not_so_happy ")); myri_is_not_so_happy(mp); } DIRQ(("\nmyri_rx: ")); myri_rx(mp, dev); DIRQ(("\nistat=ISTAT_HOST ")); sbus_writel(ISTAT_HOST, lregs + LANAI_ISTAT); DIRQ(("IRQ_ENAB ")); myri_enable_irq(lregs, mp->cregs); } DIRQ(("\n")); spin_unlock_irqrestore(&mp->irq_lock, flags); return IRQ_RETVAL(handled); } static int myri_open(struct net_device *dev) { struct myri_eth *mp = (struct myri_eth *) dev->priv; return myri_init(mp, in_interrupt()); } static int myri_close(struct net_device *dev) { struct myri_eth *mp = (struct myri_eth *) dev->priv; myri_clean_rings(mp); return 0; } static void myri_tx_timeout(struct net_device *dev) { struct myri_eth *mp = (struct myri_eth *) dev->priv; printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); mp->enet_stats.tx_errors++; myri_init(mp, 0); netif_wake_queue(dev); } static int myri_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct myri_eth *mp = (struct myri_eth *) dev->priv; struct sendq __iomem *sq = mp->sq; struct myri_txd __iomem *txd; unsigned long flags; unsigned int head, tail; int len, entry; u32 dma_addr; DTX(("myri_start_xmit: ")); myri_tx(mp, dev); netif_stop_queue(dev); /* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */ head = sbus_readl(&sq->head); tail = sbus_readl(&sq->tail); if (!TX_BUFFS_AVAIL(head, tail)) { DTX(("no buffs available, returning 1\n")); return 1; } spin_lock_irqsave(&mp->irq_lock, flags); DHDR(("xmit[skbdata(%p)]\n", skb->data)); #ifdef DEBUG_HEADER dump_ehdr_and_myripad(((unsigned char *) skb->data)); #endif /* XXX Maybe this can go as well. */ len = skb->len; if (len & 3) { DTX(("len&3 ")); len = (len + 4) & (~3); } entry = sbus_readl(&sq->tail); txd = &sq->myri_txd[entry]; mp->tx_skbs[entry] = skb; /* Must do this before we sbus map it. */ if (skb->data[MYRI_PAD_LEN] & 0x1) { sbus_writew(0xffff, &txd->addr[0]); sbus_writew(0xffff, &txd->addr[1]); sbus_writew(0xffff, &txd->addr[2]); sbus_writew(0xffff, &txd->addr[3]); } else { sbus_writew(0xffff, &txd->addr[0]); sbus_writew((skb->data[0] << 8) | skb->data[1], &txd->addr[1]); sbus_writew((skb->data[2] << 8) | skb->data[3], &txd->addr[2]); sbus_writew((skb->data[4] << 8) | skb->data[5], &txd->addr[3]); } dma_addr = sbus_map_single(mp->myri_sdev, skb->data, len, SBUS_DMA_TODEVICE); sbus_writel(dma_addr, &txd->myri_gathers[0].addr); sbus_writel(len, &txd->myri_gathers[0].len); sbus_writel(1, &txd->num_sg); sbus_writel(KERNEL_CHANNEL, &txd->chan); sbus_writel(len, &txd->len); sbus_writel((u32)-1, &txd->csum_off); sbus_writel(0, &txd->csum_field); sbus_writel(NEXT_TX(entry), &sq->tail); DTX(("BangTheChip ")); bang_the_chip(mp); DTX(("tbusy=0, returning 0\n")); netif_start_queue(dev); spin_unlock_irqrestore(&mp->irq_lock, flags); return 0; } /* Create the MyriNet MAC header for an arbitrary protocol layer * * saddr=NULL means use device source address * daddr=NULL means leave destination address (eg unresolved arp) */ static int myri_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len) { struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN); unsigned char *pad = (unsigned char *) skb_push(skb, MYRI_PAD_LEN); #ifdef DEBUG_HEADER DHDR(("myri_header: pad[%02x,%02x] ", pad[0], pad[1])); dump_ehdr(eth); #endif /* Set the MyriNET padding identifier. */ pad[0] = MYRI_PAD_LEN; pad[1] = 0xab; /* Set the protocol type. For a packet of type ETH_P_802_3 we put the length * in here instead. It is up to the 802.2 layer to carry protocol information. */ if (type != ETH_P_802_3) eth->h_proto = htons(type); else eth->h_proto = htons(len); /* Set the source hardware address. */ if (saddr) memcpy(eth->h_source, saddr, dev->addr_len); else memcpy(eth->h_source, dev->dev_addr, dev->addr_len); /* Anyway, the loopback-device should never use this function... */ if (dev->flags & IFF_LOOPBACK) { int i; for (i = 0; i < dev->addr_len; i++) eth->h_dest[i] = 0; return(dev->hard_header_len); } if (daddr) { memcpy(eth->h_dest, daddr, dev->addr_len); return dev->hard_header_len; } return -dev->hard_header_len; } /* Rebuild the MyriNet MAC header. This is called after an ARP * (or in future other address resolution) has completed on this * sk_buff. We now let ARP fill in the other fields. */ static int myri_rebuild_header(struct sk_buff *skb) { unsigned char *pad = (unsigned char *) skb->data; struct ethhdr *eth = (struct ethhdr *) (pad + MYRI_PAD_LEN); struct net_device *dev = skb->dev; #ifdef DEBUG_HEADER DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad[0], pad[1])); dump_ehdr(eth); #endif /* Refill MyriNet padding identifiers, this is just being anal. */ pad[0] = MYRI_PAD_LEN; pad[1] = 0xab; switch (eth->h_proto) { #ifdef CONFIG_INET case __constant_htons(ETH_P_IP): return arp_find(eth->h_dest, skb); #endif default: printk(KERN_DEBUG "%s: unable to resolve type %X addresses.\n", dev->name, (int)eth->h_proto); memcpy(eth->h_source, dev->dev_addr, dev->addr_len); return 0; break; } return 0; } int myri_header_cache(struct neighbour *neigh, struct hh_cache *hh) { unsigned short type = hh->hh_type; unsigned char *pad; struct ethhdr *eth; struct net_device *dev = neigh->dev; pad = ((unsigned char *) hh->hh_data) + HH_DATA_OFF(sizeof(*eth) + MYRI_PAD_LEN); eth = (struct ethhdr *) (pad + MYRI_PAD_LEN); if (type == __constant_htons(ETH_P_802_3)) return -1; /* Refill MyriNet padding identifiers, this is just being anal. */ pad[0] = MYRI_PAD_LEN; pad[1] = 0xab; eth->h_proto = type; memcpy(eth->h_source, dev->dev_addr, dev->addr_len); memcpy(eth->h_dest, neigh->ha, dev->addr_len); hh->hh_len = 16; return 0; } /* Called by Address Resolution module to notify changes in address. */ void myri_header_cache_update(struct hh_cache *hh, struct net_device *dev, unsigned char * haddr) { memcpy(((u8*)hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), haddr, dev->addr_len); } static int myri_change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < (ETH_HLEN + MYRI_PAD_LEN)) || (new_mtu > MYRINET_MTU)) return -EINVAL; dev->mtu = new_mtu; return 0; } static struct net_device_stats *myri_get_stats(struct net_device *dev) { return &(((struct myri_eth *)dev->priv)->enet_stats); } static void myri_set_multicast(struct net_device *dev) { /* Do nothing, all MyriCOM nodes transmit multicast frames * as broadcast packets... */ } static inline void set_boardid_from_idprom(struct myri_eth *mp, int num) { mp->eeprom.id[0] = 0; mp->eeprom.id[1] = idprom->id_machtype; mp->eeprom.id[2] = (idprom->id_sernum >> 16) & 0xff; mp->eeprom.id[3] = (idprom->id_sernum >> 8) & 0xff; mp->eeprom.id[4] = (idprom->id_sernum >> 0) & 0xff; mp->eeprom.id[5] = num; } static inline void determine_reg_space_size(struct myri_eth *mp) { switch(mp->eeprom.cpuvers) { case CPUVERS_2_3: case CPUVERS_3_0: case CPUVERS_3_1: case CPUVERS_3_2: mp->reg_size = (3 * 128 * 1024) + 4096; break; case CPUVERS_4_0: case CPUVERS_4_1: mp->reg_size = ((4096<<1) + mp->eeprom.ramsz); break; case CPUVERS_4_2: case CPUVERS_5_0: default: printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n", mp->eeprom.cpuvers); mp->reg_size = (3 * 128 * 1024) + 4096; }; } #ifdef DEBUG_DETECT static void dump_eeprom(struct myri_eth *mp) { printk("EEPROM: clockval[%08x] cpuvers[%04x] " "id[%02x,%02x,%02x,%02x,%02x,%02x]\n", mp->eeprom.cval, mp->eeprom.cpuvers, mp->eeprom.id[0], mp->eeprom.id[1], mp->eeprom.id[2], mp->eeprom.id[3], mp->eeprom.id[4], mp->eeprom.id[5]); printk("EEPROM: ramsz[%08x]\n", mp->eeprom.ramsz); printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n", mp->eeprom.fvers[0], mp->eeprom.fvers[1], mp->eeprom.fvers[2], mp->eeprom.fvers[3], mp->eeprom.fvers[4], mp->eeprom.fvers[5], mp->eeprom.fvers[6], mp->eeprom.fvers[7]); printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n", mp->eeprom.fvers[8], mp->eeprom.fvers[9], mp->eeprom.fvers[10], mp->eeprom.fvers[11], mp->eeprom.fvers[12], mp->eeprom.fvers[13], mp->eeprom.fvers[14], mp->eeprom.fvers[15]); printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n", mp->eeprom.fvers[16], mp->eeprom.fvers[17], mp->eeprom.fvers[18], mp->eeprom.fvers[19], mp->eeprom.fvers[20], mp->eeprom.fvers[21], mp->eeprom.fvers[22], mp->eeprom.fvers[23]); printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n", mp->eeprom.fvers[24], mp->eeprom.fvers[25], mp->eeprom.fvers[26], mp->eeprom.fvers[27], mp->eeprom.fvers[28], mp->eeprom.fvers[29], mp->eeprom.fvers[30], mp->eeprom.fvers[31]); printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n", mp->eeprom.mvers[0], mp->eeprom.mvers[1], mp->eeprom.mvers[2], mp->eeprom.mvers[3], mp->eeprom.mvers[4], mp->eeprom.mvers[5], mp->eeprom.mvers[6], mp->eeprom.mvers[7]); printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n", mp->eeprom.mvers[8], mp->eeprom.mvers[9], mp->eeprom.mvers[10], mp->eeprom.mvers[11], mp->eeprom.mvers[12], mp->eeprom.mvers[13], mp->eeprom.mvers[14], mp->eeprom.mvers[15]); printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n", mp->eeprom.dlval, mp->eeprom.brd_type, mp->eeprom.bus_type, mp->eeprom.prod_code); printk("EEPROM: serial_num[%08x]\n", mp->eeprom.serial_num); } #endif static int __init myri_ether_init(struct sbus_dev *sdev, int num) { static unsigned version_printed; struct net_device *dev; struct myri_eth *mp; unsigned char prop_buf[32]; int i; DET(("myri_ether_init(%p,%d):\n", sdev, num)); dev = alloc_etherdev(sizeof(struct myri_eth)); if (!dev) return -ENOMEM; if (version_printed++ == 0) printk(version); mp = (struct myri_eth *) dev->priv; spin_lock_init(&mp->irq_lock); mp->myri_sdev = sdev; /* Clean out skb arrays. */ for (i = 0; i < (RX_RING_SIZE + 1); i++) mp->rx_skbs[i] = NULL; for (i = 0; i < TX_RING_SIZE; i++) mp->tx_skbs[i] = NULL; /* First check for EEPROM information. */ i = prom_getproperty(sdev->prom_node, "myrinet-eeprom-info", (char *)&mp->eeprom, sizeof(struct myri_eeprom)); DET(("prom_getprop(myrinet-eeprom-info) returns %d\n", i)); if (i == 0 || i == -1) { /* No eeprom property, must cook up the values ourselves. */ DET(("No EEPROM: ")); mp->eeprom.bus_type = BUS_TYPE_SBUS; mp->eeprom.cpuvers = prom_getintdefault(sdev->prom_node,"cpu_version",0); mp->eeprom.cval = prom_getintdefault(sdev->prom_node,"clock_value",0); mp->eeprom.ramsz = prom_getintdefault(sdev->prom_node,"sram_size",0); DET(("cpuvers[%d] cval[%d] ramsz[%d]\n", mp->eeprom.cpuvers, mp->eeprom.cval, mp->eeprom.ramsz)); if (mp->eeprom.cpuvers == 0) { DET(("EEPROM: cpuvers was zero, setting to %04x\n",CPUVERS_2_3)); mp->eeprom.cpuvers = CPUVERS_2_3; } if (mp->eeprom.cpuvers < CPUVERS_3_0) { DET(("EEPROM: cpuvers < CPUVERS_3_0, clockval set to zero.\n")); mp->eeprom.cval = 0; } if (mp->eeprom.ramsz == 0) { DET(("EEPROM: ramsz == 0, setting to 128k\n")); mp->eeprom.ramsz = (128 * 1024); } i = prom_getproperty(sdev->prom_node, "myrinet-board-id", &prop_buf[0], 10); DET(("EEPROM: prom_getprop(myrinet-board-id) returns %d\n", i)); if ((i != 0) && (i != -1)) memcpy(&mp->eeprom.id[0], &prop_buf[0], 6); else set_boardid_from_idprom(mp, num); i = prom_getproperty(sdev->prom_node, "fpga_version", &mp->eeprom.fvers[0], 32); DET(("EEPROM: prom_getprop(fpga_version) returns %d\n", i)); if (i == 0 || i == -1) memset(&mp->eeprom.fvers[0], 0, 32); if (mp->eeprom.cpuvers == CPUVERS_4_1) { DET(("EEPROM: cpuvers CPUVERS_4_1, ")); if (mp->eeprom.ramsz == (128 * 1024)) { DET(("ramsize 128k, setting to 256k, ")); mp->eeprom.ramsz = (256 * 1024); } if ((mp->eeprom.cval==0x40414041)||(mp->eeprom.cval==0x90449044)){ DET(("changing cval from %08x to %08x ", mp->eeprom.cval, 0x50e450e4)); mp->eeprom.cval = 0x50e450e4; } DET(("\n")); } } #ifdef DEBUG_DETECT dump_eeprom(mp); #endif for (i = 0; i < 6; i++) dev->dev_addr[i] = mp->eeprom.id[i]; determine_reg_space_size(mp); /* Map in the MyriCOM register/localram set. */ if (mp->eeprom.cpuvers < CPUVERS_4_0) { /* XXX Makes no sense, if control reg is non-existant this * XXX driver cannot function at all... maybe pre-4.0 is * XXX only a valid version for PCI cards? Ask feldy... */ DET(("Mapping regs for cpuvers < CPUVERS_4_0\n")); mp->regs = sbus_ioremap(&sdev->resource[0], 0, mp->reg_size, "MyriCOM Regs"); if (!mp->regs) { printk("MyriCOM: Cannot map MyriCOM registers.\n"); goto err; } mp->lanai = mp->regs + (256 * 1024); mp->lregs = mp->lanai + (0x10000 * 2); } else { DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n")); mp->cregs = sbus_ioremap(&sdev->resource[0], 0, PAGE_SIZE, "MyriCOM Control Regs"); mp->lregs = sbus_ioremap(&sdev->resource[0], (256 * 1024), PAGE_SIZE, "MyriCOM LANAI Regs"); mp->lanai = sbus_ioremap(&sdev->resource[0], (512 * 1024), mp->eeprom.ramsz, "MyriCOM SRAM"); } DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n", mp->cregs, mp->lregs, mp->lanai)); if (mp->eeprom.cpuvers >= CPUVERS_4_0) mp->shmem_base = 0xf000; else mp->shmem_base = 0x8000; DET(("Shared memory base is %04x, ", mp->shmem_base)); mp->shmem = (struct myri_shmem __iomem *) (mp->lanai + (mp->shmem_base * 2)); DET(("shmem mapped at %p\n", mp->shmem)); mp->rqack = &mp->shmem->channel.recvqa; mp->rq = &mp->shmem->channel.recvq; mp->sq = &mp->shmem->channel.sendq; /* Reset the board. */ DET(("Resetting LANAI\n")); myri_reset_off(mp->lregs, mp->cregs); myri_reset_on(mp->cregs); /* Turn IRQ's off. */ myri_disable_irq(mp->lregs, mp->cregs); /* Reset once more. */ myri_reset_on(mp->cregs); /* Get the supported DVMA burst sizes from our SBUS. */ mp->myri_bursts = prom_getintdefault(mp->myri_sdev->bus->prom_node, "burst-sizes", 0x00); if (!sbus_can_burst64(sdev)) mp->myri_bursts &= ~(DMA_BURST64); DET(("MYRI bursts %02x\n", mp->myri_bursts)); /* Encode SBUS interrupt level in second control register. */ i = prom_getint(sdev->prom_node, "interrupts"); if (i == 0) i = 4; DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n", i, (1 << i))); sbus_writel((1 << i), mp->cregs + MYRICTRL_IRQLVL); mp->dev = dev; dev->open = &myri_open; dev->stop = &myri_close; dev->hard_start_xmit = &myri_start_xmit; dev->tx_timeout = &myri_tx_timeout; dev->watchdog_timeo = 5*HZ; dev->get_stats = &myri_get_stats; dev->set_multicast_list = &myri_set_multicast; dev->irq = sdev->irqs[0]; /* Register interrupt handler now. */ DET(("Requesting MYRIcom IRQ line.\n")); if (request_irq(dev->irq, &myri_interrupt, SA_SHIRQ, "MyriCOM Ethernet", (void *) dev)) { printk("MyriCOM: Cannot register interrupt handler.\n"); goto err; } dev->mtu = MYRINET_MTU; dev->change_mtu = myri_change_mtu; dev->hard_header = myri_header; dev->rebuild_header = myri_rebuild_header; dev->hard_header_len = (ETH_HLEN + MYRI_PAD_LEN); dev->hard_header_cache = myri_header_cache; dev->header_cache_update= myri_header_cache_update; /* Load code onto the LANai. */ DET(("Loading LANAI firmware\n")); myri_load_lanai(mp); if (register_netdev(dev)) { printk("MyriCOM: Cannot register device.\n"); goto err_free_irq; } #ifdef MODULE mp->next_module = root_myri_dev; root_myri_dev = mp; #endif printk("%s: MyriCOM MyriNET Ethernet ", dev->name); for (i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); printk("\n"); return 0; err_free_irq: free_irq(dev->irq, dev); err: /* This will also free the co-allocated 'dev->priv' */ free_netdev(dev); return -ENODEV; } static int __init myri_sbus_match(struct sbus_dev *sdev) { char *name = sdev->prom_name; if (!strcmp(name, "MYRICOM,mlanai") || !strcmp(name, "myri")) return 1; return 0; } static int __init myri_sbus_probe(void) { struct sbus_bus *bus; struct sbus_dev *sdev = NULL; static int called; int cards = 0, v; #ifdef MODULE root_myri_dev = NULL; #endif if (called) return -ENODEV; called++; for_each_sbus(bus) { for_each_sbusdev(sdev, bus) { if (myri_sbus_match(sdev)) { cards++; DET(("Found myricom myrinet as %s\n", sdev->prom_name)); if ((v = myri_ether_init(sdev, (cards - 1)))) return v; } } } if (!cards) return -ENODEV; return 0; } static void __exit myri_sbus_cleanup(void) { #ifdef MODULE while (root_myri_dev) { struct myri_eth *next = root_myri_dev->next_module; unregister_netdev(root_myri_dev->dev); /* this will also free the co-allocated 'root_myri_dev' */ free_netdev(root_myri_dev->dev); root_myri_dev = next; } #endif /* MODULE */ } module_init(myri_sbus_probe); module_exit(myri_sbus_cleanup); MODULE_LICENSE("GPL");