// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2019-2024 Linaro Ltd. */ #include #include #include #include #include #include #include #include "gsi.h" #include "gsi_trans.h" #include "ipa.h" #include "ipa_data.h" #include "ipa_endpoint.h" #include "ipa_cmd.h" #include "ipa_mem.h" #include "ipa_modem.h" #include "ipa_table.h" #include "ipa_gsi.h" #include "ipa_power.h" /* Hardware is told about receive buffers once a "batch" has been queued */ #define IPA_REPLENISH_BATCH 16 /* Must be non-zero */ /* The amount of RX buffer space consumed by standard skb overhead */ #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 /** enum ipa_status_opcode - IPA status opcode field hardware values */ enum ipa_status_opcode { /* *Not* a bitmask */ IPA_STATUS_OPCODE_PACKET = 1, IPA_STATUS_OPCODE_NEW_RULE_PACKET = 2, IPA_STATUS_OPCODE_DROPPED_PACKET = 4, IPA_STATUS_OPCODE_SUSPENDED_PACKET = 8, IPA_STATUS_OPCODE_LOG = 16, IPA_STATUS_OPCODE_DCMP = 32, IPA_STATUS_OPCODE_PACKET_2ND_PASS = 64, }; /** enum ipa_status_exception - IPA status exception field hardware values */ enum ipa_status_exception { /* *Not* a bitmask */ /* 0 means no exception */ IPA_STATUS_EXCEPTION_DEAGGR = 1, IPA_STATUS_EXCEPTION_IPTYPE = 4, IPA_STATUS_EXCEPTION_PACKET_LENGTH = 8, IPA_STATUS_EXCEPTION_FRAG_RULE_MISS = 16, IPA_STATUS_EXCEPTION_SW_FILTER = 32, IPA_STATUS_EXCEPTION_NAT = 64, /* IPv4 */ IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK = 64, /* IPv6 */ IPA_STATUS_EXCEPTION_UC = 128, IPA_STATUS_EXCEPTION_INVALID_ENDPOINT = 129, IPA_STATUS_EXCEPTION_HEADER_INSERT = 136, IPA_STATUS_EXCEPTION_CHEKCSUM = 229, }; /** enum ipa_status_mask - IPA status mask field bitmask hardware values */ enum ipa_status_mask { IPA_STATUS_MASK_FRAG_PROCESS = BIT(0), IPA_STATUS_MASK_FILT_PROCESS = BIT(1), IPA_STATUS_MASK_NAT_PROCESS = BIT(2), IPA_STATUS_MASK_ROUTE_PROCESS = BIT(3), IPA_STATUS_MASK_TAG_VALID = BIT(4), IPA_STATUS_MASK_FRAGMENT = BIT(5), IPA_STATUS_MASK_FIRST_FRAGMENT = BIT(6), IPA_STATUS_MASK_V4 = BIT(7), IPA_STATUS_MASK_CKSUM_PROCESS = BIT(8), IPA_STATUS_MASK_AGGR_PROCESS = BIT(9), IPA_STATUS_MASK_DEST_EOT = BIT(10), IPA_STATUS_MASK_DEAGGR_PROCESS = BIT(11), IPA_STATUS_MASK_DEAGG_FIRST = BIT(12), IPA_STATUS_MASK_SRC_EOT = BIT(13), IPA_STATUS_MASK_PREV_EOT = BIT(14), IPA_STATUS_MASK_BYTE_LIMIT = BIT(15), }; /* Special IPA filter/router rule field value indicating "rule miss" */ #define IPA_STATUS_RULE_MISS 0x3ff /* 10-bit filter/router rule fields */ /** The IPA status nat_type field uses enum ipa_nat_type hardware values */ /* enum ipa_status_field_id - IPA packet status structure field identifiers */ enum ipa_status_field_id { STATUS_OPCODE, /* enum ipa_status_opcode */ STATUS_EXCEPTION, /* enum ipa_status_exception */ STATUS_MASK, /* enum ipa_status_mask (bitmask) */ STATUS_LENGTH, STATUS_SRC_ENDPOINT, STATUS_DST_ENDPOINT, STATUS_METADATA, STATUS_FILTER_LOCAL, /* Boolean */ STATUS_FILTER_HASH, /* Boolean */ STATUS_FILTER_GLOBAL, /* Boolean */ STATUS_FILTER_RETAIN, /* Boolean */ STATUS_FILTER_RULE_INDEX, STATUS_ROUTER_LOCAL, /* Boolean */ STATUS_ROUTER_HASH, /* Boolean */ STATUS_UCP, /* Boolean */ STATUS_ROUTER_TABLE, STATUS_ROUTER_RULE_INDEX, STATUS_NAT_HIT, /* Boolean */ STATUS_NAT_INDEX, STATUS_NAT_TYPE, /* enum ipa_nat_type */ STATUS_TAG_LOW32, /* Low-order 32 bits of 48-bit tag */ STATUS_TAG_HIGH16, /* High-order 16 bits of 48-bit tag */ STATUS_SEQUENCE, STATUS_TIME_OF_DAY, STATUS_HEADER_LOCAL, /* Boolean */ STATUS_HEADER_OFFSET, STATUS_FRAG_HIT, /* Boolean */ STATUS_FRAG_RULE_INDEX, }; /* Size in bytes of an IPA packet status structure */ #define IPA_STATUS_SIZE sizeof(__le32[8]) /* IPA status structure decoder; looks up field values for a structure */ static u32 ipa_status_extract(struct ipa *ipa, const void *data, enum ipa_status_field_id field) { enum ipa_version version = ipa->version; const __le32 *word = data; switch (field) { case STATUS_OPCODE: return le32_get_bits(word[0], GENMASK(7, 0)); case STATUS_EXCEPTION: return le32_get_bits(word[0], GENMASK(15, 8)); case STATUS_MASK: return le32_get_bits(word[0], GENMASK(31, 16)); case STATUS_LENGTH: return le32_get_bits(word[1], GENMASK(15, 0)); case STATUS_SRC_ENDPOINT: if (version < IPA_VERSION_5_0) return le32_get_bits(word[1], GENMASK(20, 16)); return le32_get_bits(word[1], GENMASK(23, 16)); /* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */ /* Status word 1, bits 24-26 are reserved (IPA v5.0+) */ case STATUS_DST_ENDPOINT: if (version < IPA_VERSION_5_0) return le32_get_bits(word[1], GENMASK(28, 24)); return le32_get_bits(word[7], GENMASK(23, 16)); /* Status word 1, bits 29-31 are reserved */ case STATUS_METADATA: return le32_to_cpu(word[2]); case STATUS_FILTER_LOCAL: return le32_get_bits(word[3], GENMASK(0, 0)); case STATUS_FILTER_HASH: return le32_get_bits(word[3], GENMASK(1, 1)); case STATUS_FILTER_GLOBAL: return le32_get_bits(word[3], GENMASK(2, 2)); case STATUS_FILTER_RETAIN: return le32_get_bits(word[3], GENMASK(3, 3)); case STATUS_FILTER_RULE_INDEX: return le32_get_bits(word[3], GENMASK(13, 4)); /* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */ case STATUS_ROUTER_LOCAL: if (version < IPA_VERSION_5_0) return le32_get_bits(word[3], GENMASK(14, 14)); return le32_get_bits(word[1], GENMASK(27, 27)); case STATUS_ROUTER_HASH: if (version < IPA_VERSION_5_0) return le32_get_bits(word[3], GENMASK(15, 15)); return le32_get_bits(word[1], GENMASK(28, 28)); case STATUS_UCP: if (version < IPA_VERSION_5_0) return le32_get_bits(word[3], GENMASK(16, 16)); return le32_get_bits(word[7], GENMASK(31, 31)); case STATUS_ROUTER_TABLE: if (version < IPA_VERSION_5_0) return le32_get_bits(word[3], GENMASK(21, 17)); return le32_get_bits(word[3], GENMASK(21, 14)); case STATUS_ROUTER_RULE_INDEX: return le32_get_bits(word[3], GENMASK(31, 22)); case STATUS_NAT_HIT: return le32_get_bits(word[4], GENMASK(0, 0)); case STATUS_NAT_INDEX: return le32_get_bits(word[4], GENMASK(13, 1)); case STATUS_NAT_TYPE: return le32_get_bits(word[4], GENMASK(15, 14)); case STATUS_TAG_LOW32: return le32_get_bits(word[4], GENMASK(31, 16)) | (le32_get_bits(word[5], GENMASK(15, 0)) << 16); case STATUS_TAG_HIGH16: return le32_get_bits(word[5], GENMASK(31, 16)); case STATUS_SEQUENCE: return le32_get_bits(word[6], GENMASK(7, 0)); case STATUS_TIME_OF_DAY: return le32_get_bits(word[6], GENMASK(31, 8)); case STATUS_HEADER_LOCAL: return le32_get_bits(word[7], GENMASK(0, 0)); case STATUS_HEADER_OFFSET: return le32_get_bits(word[7], GENMASK(10, 1)); case STATUS_FRAG_HIT: return le32_get_bits(word[7], GENMASK(11, 11)); case STATUS_FRAG_RULE_INDEX: return le32_get_bits(word[7], GENMASK(15, 12)); /* Status word 7, bits 16-30 are reserved */ /* Status word 7, bit 31 is reserved (not IPA v5.0+) */ default: WARN(true, "%s: bad field_id %u\n", __func__, field); return 0; } } /* Compute the aggregation size value to use for a given buffer size */ static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit) { /* A hard aggregation limit will not be crossed; aggregation closes * if saving incoming data would cross the hard byte limit boundary. * * With a soft limit, aggregation closes *after* the size boundary * has been crossed. In that case the limit must leave enough space * after that limit to receive a full MTU of data plus overhead. */ if (!aggr_hard_limit) rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; /* The byte limit is encoded as a number of kilobytes */ return rx_buffer_size / SZ_1K; } static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, const struct ipa_gsi_endpoint_data *all_data, const struct ipa_gsi_endpoint_data *data) { const struct ipa_gsi_endpoint_data *other_data; enum ipa_endpoint_name other_name; struct device *dev = ipa->dev; if (ipa_gsi_endpoint_data_empty(data)) return true; if (!data->toward_ipa) { const struct ipa_endpoint_rx *rx_config; const struct reg *reg; u32 buffer_size; u32 aggr_size; u32 limit; if (data->endpoint.filter_support) { dev_err(dev, "filtering not supported for " "RX endpoint %u\n", data->endpoint_id); return false; } /* Nothing more to check for non-AP RX */ if (data->ee_id != GSI_EE_AP) return true; rx_config = &data->endpoint.config.rx; /* The buffer size must hold an MTU plus overhead */ buffer_size = rx_config->buffer_size; limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; if (buffer_size < limit) { dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n", data->endpoint_id, buffer_size, limit); return false; } if (!data->endpoint.config.aggregation) { bool result = true; /* No aggregation; check for bogus aggregation data */ if (rx_config->aggr_time_limit) { dev_err(dev, "time limit with no aggregation for RX endpoint %u\n", data->endpoint_id); result = false; } if (rx_config->aggr_hard_limit) { dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n", data->endpoint_id); result = false; } if (rx_config->aggr_close_eof) { dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n", data->endpoint_id); result = false; } return result; /* Nothing more to check */ } /* For an endpoint supporting receive aggregation, the byte * limit defines the point at which aggregation closes. This * check ensures the receive buffer size doesn't result in a * limit that exceeds what's representable in the aggregation * byte limit field. */ aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, rx_config->aggr_hard_limit); reg = ipa_reg(ipa, ENDP_INIT_AGGR); limit = reg_field_max(reg, BYTE_LIMIT); if (aggr_size > limit) { dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n", data->endpoint_id, aggr_size, limit); return false; } return true; /* Nothing more to check for RX */ } /* Starting with IPA v4.5 sequencer replication is obsolete */ if (ipa->version >= IPA_VERSION_4_5) { if (data->endpoint.config.tx.seq_rep_type) { dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n", data->endpoint_id); return false; } } if (data->endpoint.config.status_enable) { other_name = data->endpoint.config.tx.status_endpoint; if (other_name >= count) { dev_err(dev, "status endpoint name %u out of range " "for endpoint %u\n", other_name, data->endpoint_id); return false; } /* Status endpoint must be defined... */ other_data = &all_data[other_name]; if (ipa_gsi_endpoint_data_empty(other_data)) { dev_err(dev, "DMA endpoint name %u undefined " "for endpoint %u\n", other_name, data->endpoint_id); return false; } /* ...and has to be an RX endpoint... */ if (other_data->toward_ipa) { dev_err(dev, "status endpoint for endpoint %u not RX\n", data->endpoint_id); return false; } /* ...and if it's to be an AP endpoint... */ if (other_data->ee_id == GSI_EE_AP) { /* ...make sure it has status enabled. */ if (!other_data->endpoint.config.status_enable) { dev_err(dev, "status not enabled for endpoint %u\n", other_data->endpoint_id); return false; } } } if (data->endpoint.config.dma_mode) { other_name = data->endpoint.config.dma_endpoint; if (other_name >= count) { dev_err(dev, "DMA endpoint name %u out of range " "for endpoint %u\n", other_name, data->endpoint_id); return false; } other_data = &all_data[other_name]; if (ipa_gsi_endpoint_data_empty(other_data)) { dev_err(dev, "DMA endpoint name %u undefined " "for endpoint %u\n", other_name, data->endpoint_id); return false; } } return true; } /* Validate endpoint configuration data. Return max defined endpoint ID */ static u32 ipa_endpoint_max(struct ipa *ipa, u32 count, const struct ipa_gsi_endpoint_data *data) { const struct ipa_gsi_endpoint_data *dp = data; struct device *dev = ipa->dev; enum ipa_endpoint_name name; u32 max; if (count > IPA_ENDPOINT_COUNT) { dev_err(dev, "too many endpoints specified (%u > %u)\n", count, IPA_ENDPOINT_COUNT); return 0; } /* Make sure needed endpoints have defined data */ if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { dev_err(dev, "command TX endpoint not defined\n"); return 0; } if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { dev_err(dev, "LAN RX endpoint not defined\n"); return 0; } if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { dev_err(dev, "AP->modem TX endpoint not defined\n"); return 0; } if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { dev_err(dev, "AP<-modem RX endpoint not defined\n"); return 0; } max = 0; for (name = 0; name < count; name++, dp++) { if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) return 0; max = max_t(u32, max, dp->endpoint_id); } return max; } /* Allocate a transaction to use on a non-command endpoint */ static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, u32 tre_count) { struct gsi *gsi = &endpoint->ipa->gsi; u32 channel_id = endpoint->channel_id; enum dma_data_direction direction; direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); } /* suspend_delay represents suspend for RX, delay for TX endpoints. * Note that suspend is not supported starting with IPA v4.0, and * delay mode should not be used starting with IPA v4.2. */ static bool ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) { struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 field_id; u32 offset; bool state; u32 mask; u32 val; if (endpoint->toward_ipa) WARN_ON(ipa->version >= IPA_VERSION_4_2); else WARN_ON(ipa->version >= IPA_VERSION_4_0); reg = ipa_reg(ipa, ENDP_INIT_CTRL); offset = reg_n_offset(reg, endpoint->endpoint_id); val = ioread32(ipa->reg_virt + offset); field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND; mask = reg_bit(reg, field_id); state = !!(val & mask); /* Don't bother if it's already in the requested state */ if (suspend_delay != state) { val ^= mask; iowrite32(val, ipa->reg_virt + offset); } return state; } /* We don't care what the previous state was for delay mode */ static void ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) { /* Delay mode should not be used for IPA v4.2+ */ WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); WARN_ON(!endpoint->toward_ipa); (void)ipa_endpoint_init_ctrl(endpoint, enable); } static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; u32 unit = endpoint_id / 32; const struct reg *reg; u32 val; WARN_ON(!test_bit(endpoint_id, ipa->available)); reg = ipa_reg(ipa, STATE_AGGR_ACTIVE); val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit)); return !!(val & BIT(endpoint_id % 32)); } static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; u32 mask = BIT(endpoint_id % 32); struct ipa *ipa = endpoint->ipa; u32 unit = endpoint_id / 32; const struct reg *reg; WARN_ON(!test_bit(endpoint_id, ipa->available)); reg = ipa_reg(ipa, AGGR_FORCE_CLOSE); iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit)); } /** * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt * @endpoint: Endpoint on which to emulate a suspend * * Emulate suspend IPA interrupt to unsuspend an endpoint suspended * with an open aggregation frame. This is to work around a hardware * issue in IPA version 3.5.1 where the suspend interrupt will not be * generated when it should be. */ static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) { struct ipa *ipa = endpoint->ipa; if (!endpoint->config.aggregation) return; /* Nothing to do if the endpoint doesn't have aggregation open */ if (!ipa_endpoint_aggr_active(endpoint)) return; /* Force close aggregation */ ipa_endpoint_force_close(endpoint); ipa_interrupt_simulate_suspend(ipa->interrupt); } /* Returns previous suspend state (true means suspend was enabled) */ static bool ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) { bool suspended; if (endpoint->ipa->version >= IPA_VERSION_4_0) return enable; /* For IPA v4.0+, no change made */ WARN_ON(endpoint->toward_ipa); suspended = ipa_endpoint_init_ctrl(endpoint, enable); /* A client suspended with an open aggregation frame will not * generate a SUSPEND IPA interrupt. If enabling suspend, have * ipa_endpoint_suspend_aggr() handle this. */ if (enable && !suspended) ipa_endpoint_suspend_aggr(endpoint); return suspended; } /* Put all modem RX endpoints into suspend mode, and stop transmission * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow * control instead. */ void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) { u32 endpoint_id = 0; while (endpoint_id < ipa->endpoint_count) { struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; if (endpoint->ee_id != GSI_EE_MODEM) continue; if (!endpoint->toward_ipa) (void)ipa_endpoint_program_suspend(endpoint, enable); else if (ipa->version < IPA_VERSION_4_2) ipa_endpoint_program_delay(endpoint, enable); else gsi_modem_channel_flow_control(&ipa->gsi, endpoint->channel_id, enable); } } /* Reset all modem endpoints to use the default exception endpoint */ int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) { struct gsi_trans *trans; u32 endpoint_id; u32 count; /* We need one command per modem TX endpoint, plus the commands * that clear the pipeline. */ count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count(); trans = ipa_cmd_trans_alloc(ipa, count); if (!trans) { dev_err(ipa->dev, "no transaction to reset modem exception endpoints\n"); return -EBUSY; } for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { struct ipa_endpoint *endpoint; const struct reg *reg; u32 offset; /* We only reset modem TX endpoints */ endpoint = &ipa->endpoint[endpoint_id]; if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) continue; reg = ipa_reg(ipa, ENDP_STATUS); offset = reg_n_offset(reg, endpoint_id); /* Value written is 0, and all bits are updated. That * means status is disabled on the endpoint, and as a * result all other fields in the register are ignored. */ ipa_cmd_register_write_add(trans, offset, 0, ~0, false); } ipa_cmd_pipeline_clear_add(trans); gsi_trans_commit_wait(trans); ipa_cmd_pipeline_clear_wait(ipa); return 0; } static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; enum ipa_cs_offload_en enabled; const struct reg *reg; u32 val = 0; reg = ipa_reg(ipa, ENDP_INIT_CFG); /* FRAG_OFFLOAD_EN is 0 */ if (endpoint->config.checksum) { enum ipa_version version = ipa->version; if (endpoint->toward_ipa) { u32 off; /* Checksum header offset is in 4-byte units */ off = sizeof(struct rmnet_map_header) / sizeof(u32); val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off); enabled = version < IPA_VERSION_4_5 ? IPA_CS_OFFLOAD_UL : IPA_CS_OFFLOAD_INLINE; } else { enabled = version < IPA_VERSION_4_5 ? IPA_CS_OFFLOAD_DL : IPA_CS_OFFLOAD_INLINE; } } else { enabled = IPA_CS_OFFLOAD_NONE; } val |= reg_encode(reg, CS_OFFLOAD_EN, enabled); /* CS_GEN_QMB_MASTER_SEL is 0 */ iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val; if (!endpoint->toward_ipa) return; reg = ipa_reg(ipa, ENDP_INIT_NAT); val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS); iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static u32 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint) { u32 header_size = sizeof(struct rmnet_map_header); /* Without checksum offload, we just have the MAP header */ if (!endpoint->config.checksum) return header_size; if (version < IPA_VERSION_4_5) { /* Checksum header inserted for AP TX endpoints only */ if (endpoint->toward_ipa) header_size += sizeof(struct rmnet_map_ul_csum_header); } else { /* Checksum header is used in both directions */ header_size += sizeof(struct rmnet_map_v5_csum_header); } return header_size; } /* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */ static u32 ipa_header_size_encode(enum ipa_version version, const struct reg *reg, u32 header_size) { u32 field_max = reg_field_max(reg, HDR_LEN); u32 val; /* We know field_max can be used as a mask (2^n - 1) */ val = reg_encode(reg, HDR_LEN, header_size & field_max); if (version < IPA_VERSION_4_5) { WARN_ON(header_size > field_max); return val; } /* IPA v4.5 adds a few more most-significant bits */ header_size >>= hweight32(field_max); WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB)); val |= reg_encode(reg, HDR_LEN_MSB, header_size); return val; } /* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */ static u32 ipa_metadata_offset_encode(enum ipa_version version, const struct reg *reg, u32 offset) { u32 field_max = reg_field_max(reg, HDR_OFST_METADATA); u32 val; /* We know field_max can be used as a mask (2^n - 1) */ val = reg_encode(reg, HDR_OFST_METADATA, offset); if (version < IPA_VERSION_4_5) { WARN_ON(offset > field_max); return val; } /* IPA v4.5 adds a few more most-significant bits */ offset >>= hweight32(field_max); WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB)); val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset); return val; } /** * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register * @endpoint: Endpoint pointer * * We program QMAP endpoints so each packet received is preceded by a QMAP * header structure. The QMAP header contains a 1-byte mux_id and 2-byte * packet size field, and we have the IPA hardware populate both for each * received packet. The header is configured (in the HDR_EXT register) * to use big endian format. * * The packet size is written into the QMAP header's pkt_len field. That * location is defined here using the HDR_OFST_PKT_SIZE field. * * The mux_id comes from a 4-byte metadata value supplied with each packet * by the modem. It is *not* a QMAP header, but it does contain the mux_id * value that we want, in its low-order byte. A bitmask defined in the * endpoint's METADATA_MASK register defines which byte within the modem * metadata contains the mux_id. And the OFST_METADATA field programmed * here indicates where the extracted byte should be placed within the QMAP * header. */ static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val = 0; reg = ipa_reg(ipa, ENDP_INIT_HDR); if (endpoint->config.qmap) { enum ipa_version version = ipa->version; size_t header_size; header_size = ipa_qmap_header_size(version, endpoint); val = ipa_header_size_encode(version, reg, header_size); /* Define how to fill fields in a received QMAP header */ if (!endpoint->toward_ipa) { u32 off; /* Field offset within header */ /* Where IPA will write the metadata value */ off = offsetof(struct rmnet_map_header, mux_id); val |= ipa_metadata_offset_encode(version, reg, off); /* Where IPA will write the length */ off = offsetof(struct rmnet_map_header, pkt_len); /* Upper bits are stored in HDR_EXT with IPA v4.5 */ if (version >= IPA_VERSION_4_5) off &= reg_field_max(reg, HDR_OFST_PKT_SIZE); val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID); val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off); } /* For QMAP TX, metadata offset is 0 (modem assumes this) */ val |= reg_bit(reg, HDR_OFST_METADATA_VALID); /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ /* HDR_A5_MUX is 0 */ /* HDR_LEN_INC_DEAGG_HDR is 0 */ /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ } iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) { u32 pad_align = endpoint->config.rx.pad_align; u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val = 0; reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT); if (endpoint->config.qmap) { /* We have a header, so we must specify its endianness */ val |= reg_bit(reg, HDR_ENDIANNESS); /* big endian */ /* A QMAP header contains a 6 bit pad field at offset 0. * The RMNet driver assumes this field is meaningful in * packets it receives, and assumes the header's payload * length includes that padding. The RMNet driver does * *not* pad packets it sends, however, so the pad field * (although 0) should be ignored. */ if (!endpoint->toward_ipa) { val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID); /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING); /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ } } /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ if (!endpoint->toward_ipa) val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align); /* IPA v4.5 adds some most-significant bits to a few fields, * two of which are defined in the HDR (not HDR_EXT) register. */ if (ipa->version >= IPA_VERSION_4_5) { /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ if (endpoint->config.qmap && !endpoint->toward_ipa) { u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE); u32 off; /* Field offset within header */ off = offsetof(struct rmnet_map_header, pkt_len); /* Low bits are in the ENDP_INIT_HDR register */ off >>= hweight32(mask); val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off); /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ } } iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val = 0; u32 offset; if (endpoint->toward_ipa) return; /* Register not valid for TX endpoints */ reg = ipa_reg(ipa, ENDP_INIT_HDR_METADATA_MASK); offset = reg_n_offset(reg, endpoint_id); /* Note that HDR_ENDIANNESS indicates big endian header fields */ if (endpoint->config.qmap) val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); iowrite32(val, ipa->reg_virt + offset); } static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) { struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 offset; u32 val; if (!endpoint->toward_ipa) return; /* Register not valid for RX endpoints */ reg = ipa_reg(ipa, ENDP_INIT_MODE); if (endpoint->config.dma_mode) { enum ipa_endpoint_name name = endpoint->config.dma_endpoint; u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id; val = reg_encode(reg, ENDP_MODE, IPA_DMA); val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id); } else { val = reg_encode(reg, ENDP_MODE, IPA_BASIC); } /* All other bits unspecified (and 0) */ offset = reg_n_offset(reg, endpoint->endpoint_id); iowrite32(val, ipa->reg_virt + offset); } /* For IPA v4.5+, times are expressed using Qtime. A time is represented * at one of several available granularities, which are configured in * ipa_qtime_config(). Three (or, starting with IPA v5.0, four) pulse * generators are set up with different "tick" periods. A Qtime value * encodes a tick count along with an indication of a pulse generator * (which has a fixed tick period). Two pulse generators are always * available to the AP; a third is available starting with IPA v5.0. * This function determines which pulse generator most accurately * represents the time period provided, and returns the tick count to * use to represent that time. */ static u32 ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select) { u32 which = 0; u32 ticks; /* Pulse generator 0 has 100 microsecond granularity */ ticks = DIV_ROUND_CLOSEST(microseconds, 100); if (ticks <= max) goto out; /* Pulse generator 1 has millisecond granularity */ which = 1; ticks = DIV_ROUND_CLOSEST(microseconds, 1000); if (ticks <= max) goto out; if (ipa->version >= IPA_VERSION_5_0) { /* Pulse generator 2 has 10 millisecond granularity */ which = 2; ticks = DIV_ROUND_CLOSEST(microseconds, 100); } WARN_ON(ticks > max); out: *select = which; return ticks; } /* Encode the aggregation timer limit (microseconds) based on IPA version */ static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg, u32 microseconds) { u32 ticks; u32 max; if (!microseconds) return 0; /* Nothing to compute if time limit is 0 */ max = reg_field_max(reg, TIME_LIMIT); if (ipa->version >= IPA_VERSION_4_5) { u32 select; ticks = ipa_qtime_val(ipa, microseconds, max, &select); return reg_encode(reg, AGGR_GRAN_SEL, select) | reg_encode(reg, TIME_LIMIT, ticks); } /* We program aggregation granularity in ipa_hardware_config() */ ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY); WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n", microseconds, max * IPA_AGGR_GRANULARITY); return reg_encode(reg, TIME_LIMIT, ticks); } static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val = 0; reg = ipa_reg(ipa, ENDP_INIT_AGGR); if (endpoint->config.aggregation) { if (!endpoint->toward_ipa) { const struct ipa_endpoint_rx *rx_config; u32 buffer_size; u32 limit; rx_config = &endpoint->config.rx; val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR); val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC); buffer_size = rx_config->buffer_size; limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD, rx_config->aggr_hard_limit); val |= reg_encode(reg, BYTE_LIMIT, limit); limit = rx_config->aggr_time_limit; val |= aggr_time_limit_encode(ipa, reg, limit); /* AGGR_PKT_LIMIT is 0 (unlimited) */ if (rx_config->aggr_close_eof) val |= reg_bit(reg, SW_EOF_ACTIVE); } else { val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR); val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP); /* other fields ignored */ } /* AGGR_FORCE_CLOSE is 0 */ /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ } else { val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR); /* other fields ignored */ } iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } /* The head-of-line blocking timer is defined as a tick count. For * IPA version 4.5 the tick count is based on the Qtimer, which is * derived from the 19.2 MHz SoC XO clock. For older IPA versions * each tick represents 128 cycles of the IPA core clock. * * Return the encoded value representing the timeout period provided * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register. */ static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg, u32 microseconds) { u32 width; u32 scale; u64 ticks; u64 rate; u32 high; u32 val; if (!microseconds) return 0; /* Nothing to compute if timer period is 0 */ if (ipa->version >= IPA_VERSION_4_5) { u32 max = reg_field_max(reg, TIMER_LIMIT); u32 select; u32 ticks; ticks = ipa_qtime_val(ipa, microseconds, max, &select); return reg_encode(reg, TIMER_GRAN_SEL, 1) | reg_encode(reg, TIMER_LIMIT, ticks); } /* Use 64 bit arithmetic to avoid overflow */ rate = ipa_core_clock_rate(ipa); ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); /* We still need the result to fit into the field */ WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE)); /* IPA v3.5.1 through v4.1 just record the tick count */ if (ipa->version < IPA_VERSION_4_2) return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks); /* For IPA v4.2, the tick count is represented by base and * scale fields within the 32-bit timer register, where: * ticks = base << scale; * The best precision is achieved when the base value is as * large as possible. Find the highest set bit in the tick * count, and extract the number of bits in the base field * such that high bit is included. */ high = fls(ticks); /* 1..32 (or warning above) */ width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE)); scale = high > width ? high - width : 0; if (scale) { /* If we're scaling, round up to get a closer result */ ticks += 1 << (scale - 1); /* High bit was set, so rounding might have affected it */ if (fls(ticks) != high) scale++; } val = reg_encode(reg, TIMER_SCALE, scale); val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale); return val; } /* If microseconds is 0, timeout is immediate */ static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, u32 microseconds) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val; /* This should only be changed when HOL_BLOCK_EN is disabled */ reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER); val = hol_block_timer_encode(ipa, reg, microseconds); iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static void ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 offset; u32 val; reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN); offset = reg_n_offset(reg, endpoint_id); val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0; iowrite32(val, ipa->reg_virt + offset); /* When enabling, the register must be written twice for IPA v4.5+ */ if (enable && ipa->version >= IPA_VERSION_4_5) iowrite32(val, ipa->reg_virt + offset); } /* Assumes HOL_BLOCK is in disabled state */ static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, u32 microseconds) { ipa_endpoint_init_hol_block_timer(endpoint, microseconds); ipa_endpoint_init_hol_block_en(endpoint, true); } static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) { ipa_endpoint_init_hol_block_en(endpoint, false); } void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) { u32 endpoint_id = 0; while (endpoint_id < ipa->endpoint_count) { struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) continue; ipa_endpoint_init_hol_block_disable(endpoint); ipa_endpoint_init_hol_block_enable(endpoint, 0); } } static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val = 0; if (!endpoint->toward_ipa) return; /* Register not valid for RX endpoints */ reg = ipa_reg(ipa, ENDP_INIT_DEAGGR); /* DEAGGR_HDR_LEN is 0 */ /* PACKET_OFFSET_VALID is 0 */ /* PACKET_OFFSET_LOCATION is ignored (not valid) */ /* MAX_PACKET_LEN is 0 (not enforced) */ iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) { u32 resource_group = endpoint->config.resource_group; u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val; reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP); val = reg_encode(reg, ENDP_RSRC_GRP, resource_group); iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val; if (!endpoint->toward_ipa) return; /* Register not valid for RX endpoints */ reg = ipa_reg(ipa, ENDP_INIT_SEQ); /* Low-order byte configures primary packet processing */ val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type); /* Second byte (if supported) configures replicated packet processing */ if (ipa->version < IPA_VERSION_4_5) val |= reg_encode(reg, SEQ_REP_TYPE, endpoint->config.tx.seq_rep_type); iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } /** * ipa_endpoint_skb_tx() - Transmit a socket buffer * @endpoint: Endpoint pointer * @skb: Socket buffer to send * * Returns: 0 if successful, or a negative error code */ int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) { struct gsi_trans *trans; u32 nr_frags; int ret; /* Make sure source endpoint's TLV FIFO has enough entries to * hold the linear portion of the skb and all its fragments. * If not, see if we can linearize it before giving up. */ nr_frags = skb_shinfo(skb)->nr_frags; if (nr_frags > endpoint->skb_frag_max) { if (skb_linearize(skb)) return -E2BIG; nr_frags = 0; } trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); if (!trans) return -EBUSY; ret = gsi_trans_skb_add(trans, skb); if (ret) goto err_trans_free; trans->data = skb; /* transaction owns skb now */ gsi_trans_commit(trans, !netdev_xmit_more()); return 0; err_trans_free: gsi_trans_free(trans); return -ENOMEM; } static void ipa_endpoint_status(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; const struct reg *reg; u32 val = 0; reg = ipa_reg(ipa, ENDP_STATUS); if (endpoint->config.status_enable) { val |= reg_bit(reg, STATUS_EN); if (endpoint->toward_ipa) { enum ipa_endpoint_name name; u32 status_endpoint_id; name = endpoint->config.tx.status_endpoint; status_endpoint_id = ipa->name_map[name]->endpoint_id; val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id); } /* STATUS_LOCATION is 0, meaning IPA packet status * precedes the packet (not present for IPA v4.5+) */ /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */ } iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id)); } static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint, struct gsi_trans *trans) { struct page *page; u32 buffer_size; u32 offset; u32 len; int ret; buffer_size = endpoint->config.rx.buffer_size; page = dev_alloc_pages(get_order(buffer_size)); if (!page) return -ENOMEM; /* Offset the buffer to make space for skb headroom */ offset = NET_SKB_PAD; len = buffer_size - offset; ret = gsi_trans_page_add(trans, page, len, offset); if (ret) put_page(page); else trans->data = page; /* transaction owns page now */ return ret; } /** * ipa_endpoint_replenish() - Replenish endpoint receive buffers * @endpoint: Endpoint to be replenished * * The IPA hardware can hold a fixed number of receive buffers for an RX * endpoint, based on the number of entries in the underlying channel ring * buffer. If an endpoint's "backlog" is non-zero, it indicates how many * more receive buffers can be supplied to the hardware. Replenishing for * an endpoint can be disabled, in which case buffers are not queued to * the hardware. */ static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint) { struct gsi_trans *trans; if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) return; /* Skip it if it's already active */ if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) return; while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) { bool doorbell; if (ipa_endpoint_replenish_one(endpoint, trans)) goto try_again_later; /* Ring the doorbell if we've got a full batch */ doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH); gsi_trans_commit(trans, doorbell); } clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); return; try_again_later: gsi_trans_free(trans); clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); /* Whenever a receive buffer transaction completes we'll try to * replenish again. It's unlikely, but if we fail to supply even * one buffer, nothing will trigger another replenish attempt. * If the hardware has no receive buffers queued, schedule work to * try replenishing again. */ if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) schedule_delayed_work(&endpoint->replenish_work, msecs_to_jiffies(1)); } static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) { set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); /* Start replenishing if hardware currently has no buffers */ if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id)) ipa_endpoint_replenish(endpoint); } static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) { clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); } static void ipa_endpoint_replenish_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct ipa_endpoint *endpoint; endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); ipa_endpoint_replenish(endpoint); } static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, void *data, u32 len, u32 extra) { struct sk_buff *skb; if (!endpoint->netdev) return; skb = __dev_alloc_skb(len, GFP_ATOMIC); if (skb) { /* Copy the data into the socket buffer and receive it */ skb_put(skb, len); memcpy(skb->data, data, len); skb->truesize += extra; } ipa_modem_skb_rx(endpoint->netdev, skb); } static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, struct page *page, u32 len) { u32 buffer_size = endpoint->config.rx.buffer_size; struct sk_buff *skb; /* Nothing to do if there's no netdev */ if (!endpoint->netdev) return false; WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); skb = build_skb(page_address(page), buffer_size); if (skb) { /* Reserve the headroom and account for the data */ skb_reserve(skb, NET_SKB_PAD); skb_put(skb, len); } /* Receive the buffer (or record drop if unable to build it) */ ipa_modem_skb_rx(endpoint->netdev, skb); return skb != NULL; } /* The format of an IPA packet status structure is the same for several * status types (opcodes). Other types aren't currently supported. */ static bool ipa_status_format_packet(enum ipa_status_opcode opcode) { switch (opcode) { case IPA_STATUS_OPCODE_PACKET: case IPA_STATUS_OPCODE_DROPPED_PACKET: case IPA_STATUS_OPCODE_SUSPENDED_PACKET: case IPA_STATUS_OPCODE_PACKET_2ND_PASS: return true; default: return false; } } static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data) { struct ipa *ipa = endpoint->ipa; enum ipa_status_opcode opcode; u32 endpoint_id; opcode = ipa_status_extract(ipa, data, STATUS_OPCODE); if (!ipa_status_format_packet(opcode)) return true; endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT); if (endpoint_id != endpoint->endpoint_id) return true; return false; /* Don't skip this packet, process it */ } static bool ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data) { struct ipa_endpoint *command_endpoint; enum ipa_status_mask status_mask; struct ipa *ipa = endpoint->ipa; u32 endpoint_id; status_mask = ipa_status_extract(ipa, data, STATUS_MASK); if (!status_mask) return false; /* No valid tag */ /* The status contains a valid tag. We know the packet was sent to * this endpoint (already verified by ipa_endpoint_status_skip()). * If the packet came from the AP->command TX endpoint we know * this packet was sent as part of the pipeline clear process. */ endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT); command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; if (endpoint_id == command_endpoint->endpoint_id) { complete(&ipa->completion); } else { dev_err(ipa->dev, "unexpected tagged packet from endpoint %u\n", endpoint_id); } return true; } /* Return whether the status indicates the packet should be dropped */ static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data) { enum ipa_status_exception exception; struct ipa *ipa = endpoint->ipa; u32 rule; /* If the status indicates a tagged transfer, we'll drop the packet */ if (ipa_endpoint_status_tag_valid(endpoint, data)) return true; /* Deaggregation exceptions we drop; all other types we consume */ exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION); if (exception) return exception == IPA_STATUS_EXCEPTION_DEAGGR; /* Drop the packet if it fails to match a routing rule; otherwise no */ rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX); return rule == IPA_STATUS_RULE_MISS; } static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, struct page *page, u32 total_len) { u32 buffer_size = endpoint->config.rx.buffer_size; void *data = page_address(page) + NET_SKB_PAD; u32 unused = buffer_size - total_len; struct ipa *ipa = endpoint->ipa; struct device *dev = ipa->dev; u32 resid = total_len; while (resid) { u32 length; u32 align; u32 len; if (resid < IPA_STATUS_SIZE) { dev_err(dev, "short message (%u bytes < %zu byte status)\n", resid, IPA_STATUS_SIZE); break; } /* Skip over status packets that lack packet data */ length = ipa_status_extract(ipa, data, STATUS_LENGTH); if (!length || ipa_endpoint_status_skip(endpoint, data)) { data += IPA_STATUS_SIZE; resid -= IPA_STATUS_SIZE; continue; } /* Compute the amount of buffer space consumed by the packet, * including the status. If the hardware is configured to * pad packet data to an aligned boundary, account for that. * And if checksum offload is enabled a trailer containing * computed checksum information will be appended. */ align = endpoint->config.rx.pad_align ? : 1; len = IPA_STATUS_SIZE + ALIGN(length, align); if (endpoint->config.checksum) len += sizeof(struct rmnet_map_dl_csum_trailer); if (!ipa_endpoint_status_drop(endpoint, data)) { void *data2; u32 extra; /* Client receives only packet data (no status) */ data2 = data + IPA_STATUS_SIZE; /* Have the true size reflect the extra unused space in * the original receive buffer. Distribute the "cost" * proportionately across all aggregated packets in the * buffer. */ extra = DIV_ROUND_CLOSEST(unused * len, total_len); ipa_endpoint_skb_copy(endpoint, data2, length, extra); } /* Consume status and the full packet it describes */ data += len; resid -= len; } } void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, struct gsi_trans *trans) { struct page *page; if (endpoint->toward_ipa) return; if (trans->cancelled) goto done; /* Parse or build a socket buffer using the actual received length */ page = trans->data; if (endpoint->config.status_enable) ipa_endpoint_status_parse(endpoint, page, trans->len); else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) trans->data = NULL; /* Pages have been consumed */ done: ipa_endpoint_replenish(endpoint); } void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, struct gsi_trans *trans) { if (endpoint->toward_ipa) { struct ipa *ipa = endpoint->ipa; /* Nothing to do for command transactions */ if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { struct sk_buff *skb = trans->data; if (skb) dev_kfree_skb_any(skb); } } else { struct page *page = trans->data; if (page) put_page(page); } } void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) { const struct reg *reg; u32 val; reg = ipa_reg(ipa, ROUTE); /* ROUTE_DIS is 0 */ val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id); val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE); /* ROUTE_DEF_HDR_OFST is 0 */ val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id); val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR); iowrite32(val, ipa->reg_virt + reg_offset(reg)); } void ipa_endpoint_default_route_clear(struct ipa *ipa) { ipa_endpoint_default_route_set(ipa, 0); } /** * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active * @endpoint: Endpoint to be reset * * If aggregation is active on an RX endpoint when a reset is performed * on its underlying GSI channel, a special sequence of actions must be * taken to ensure the IPA pipeline is properly cleared. * * Return: 0 if successful, or a negative error code */ static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) { struct ipa *ipa = endpoint->ipa; struct device *dev = ipa->dev; struct gsi *gsi = &ipa->gsi; bool suspended = false; dma_addr_t addr; u32 retries; u32 len = 1; void *virt; int ret; virt = kzalloc(len, GFP_KERNEL); if (!virt) return -ENOMEM; addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); if (dma_mapping_error(dev, addr)) { ret = -ENOMEM; goto out_kfree; } /* Force close aggregation before issuing the reset */ ipa_endpoint_force_close(endpoint); /* Reset and reconfigure the channel with the doorbell engine * disabled. Then poll until we know aggregation is no longer * active. We'll re-enable the doorbell (if appropriate) when * we reset again below. */ gsi_channel_reset(gsi, endpoint->channel_id, false); /* Make sure the channel isn't suspended */ suspended = ipa_endpoint_program_suspend(endpoint, false); /* Start channel and do a 1 byte read */ ret = gsi_channel_start(gsi, endpoint->channel_id); if (ret) goto out_suspend_again; ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); if (ret) goto err_endpoint_stop; /* Wait for aggregation to be closed on the channel */ retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; do { if (!ipa_endpoint_aggr_active(endpoint)) break; usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); } while (retries--); /* Check one last time */ if (ipa_endpoint_aggr_active(endpoint)) dev_err(dev, "endpoint %u still active during reset\n", endpoint->endpoint_id); gsi_trans_read_byte_done(gsi, endpoint->channel_id); ret = gsi_channel_stop(gsi, endpoint->channel_id); if (ret) goto out_suspend_again; /* Finally, reset and reconfigure the channel again (re-enabling * the doorbell engine if appropriate). Sleep for 1 millisecond to * complete the channel reset sequence. Finish by suspending the * channel again (if necessary). */ gsi_channel_reset(gsi, endpoint->channel_id, true); usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); goto out_suspend_again; err_endpoint_stop: (void)gsi_channel_stop(gsi, endpoint->channel_id); out_suspend_again: if (suspended) (void)ipa_endpoint_program_suspend(endpoint, true); dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); out_kfree: kfree(virt); return ret; } static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) { u32 channel_id = endpoint->channel_id; struct ipa *ipa = endpoint->ipa; bool special; int ret = 0; /* On IPA v3.5.1, if an RX endpoint is reset while aggregation * is active, we need to handle things specially to recover. * All other cases just need to reset the underlying GSI channel. */ special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && endpoint->config.aggregation; if (special && ipa_endpoint_aggr_active(endpoint)) ret = ipa_endpoint_reset_rx_aggr(endpoint); else gsi_channel_reset(&ipa->gsi, channel_id, true); if (ret) dev_err(ipa->dev, "error %d resetting channel %u for endpoint %u\n", ret, endpoint->channel_id, endpoint->endpoint_id); } static void ipa_endpoint_program(struct ipa_endpoint *endpoint) { if (endpoint->toward_ipa) { /* Newer versions of IPA use GSI channel flow control * instead of endpoint DELAY mode to prevent sending data. * Flow control is disabled for newly-allocated channels, * and we can assume flow control is not (ever) enabled * for AP TX channels. */ if (endpoint->ipa->version < IPA_VERSION_4_2) ipa_endpoint_program_delay(endpoint, false); } else { /* Ensure suspend mode is off on all AP RX endpoints */ (void)ipa_endpoint_program_suspend(endpoint, false); } ipa_endpoint_init_cfg(endpoint); ipa_endpoint_init_nat(endpoint); ipa_endpoint_init_hdr(endpoint); ipa_endpoint_init_hdr_ext(endpoint); ipa_endpoint_init_hdr_metadata_mask(endpoint); ipa_endpoint_init_mode(endpoint); ipa_endpoint_init_aggr(endpoint); if (!endpoint->toward_ipa) { if (endpoint->config.rx.holb_drop) ipa_endpoint_init_hol_block_enable(endpoint, 0); else ipa_endpoint_init_hol_block_disable(endpoint); } ipa_endpoint_init_deaggr(endpoint); ipa_endpoint_init_rsrc_grp(endpoint); ipa_endpoint_init_seq(endpoint); ipa_endpoint_status(endpoint); } int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; struct gsi *gsi = &ipa->gsi; int ret; ret = gsi_channel_start(gsi, endpoint->channel_id); if (ret) { dev_err(ipa->dev, "error %d starting %cX channel %u for endpoint %u\n", ret, endpoint->toward_ipa ? 'T' : 'R', endpoint->channel_id, endpoint_id); return ret; } if (!endpoint->toward_ipa) { ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id); ipa_endpoint_replenish_enable(endpoint); } __set_bit(endpoint_id, ipa->enabled); return 0; } void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) { u32 endpoint_id = endpoint->endpoint_id; struct ipa *ipa = endpoint->ipa; struct gsi *gsi = &ipa->gsi; int ret; if (!test_bit(endpoint_id, ipa->enabled)) return; __clear_bit(endpoint_id, endpoint->ipa->enabled); if (!endpoint->toward_ipa) { ipa_endpoint_replenish_disable(endpoint); ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id); } /* Note that if stop fails, the channel's state is not well-defined */ ret = gsi_channel_stop(gsi, endpoint->channel_id); if (ret) dev_err(ipa->dev, "error %d attempting to stop endpoint %u\n", ret, endpoint_id); } void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) { struct device *dev = endpoint->ipa->dev; struct gsi *gsi = &endpoint->ipa->gsi; int ret; if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) return; if (!endpoint->toward_ipa) { ipa_endpoint_replenish_disable(endpoint); (void)ipa_endpoint_program_suspend(endpoint, true); } ret = gsi_channel_suspend(gsi, endpoint->channel_id); if (ret) dev_err(dev, "error %d suspending channel %u\n", ret, endpoint->channel_id); } void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) { struct device *dev = endpoint->ipa->dev; struct gsi *gsi = &endpoint->ipa->gsi; int ret; if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) return; if (!endpoint->toward_ipa) (void)ipa_endpoint_program_suspend(endpoint, false); ret = gsi_channel_resume(gsi, endpoint->channel_id); if (ret) dev_err(dev, "error %d resuming channel %u\n", ret, endpoint->channel_id); else if (!endpoint->toward_ipa) ipa_endpoint_replenish_enable(endpoint); } void ipa_endpoint_suspend(struct ipa *ipa) { if (!ipa->setup_complete) return; if (ipa->modem_netdev) ipa_modem_suspend(ipa->modem_netdev); ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); } void ipa_endpoint_resume(struct ipa *ipa) { if (!ipa->setup_complete) return; ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); if (ipa->modem_netdev) ipa_modem_resume(ipa->modem_netdev); } static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) { struct gsi *gsi = &endpoint->ipa->gsi; u32 channel_id = endpoint->channel_id; /* Only AP endpoints get set up */ if (endpoint->ee_id != GSI_EE_AP) return; endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1; if (!endpoint->toward_ipa) { /* RX transactions require a single TRE, so the maximum * backlog is the same as the maximum outstanding TREs. */ clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags); clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags); INIT_DELAYED_WORK(&endpoint->replenish_work, ipa_endpoint_replenish_work); } ipa_endpoint_program(endpoint); __set_bit(endpoint->endpoint_id, endpoint->ipa->set_up); } static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) { __clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up); if (!endpoint->toward_ipa) cancel_delayed_work_sync(&endpoint->replenish_work); ipa_endpoint_reset(endpoint); } void ipa_endpoint_setup(struct ipa *ipa) { u32 endpoint_id; for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); } void ipa_endpoint_teardown(struct ipa *ipa) { u32 endpoint_id; for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count) ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); } void ipa_endpoint_deconfig(struct ipa *ipa) { ipa->available_count = 0; bitmap_free(ipa->available); ipa->available = NULL; } int ipa_endpoint_config(struct ipa *ipa) { struct device *dev = ipa->dev; const struct reg *reg; u32 endpoint_id; u32 hw_limit; u32 tx_count; u32 rx_count; u32 rx_base; u32 limit; u32 val; /* Prior to IPA v3.5, the FLAVOR_0 register was not supported. * Furthermore, the endpoints were not grouped such that TX * endpoint numbers started with 0 and RX endpoints had numbers * higher than all TX endpoints, so we can't do the simple * direction check used for newer hardware below. * * For hardware that doesn't support the FLAVOR_0 register, * just set the available mask to support any endpoint, and * assume the configuration is valid. */ if (ipa->version < IPA_VERSION_3_5) { ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL); if (!ipa->available) return -ENOMEM; ipa->available_count = IPA_ENDPOINT_MAX; bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX); return 0; } /* Find out about the endpoints supplied by the hardware, and ensure * the highest one doesn't exceed the number supported by software. */ reg = ipa_reg(ipa, FLAVOR_0); val = ioread32(ipa->reg_virt + reg_offset(reg)); /* Our RX is an IPA producer; our TX is an IPA consumer. */ tx_count = reg_decode(reg, MAX_CONS_PIPES, val); rx_count = reg_decode(reg, MAX_PROD_PIPES, val); rx_base = reg_decode(reg, PROD_LOWEST, val); limit = rx_base + rx_count; if (limit > IPA_ENDPOINT_MAX) { dev_err(dev, "too many endpoints, %u > %u\n", limit, IPA_ENDPOINT_MAX); return -EINVAL; } /* Until IPA v5.0, the max endpoint ID was 32 */ hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1; if (limit > hw_limit) { dev_err(dev, "unexpected endpoint count, %u > %u\n", limit, hw_limit); return -EINVAL; } /* Allocate and initialize the available endpoint bitmap */ ipa->available = bitmap_zalloc(limit, GFP_KERNEL); if (!ipa->available) return -ENOMEM; ipa->available_count = limit; /* Mark all supported RX and TX endpoints as available */ bitmap_set(ipa->available, 0, tx_count); bitmap_set(ipa->available, rx_base, rx_count); for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { struct ipa_endpoint *endpoint; if (endpoint_id >= limit) { dev_err(dev, "invalid endpoint id, %u > %u\n", endpoint_id, limit - 1); goto err_free_bitmap; } if (!test_bit(endpoint_id, ipa->available)) { dev_err(dev, "unavailable endpoint id %u\n", endpoint_id); goto err_free_bitmap; } /* Make sure it's pointing in the right direction */ endpoint = &ipa->endpoint[endpoint_id]; if (endpoint->toward_ipa) { if (endpoint_id < tx_count) continue; } else if (endpoint_id >= rx_base) { continue; } dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id); goto err_free_bitmap; } return 0; err_free_bitmap: ipa_endpoint_deconfig(ipa); return -EINVAL; } static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, const struct ipa_gsi_endpoint_data *data) { struct ipa_endpoint *endpoint; endpoint = &ipa->endpoint[data->endpoint_id]; if (data->ee_id == GSI_EE_AP) ipa->channel_map[data->channel_id] = endpoint; ipa->name_map[name] = endpoint; endpoint->ipa = ipa; endpoint->ee_id = data->ee_id; endpoint->channel_id = data->channel_id; endpoint->endpoint_id = data->endpoint_id; endpoint->toward_ipa = data->toward_ipa; endpoint->config = data->endpoint.config; __set_bit(endpoint->endpoint_id, ipa->defined); } static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) { __clear_bit(endpoint->endpoint_id, endpoint->ipa->defined); memset(endpoint, 0, sizeof(*endpoint)); } void ipa_endpoint_exit(struct ipa *ipa) { u32 endpoint_id; ipa->filtered = 0; for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); bitmap_free(ipa->enabled); ipa->enabled = NULL; bitmap_free(ipa->set_up); ipa->set_up = NULL; bitmap_free(ipa->defined); ipa->defined = NULL; memset(ipa->name_map, 0, sizeof(ipa->name_map)); memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); } /* Returns a bitmask of endpoints that support filtering, or 0 on error */ int ipa_endpoint_init(struct ipa *ipa, u32 count, const struct ipa_gsi_endpoint_data *data) { enum ipa_endpoint_name name; u32 filtered; BUILD_BUG_ON(!IPA_REPLENISH_BATCH); /* Number of endpoints is one more than the maximum ID */ ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1; if (!ipa->endpoint_count) return -EINVAL; /* Initialize endpoint state bitmaps */ ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); if (!ipa->defined) return -ENOMEM; ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); if (!ipa->set_up) goto err_free_defined; ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL); if (!ipa->enabled) goto err_free_set_up; filtered = 0; for (name = 0; name < count; name++, data++) { if (ipa_gsi_endpoint_data_empty(data)) continue; /* Skip over empty slots */ ipa_endpoint_init_one(ipa, name, data); if (data->endpoint.filter_support) filtered |= BIT(data->endpoint_id); if (data->ee_id == GSI_EE_MODEM && data->toward_ipa) ipa->modem_tx_count++; } /* Make sure the set of filtered endpoints is valid */ if (!ipa_filtered_valid(ipa, filtered)) { ipa_endpoint_exit(ipa); return -EINVAL; } ipa->filtered = filtered; return 0; err_free_set_up: bitmap_free(ipa->set_up); ipa->set_up = NULL; err_free_defined: bitmap_free(ipa->defined); ipa->defined = NULL; return -ENOMEM; }