/* * dwmac-sun8i.c - Allwinner sun8i DWMAC specific glue layer * * Copyright (C) 2017 Corentin Labbe * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "stmmac.h" #include "stmmac_platform.h" /* General notes on dwmac-sun8i: * Locking: no locking is necessary in this file because all necessary locking * is done in the "stmmac files" */ /* struct emac_variant - Descrive dwmac-sun8i hardware variant * @default_syscon_value: The default value of the EMAC register in syscon * This value is used for disabling properly EMAC * and used as a good starting value in case of the * boot process(uboot) leave some stuff. * @internal_phy: Does the MAC embed an internal PHY * @support_mii: Does the MAC handle MII * @support_rmii: Does the MAC handle RMII * @support_rgmii: Does the MAC handle RGMII */ struct emac_variant { u32 default_syscon_value; int internal_phy; bool support_mii; bool support_rmii; bool support_rgmii; }; /* struct sunxi_priv_data - hold all sunxi private data * @tx_clk: reference to MAC TX clock * @ephy_clk: reference to the optional EPHY clock for the internal PHY * @regulator: reference to the optional regulator * @rst_ephy: reference to the optional EPHY reset for the internal PHY * @variant: reference to the current board variant * @regmap: regmap for using the syscon * @use_internal_phy: Does the current PHY choice imply using the internal PHY */ struct sunxi_priv_data { struct clk *tx_clk; struct clk *ephy_clk; struct regulator *regulator; struct reset_control *rst_ephy; const struct emac_variant *variant; struct regmap *regmap; bool use_internal_phy; }; static const struct emac_variant emac_variant_h3 = { .default_syscon_value = 0x58000, .internal_phy = PHY_INTERFACE_MODE_MII, .support_mii = true, .support_rmii = true, .support_rgmii = true }; static const struct emac_variant emac_variant_v3s = { .default_syscon_value = 0x38000, .internal_phy = PHY_INTERFACE_MODE_MII, .support_mii = true }; static const struct emac_variant emac_variant_a83t = { .default_syscon_value = 0, .internal_phy = 0, .support_mii = true, .support_rgmii = true }; static const struct emac_variant emac_variant_a64 = { .default_syscon_value = 0, .internal_phy = 0, .support_mii = true, .support_rmii = true, .support_rgmii = true }; #define EMAC_BASIC_CTL0 0x00 #define EMAC_BASIC_CTL1 0x04 #define EMAC_INT_STA 0x08 #define EMAC_INT_EN 0x0C #define EMAC_TX_CTL0 0x10 #define EMAC_TX_CTL1 0x14 #define EMAC_TX_FLOW_CTL 0x1C #define EMAC_TX_DESC_LIST 0x20 #define EMAC_RX_CTL0 0x24 #define EMAC_RX_CTL1 0x28 #define EMAC_RX_DESC_LIST 0x34 #define EMAC_RX_FRM_FLT 0x38 #define EMAC_MDIO_CMD 0x48 #define EMAC_MDIO_DATA 0x4C #define EMAC_MACADDR_HI(reg) (0x50 + (reg) * 8) #define EMAC_MACADDR_LO(reg) (0x54 + (reg) * 8) #define EMAC_TX_DMA_STA 0xB0 #define EMAC_TX_CUR_DESC 0xB4 #define EMAC_TX_CUR_BUF 0xB8 #define EMAC_RX_DMA_STA 0xC0 #define EMAC_RX_CUR_DESC 0xC4 #define EMAC_RX_CUR_BUF 0xC8 /* Use in EMAC_BASIC_CTL0 */ #define EMAC_DUPLEX_FULL BIT(0) #define EMAC_LOOPBACK BIT(1) #define EMAC_SPEED_1000 0 #define EMAC_SPEED_100 (0x03 << 2) #define EMAC_SPEED_10 (0x02 << 2) /* Use in EMAC_BASIC_CTL1 */ #define EMAC_BURSTLEN_SHIFT 24 /* Used in EMAC_RX_FRM_FLT */ #define EMAC_FRM_FLT_RXALL BIT(0) #define EMAC_FRM_FLT_CTL BIT(13) #define EMAC_FRM_FLT_MULTICAST BIT(16) /* Used in RX_CTL1*/ #define EMAC_RX_MD BIT(1) #define EMAC_RX_TH_MASK GENMASK(4, 5) #define EMAC_RX_TH_32 0 #define EMAC_RX_TH_64 (0x1 << 4) #define EMAC_RX_TH_96 (0x2 << 4) #define EMAC_RX_TH_128 (0x3 << 4) #define EMAC_RX_DMA_EN BIT(30) #define EMAC_RX_DMA_START BIT(31) /* Used in TX_CTL1*/ #define EMAC_TX_MD BIT(1) #define EMAC_TX_NEXT_FRM BIT(2) #define EMAC_TX_TH_MASK GENMASK(8, 10) #define EMAC_TX_TH_64 0 #define EMAC_TX_TH_128 (0x1 << 8) #define EMAC_TX_TH_192 (0x2 << 8) #define EMAC_TX_TH_256 (0x3 << 8) #define EMAC_TX_DMA_EN BIT(30) #define EMAC_TX_DMA_START BIT(31) /* Used in RX_CTL0 */ #define EMAC_RX_RECEIVER_EN BIT(31) #define EMAC_RX_DO_CRC BIT(27) #define EMAC_RX_FLOW_CTL_EN BIT(16) /* Used in TX_CTL0 */ #define EMAC_TX_TRANSMITTER_EN BIT(31) /* Used in EMAC_TX_FLOW_CTL */ #define EMAC_TX_FLOW_CTL_EN BIT(0) /* Used in EMAC_INT_STA */ #define EMAC_TX_INT BIT(0) #define EMAC_TX_DMA_STOP_INT BIT(1) #define EMAC_TX_BUF_UA_INT BIT(2) #define EMAC_TX_TIMEOUT_INT BIT(3) #define EMAC_TX_UNDERFLOW_INT BIT(4) #define EMAC_TX_EARLY_INT BIT(5) #define EMAC_RX_INT BIT(8) #define EMAC_RX_BUF_UA_INT BIT(9) #define EMAC_RX_DMA_STOP_INT BIT(10) #define EMAC_RX_TIMEOUT_INT BIT(11) #define EMAC_RX_OVERFLOW_INT BIT(12) #define EMAC_RX_EARLY_INT BIT(13) #define EMAC_RGMII_STA_INT BIT(16) #define MAC_ADDR_TYPE_DST BIT(31) /* H3 specific bits for EPHY */ #define H3_EPHY_ADDR_SHIFT 20 #define H3_EPHY_CLK_SEL BIT(18) /* 1: 24MHz, 0: 25MHz */ #define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */ #define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */ #define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */ /* H3/A64 specific bits */ #define SYSCON_RMII_EN BIT(13) /* 1: enable RMII (overrides EPIT) */ /* Generic system control EMAC_CLK bits */ #define SYSCON_ETXDC_MASK GENMASK(2, 0) #define SYSCON_ETXDC_SHIFT 10 #define SYSCON_ERXDC_MASK GENMASK(4, 0) #define SYSCON_ERXDC_SHIFT 5 /* EMAC PHY Interface Type */ #define SYSCON_EPIT BIT(2) /* 1: RGMII, 0: MII */ #define SYSCON_ETCS_MASK GENMASK(1, 0) #define SYSCON_ETCS_MII 0x0 #define SYSCON_ETCS_EXT_GMII 0x1 #define SYSCON_ETCS_INT_GMII 0x2 #define SYSCON_EMAC_REG 0x30 /* sun8i_dwmac_dma_reset() - reset the EMAC * Called from stmmac via stmmac_dma_ops->reset */ static int sun8i_dwmac_dma_reset(void __iomem *ioaddr) { writel(0, ioaddr + EMAC_RX_CTL1); writel(0, ioaddr + EMAC_TX_CTL1); writel(0, ioaddr + EMAC_RX_FRM_FLT); writel(0, ioaddr + EMAC_RX_DESC_LIST); writel(0, ioaddr + EMAC_TX_DESC_LIST); writel(0, ioaddr + EMAC_INT_EN); writel(0x1FFFFFF, ioaddr + EMAC_INT_STA); return 0; } /* sun8i_dwmac_dma_init() - initialize the EMAC * Called from stmmac via stmmac_dma_ops->init */ static void sun8i_dwmac_dma_init(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, u32 dma_tx, u32 dma_rx, int atds) { /* Write TX and RX descriptors address */ writel(dma_rx, ioaddr + EMAC_RX_DESC_LIST); writel(dma_tx, ioaddr + EMAC_TX_DESC_LIST); writel(EMAC_RX_INT | EMAC_TX_INT, ioaddr + EMAC_INT_EN); writel(0x1FFFFFF, ioaddr + EMAC_INT_STA); } /* sun8i_dwmac_dump_regs() - Dump EMAC address space * Called from stmmac_dma_ops->dump_regs * Used for ethtool */ static void sun8i_dwmac_dump_regs(void __iomem *ioaddr, u32 *reg_space) { int i; for (i = 0; i < 0xC8; i += 4) { if (i == 0x32 || i == 0x3C) continue; reg_space[i / 4] = readl(ioaddr + i); } } /* sun8i_dwmac_dump_mac_regs() - Dump EMAC address space * Called from stmmac_ops->dump_regs * Used for ethtool */ static void sun8i_dwmac_dump_mac_regs(struct mac_device_info *hw, u32 *reg_space) { int i; void __iomem *ioaddr = hw->pcsr; for (i = 0; i < 0xC8; i += 4) { if (i == 0x32 || i == 0x3C) continue; reg_space[i / 4] = readl(ioaddr + i); } } static void sun8i_dwmac_enable_dma_irq(void __iomem *ioaddr, u32 chan) { writel(EMAC_RX_INT | EMAC_TX_INT, ioaddr + EMAC_INT_EN); } static void sun8i_dwmac_disable_dma_irq(void __iomem *ioaddr, u32 chan) { writel(0, ioaddr + EMAC_INT_EN); } static void sun8i_dwmac_dma_start_tx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); v |= EMAC_TX_DMA_START; v |= EMAC_TX_DMA_EN; writel(v, ioaddr + EMAC_TX_CTL1); } static void sun8i_dwmac_enable_dma_transmission(void __iomem *ioaddr) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); v |= EMAC_TX_DMA_START; v |= EMAC_TX_DMA_EN; writel(v, ioaddr + EMAC_TX_CTL1); } static void sun8i_dwmac_dma_stop_tx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); v &= ~EMAC_TX_DMA_EN; writel(v, ioaddr + EMAC_TX_CTL1); } static void sun8i_dwmac_dma_start_rx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_RX_CTL1); v |= EMAC_RX_DMA_START; v |= EMAC_RX_DMA_EN; writel(v, ioaddr + EMAC_RX_CTL1); } static void sun8i_dwmac_dma_stop_rx(void __iomem *ioaddr, u32 chan) { u32 v; v = readl(ioaddr + EMAC_RX_CTL1); v &= ~EMAC_RX_DMA_EN; writel(v, ioaddr + EMAC_RX_CTL1); } static int sun8i_dwmac_dma_interrupt(void __iomem *ioaddr, struct stmmac_extra_stats *x, u32 chan) { u32 v; int ret = 0; v = readl(ioaddr + EMAC_INT_STA); if (v & EMAC_TX_INT) { ret |= handle_tx; x->tx_normal_irq_n++; } if (v & EMAC_TX_DMA_STOP_INT) x->tx_process_stopped_irq++; if (v & EMAC_TX_BUF_UA_INT) x->tx_process_stopped_irq++; if (v & EMAC_TX_TIMEOUT_INT) ret |= tx_hard_error; if (v & EMAC_TX_UNDERFLOW_INT) { ret |= tx_hard_error; x->tx_undeflow_irq++; } if (v & EMAC_TX_EARLY_INT) x->tx_early_irq++; if (v & EMAC_RX_INT) { ret |= handle_rx; x->rx_normal_irq_n++; } if (v & EMAC_RX_BUF_UA_INT) x->rx_buf_unav_irq++; if (v & EMAC_RX_DMA_STOP_INT) x->rx_process_stopped_irq++; if (v & EMAC_RX_TIMEOUT_INT) ret |= tx_hard_error; if (v & EMAC_RX_OVERFLOW_INT) { ret |= tx_hard_error; x->rx_overflow_irq++; } if (v & EMAC_RX_EARLY_INT) x->rx_early_irq++; if (v & EMAC_RGMII_STA_INT) x->irq_rgmii_n++; writel(v, ioaddr + EMAC_INT_STA); return ret; } static void sun8i_dwmac_dma_operation_mode(void __iomem *ioaddr, int txmode, int rxmode, int rxfifosz) { u32 v; v = readl(ioaddr + EMAC_TX_CTL1); if (txmode == SF_DMA_MODE) { v |= EMAC_TX_MD; /* Undocumented bit (called TX_NEXT_FRM in BSP), the original * comment is * "Operating on second frame increase the performance * especially when transmit store-and-forward is used." */ v |= EMAC_TX_NEXT_FRM; } else { v &= ~EMAC_TX_MD; v &= ~EMAC_TX_TH_MASK; if (txmode < 64) v |= EMAC_TX_TH_64; else if (txmode < 128) v |= EMAC_TX_TH_128; else if (txmode < 192) v |= EMAC_TX_TH_192; else if (txmode < 256) v |= EMAC_TX_TH_256; } writel(v, ioaddr + EMAC_TX_CTL1); v = readl(ioaddr + EMAC_RX_CTL1); if (rxmode == SF_DMA_MODE) { v |= EMAC_RX_MD; } else { v &= ~EMAC_RX_MD; v &= ~EMAC_RX_TH_MASK; if (rxmode < 32) v |= EMAC_RX_TH_32; else if (rxmode < 64) v |= EMAC_RX_TH_64; else if (rxmode < 96) v |= EMAC_RX_TH_96; else if (rxmode < 128) v |= EMAC_RX_TH_128; } writel(v, ioaddr + EMAC_RX_CTL1); } static const struct stmmac_dma_ops sun8i_dwmac_dma_ops = { .reset = sun8i_dwmac_dma_reset, .init = sun8i_dwmac_dma_init, .dump_regs = sun8i_dwmac_dump_regs, .dma_mode = sun8i_dwmac_dma_operation_mode, .enable_dma_transmission = sun8i_dwmac_enable_dma_transmission, .enable_dma_irq = sun8i_dwmac_enable_dma_irq, .disable_dma_irq = sun8i_dwmac_disable_dma_irq, .start_tx = sun8i_dwmac_dma_start_tx, .stop_tx = sun8i_dwmac_dma_stop_tx, .start_rx = sun8i_dwmac_dma_start_rx, .stop_rx = sun8i_dwmac_dma_stop_rx, .dma_interrupt = sun8i_dwmac_dma_interrupt, }; static int sun8i_dwmac_init(struct platform_device *pdev, void *priv) { struct sunxi_priv_data *gmac = priv; int ret; if (gmac->regulator) { ret = regulator_enable(gmac->regulator); if (ret) { dev_err(&pdev->dev, "Fail to enable regulator\n"); return ret; } } ret = clk_prepare_enable(gmac->tx_clk); if (ret) { if (gmac->regulator) regulator_disable(gmac->regulator); dev_err(&pdev->dev, "Could not enable AHB clock\n"); return ret; } return 0; } static void sun8i_dwmac_core_init(struct mac_device_info *hw, struct net_device *dev) { void __iomem *ioaddr = hw->pcsr; u32 v; v = (8 << EMAC_BURSTLEN_SHIFT); /* burst len */ writel(v, ioaddr + EMAC_BASIC_CTL1); } static void sun8i_dwmac_set_mac(void __iomem *ioaddr, bool enable) { u32 t, r; t = readl(ioaddr + EMAC_TX_CTL0); r = readl(ioaddr + EMAC_RX_CTL0); if (enable) { t |= EMAC_TX_TRANSMITTER_EN; r |= EMAC_RX_RECEIVER_EN; } else { t &= ~EMAC_TX_TRANSMITTER_EN; r &= ~EMAC_RX_RECEIVER_EN; } writel(t, ioaddr + EMAC_TX_CTL0); writel(r, ioaddr + EMAC_RX_CTL0); } /* Set MAC address at slot reg_n * All slot > 0 need to be enabled with MAC_ADDR_TYPE_DST * If addr is NULL, clear the slot */ static void sun8i_dwmac_set_umac_addr(struct mac_device_info *hw, unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; u32 v; if (!addr) { writel(0, ioaddr + EMAC_MACADDR_HI(reg_n)); return; } stmmac_set_mac_addr(ioaddr, addr, EMAC_MACADDR_HI(reg_n), EMAC_MACADDR_LO(reg_n)); if (reg_n > 0) { v = readl(ioaddr + EMAC_MACADDR_HI(reg_n)); v |= MAC_ADDR_TYPE_DST; writel(v, ioaddr + EMAC_MACADDR_HI(reg_n)); } } static void sun8i_dwmac_get_umac_addr(struct mac_device_info *hw, unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; stmmac_get_mac_addr(ioaddr, addr, EMAC_MACADDR_HI(reg_n), EMAC_MACADDR_LO(reg_n)); } /* caution this function must return non 0 to work */ static int sun8i_dwmac_rx_ipc_enable(struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 v; v = readl(ioaddr + EMAC_RX_CTL0); v |= EMAC_RX_DO_CRC; writel(v, ioaddr + EMAC_RX_CTL0); return 1; } static void sun8i_dwmac_set_filter(struct mac_device_info *hw, struct net_device *dev) { void __iomem *ioaddr = hw->pcsr; u32 v; int i = 1; struct netdev_hw_addr *ha; int macaddrs = netdev_uc_count(dev) + netdev_mc_count(dev) + 1; v = EMAC_FRM_FLT_CTL; if (dev->flags & IFF_PROMISC) { v = EMAC_FRM_FLT_RXALL; } else if (dev->flags & IFF_ALLMULTI) { v |= EMAC_FRM_FLT_MULTICAST; } else if (macaddrs <= hw->unicast_filter_entries) { if (!netdev_mc_empty(dev)) { netdev_for_each_mc_addr(ha, dev) { sun8i_dwmac_set_umac_addr(hw, ha->addr, i); i++; } } if (!netdev_uc_empty(dev)) { netdev_for_each_uc_addr(ha, dev) { sun8i_dwmac_set_umac_addr(hw, ha->addr, i); i++; } } } else { netdev_info(dev, "Too many address, switching to promiscuous\n"); v = EMAC_FRM_FLT_RXALL; } /* Disable unused address filter slots */ while (i < hw->unicast_filter_entries) sun8i_dwmac_set_umac_addr(hw, NULL, i++); writel(v, ioaddr + EMAC_RX_FRM_FLT); } static void sun8i_dwmac_flow_ctrl(struct mac_device_info *hw, unsigned int duplex, unsigned int fc, unsigned int pause_time, u32 tx_cnt) { void __iomem *ioaddr = hw->pcsr; u32 v; v = readl(ioaddr + EMAC_RX_CTL0); if (fc == FLOW_AUTO) v |= EMAC_RX_FLOW_CTL_EN; else v &= ~EMAC_RX_FLOW_CTL_EN; writel(v, ioaddr + EMAC_RX_CTL0); v = readl(ioaddr + EMAC_TX_FLOW_CTL); if (fc == FLOW_AUTO) v |= EMAC_TX_FLOW_CTL_EN; else v &= ~EMAC_TX_FLOW_CTL_EN; writel(v, ioaddr + EMAC_TX_FLOW_CTL); } static int sun8i_dwmac_reset(struct stmmac_priv *priv) { u32 v; int err; v = readl(priv->ioaddr + EMAC_BASIC_CTL1); writel(v | 0x01, priv->ioaddr + EMAC_BASIC_CTL1); /* The timeout was previoulsy set to 10ms, but some board (OrangePI0) * need more if no cable plugged. 100ms seems OK */ err = readl_poll_timeout(priv->ioaddr + EMAC_BASIC_CTL1, v, !(v & 0x01), 100, 100000); if (err) { dev_err(priv->device, "EMAC reset timeout\n"); return -EFAULT; } return 0; } static int sun8i_dwmac_set_syscon(struct stmmac_priv *priv) { struct sunxi_priv_data *gmac = priv->plat->bsp_priv; struct device_node *node = priv->device->of_node; int ret; u32 reg, val; regmap_read(gmac->regmap, SYSCON_EMAC_REG, &val); reg = gmac->variant->default_syscon_value; if (reg != val) dev_warn(priv->device, "Current syscon value is not the default %x (expect %x)\n", val, reg); if (gmac->variant->internal_phy) { if (!gmac->use_internal_phy) { /* switch to external PHY interface */ reg &= ~H3_EPHY_SELECT; } else { reg |= H3_EPHY_SELECT; reg &= ~H3_EPHY_SHUTDOWN; dev_dbg(priv->device, "Select internal_phy %x\n", reg); if (of_property_read_bool(priv->plat->phy_node, "allwinner,leds-active-low")) reg |= H3_EPHY_LED_POL; else reg &= ~H3_EPHY_LED_POL; /* Force EPHY xtal frequency to 24MHz. */ reg |= H3_EPHY_CLK_SEL; ret = of_mdio_parse_addr(priv->device, priv->plat->phy_node); if (ret < 0) { dev_err(priv->device, "Could not parse MDIO addr\n"); return ret; } /* of_mdio_parse_addr returns a valid (0 ~ 31) PHY * address. No need to mask it again. */ reg |= ret << H3_EPHY_ADDR_SHIFT; } } if (!of_property_read_u32(node, "allwinner,tx-delay-ps", &val)) { if (val % 100) { dev_err(priv->device, "tx-delay must be a multiple of 100\n"); return -EINVAL; } val /= 100; dev_dbg(priv->device, "set tx-delay to %x\n", val); if (val <= SYSCON_ETXDC_MASK) { reg &= ~(SYSCON_ETXDC_MASK << SYSCON_ETXDC_SHIFT); reg |= (val << SYSCON_ETXDC_SHIFT); } else { dev_err(priv->device, "Invalid TX clock delay: %d\n", val); return -EINVAL; } } if (!of_property_read_u32(node, "allwinner,rx-delay-ps", &val)) { if (val % 100) { dev_err(priv->device, "rx-delay must be a multiple of 100\n"); return -EINVAL; } val /= 100; dev_dbg(priv->device, "set rx-delay to %x\n", val); if (val <= SYSCON_ERXDC_MASK) { reg &= ~(SYSCON_ERXDC_MASK << SYSCON_ERXDC_SHIFT); reg |= (val << SYSCON_ERXDC_SHIFT); } else { dev_err(priv->device, "Invalid RX clock delay: %d\n", val); return -EINVAL; } } /* Clear interface mode bits */ reg &= ~(SYSCON_ETCS_MASK | SYSCON_EPIT); if (gmac->variant->support_rmii) reg &= ~SYSCON_RMII_EN; switch (priv->plat->interface) { case PHY_INTERFACE_MODE_MII: /* default */ break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: reg |= SYSCON_EPIT | SYSCON_ETCS_INT_GMII; break; case PHY_INTERFACE_MODE_RMII: reg |= SYSCON_RMII_EN | SYSCON_ETCS_EXT_GMII; break; default: dev_err(priv->device, "Unsupported interface mode: %s", phy_modes(priv->plat->interface)); return -EINVAL; } regmap_write(gmac->regmap, SYSCON_EMAC_REG, reg); return 0; } static void sun8i_dwmac_unset_syscon(struct sunxi_priv_data *gmac) { u32 reg = gmac->variant->default_syscon_value; regmap_write(gmac->regmap, SYSCON_EMAC_REG, reg); } static int sun8i_dwmac_power_internal_phy(struct stmmac_priv *priv) { struct sunxi_priv_data *gmac = priv->plat->bsp_priv; int ret; if (!gmac->use_internal_phy) return 0; ret = clk_prepare_enable(gmac->ephy_clk); if (ret) { dev_err(priv->device, "Cannot enable ephy\n"); return ret; } /* Make sure the EPHY is properly reseted, as U-Boot may leave * it at deasserted state, and thus it may fail to reset EMAC. */ reset_control_assert(gmac->rst_ephy); ret = reset_control_deassert(gmac->rst_ephy); if (ret) { dev_err(priv->device, "Cannot deassert ephy\n"); clk_disable_unprepare(gmac->ephy_clk); return ret; } return 0; } static int sun8i_dwmac_unpower_internal_phy(struct sunxi_priv_data *gmac) { if (!gmac->use_internal_phy) return 0; clk_disable_unprepare(gmac->ephy_clk); reset_control_assert(gmac->rst_ephy); return 0; } /* sun8i_power_phy() - Activate the PHY: * In case of error, no need to call sun8i_unpower_phy(), * it will be called anyway by sun8i_dwmac_exit() */ static int sun8i_power_phy(struct stmmac_priv *priv) { int ret; ret = sun8i_dwmac_power_internal_phy(priv); if (ret) return ret; ret = sun8i_dwmac_set_syscon(priv); if (ret) return ret; /* After changing syscon value, the MAC need reset or it will use * the last value (and so the last PHY set. */ ret = sun8i_dwmac_reset(priv); if (ret) return ret; return 0; } static void sun8i_unpower_phy(struct sunxi_priv_data *gmac) { sun8i_dwmac_unset_syscon(gmac); sun8i_dwmac_unpower_internal_phy(gmac); } static void sun8i_dwmac_exit(struct platform_device *pdev, void *priv) { struct sunxi_priv_data *gmac = priv; sun8i_unpower_phy(gmac); clk_disable_unprepare(gmac->tx_clk); if (gmac->regulator) regulator_disable(gmac->regulator); } static const struct stmmac_ops sun8i_dwmac_ops = { .core_init = sun8i_dwmac_core_init, .set_mac = sun8i_dwmac_set_mac, .dump_regs = sun8i_dwmac_dump_mac_regs, .rx_ipc = sun8i_dwmac_rx_ipc_enable, .set_filter = sun8i_dwmac_set_filter, .flow_ctrl = sun8i_dwmac_flow_ctrl, .set_umac_addr = sun8i_dwmac_set_umac_addr, .get_umac_addr = sun8i_dwmac_get_umac_addr, }; static struct mac_device_info *sun8i_dwmac_setup(void *ppriv) { struct mac_device_info *mac; struct stmmac_priv *priv = ppriv; int ret; mac = devm_kzalloc(priv->device, sizeof(*mac), GFP_KERNEL); if (!mac) return NULL; ret = sun8i_power_phy(priv); if (ret) return NULL; mac->pcsr = priv->ioaddr; mac->mac = &sun8i_dwmac_ops; mac->dma = &sun8i_dwmac_dma_ops; priv->dev->priv_flags |= IFF_UNICAST_FLT; /* The loopback bit seems to be re-set when link change * Simply mask it each time * Speed 10/100/1000 are set in BIT(2)/BIT(3) */ mac->link.speed_mask = GENMASK(3, 2) | EMAC_LOOPBACK; mac->link.speed10 = EMAC_SPEED_10; mac->link.speed100 = EMAC_SPEED_100; mac->link.speed1000 = EMAC_SPEED_1000; mac->link.duplex = EMAC_DUPLEX_FULL; mac->mii.addr = EMAC_MDIO_CMD; mac->mii.data = EMAC_MDIO_DATA; mac->mii.reg_shift = 4; mac->mii.reg_mask = GENMASK(8, 4); mac->mii.addr_shift = 12; mac->mii.addr_mask = GENMASK(16, 12); mac->mii.clk_csr_shift = 20; mac->mii.clk_csr_mask = GENMASK(22, 20); mac->unicast_filter_entries = 8; /* Synopsys Id is not available */ priv->synopsys_id = 0; return mac; } static int sun8i_dwmac_probe(struct platform_device *pdev) { struct plat_stmmacenet_data *plat_dat; struct stmmac_resources stmmac_res; struct sunxi_priv_data *gmac; struct device *dev = &pdev->dev; int ret; ret = stmmac_get_platform_resources(pdev, &stmmac_res); if (ret) return ret; plat_dat = stmmac_probe_config_dt(pdev, &stmmac_res.mac); if (IS_ERR(plat_dat)) return PTR_ERR(plat_dat); gmac = devm_kzalloc(dev, sizeof(*gmac), GFP_KERNEL); if (!gmac) return -ENOMEM; gmac->variant = of_device_get_match_data(&pdev->dev); if (!gmac->variant) { dev_err(&pdev->dev, "Missing dwmac-sun8i variant\n"); return -EINVAL; } gmac->tx_clk = devm_clk_get(dev, "stmmaceth"); if (IS_ERR(gmac->tx_clk)) { dev_err(dev, "Could not get TX clock\n"); return PTR_ERR(gmac->tx_clk); } /* Optional regulator for PHY */ gmac->regulator = devm_regulator_get_optional(dev, "phy"); if (IS_ERR(gmac->regulator)) { if (PTR_ERR(gmac->regulator) == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(dev, "No regulator found\n"); gmac->regulator = NULL; } gmac->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "syscon"); if (IS_ERR(gmac->regmap)) { ret = PTR_ERR(gmac->regmap); dev_err(&pdev->dev, "Unable to map syscon: %d\n", ret); return ret; } plat_dat->interface = of_get_phy_mode(dev->of_node); if (plat_dat->interface == gmac->variant->internal_phy) { dev_info(&pdev->dev, "Will use internal PHY\n"); gmac->use_internal_phy = true; gmac->ephy_clk = of_clk_get(plat_dat->phy_node, 0); if (IS_ERR(gmac->ephy_clk)) { ret = PTR_ERR(gmac->ephy_clk); dev_err(&pdev->dev, "Cannot get EPHY clock: %d\n", ret); return -EINVAL; } gmac->rst_ephy = of_reset_control_get(plat_dat->phy_node, NULL); if (IS_ERR(gmac->rst_ephy)) { ret = PTR_ERR(gmac->rst_ephy); if (ret == -EPROBE_DEFER) return ret; dev_err(&pdev->dev, "No EPHY reset control found %d\n", ret); return -EINVAL; } } else { dev_info(&pdev->dev, "Will use external PHY\n"); gmac->use_internal_phy = false; } /* platform data specifying hardware features and callbacks. * hardware features were copied from Allwinner drivers. */ plat_dat->rx_coe = STMMAC_RX_COE_TYPE2; plat_dat->tx_coe = 1; plat_dat->has_sun8i = true; plat_dat->bsp_priv = gmac; plat_dat->init = sun8i_dwmac_init; plat_dat->exit = sun8i_dwmac_exit; plat_dat->setup = sun8i_dwmac_setup; ret = sun8i_dwmac_init(pdev, plat_dat->bsp_priv); if (ret) return ret; ret = stmmac_dvr_probe(&pdev->dev, plat_dat, &stmmac_res); if (ret) sun8i_dwmac_exit(pdev, plat_dat->bsp_priv); return ret; } static const struct of_device_id sun8i_dwmac_match[] = { { } }; MODULE_DEVICE_TABLE(of, sun8i_dwmac_match); static struct platform_driver sun8i_dwmac_driver = { .probe = sun8i_dwmac_probe, .remove = stmmac_pltfr_remove, .driver = { .name = "dwmac-sun8i", .pm = &stmmac_pltfr_pm_ops, .of_match_table = sun8i_dwmac_match, }, }; module_platform_driver(sun8i_dwmac_driver); MODULE_AUTHOR("Corentin Labbe "); MODULE_DESCRIPTION("Allwinner sun8i DWMAC specific glue layer"); MODULE_LICENSE("GPL");