/* SPDX-License-Identifier: GPL-2.0-only */ /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ /* Common definitions for all Efx net driver code */ #ifndef EFX_NET_DRIVER_H #define EFX_NET_DRIVER_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "enum.h" #include "bitfield.h" #include "filter.h" /************************************************************************** * * Build definitions * **************************************************************************/ #ifdef DEBUG #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x) #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) #else #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0) #define EFX_WARN_ON_PARANOID(x) do {} while (0) #endif /************************************************************************** * * Efx data structures * **************************************************************************/ #define EFX_MAX_CHANNELS 32U #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS #define EFX_EXTRA_CHANNEL_IOV 0 #define EFX_EXTRA_CHANNEL_PTP 1 #define EFX_EXTRA_CHANNEL_TC 2 #define EFX_MAX_EXTRA_CHANNELS 3U /* Checksum generation is a per-queue option in hardware, so each * queue visible to the networking core is backed by two hardware TX * queues. */ #define EFX_MAX_TX_TC 2 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) #define EFX_TXQ_TYPE_OUTER_CSUM 1 /* Outer checksum offload */ #define EFX_TXQ_TYPE_INNER_CSUM 2 /* Inner checksum offload */ #define EFX_TXQ_TYPES 4 #define EFX_MAX_TXQ_PER_CHANNEL 4 #define EFX_MAX_TX_QUEUES (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS) /* Maximum possible MTU the driver supports */ #define EFX_MAX_MTU (9 * 1024) /* Minimum MTU, from RFC791 (IP) */ #define EFX_MIN_MTU 68 /* Maximum total header length for TSOv2 */ #define EFX_TSO2_MAX_HDRLEN 208 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, * and should be a multiple of the cache line size. */ #define EFX_RX_USR_BUF_SIZE (2048 - 256) /* If possible, we should ensure cache line alignment at start and end * of every buffer. Otherwise, we just need to ensure 4-byte * alignment of the network header. */ #if NET_IP_ALIGN == 0 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES #else #define EFX_RX_BUF_ALIGNMENT 4 #endif /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and * still fit two standard MTU size packets into a single 4K page. */ #define EFX_XDP_HEADROOM 128 #define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) /* Forward declare Precision Time Protocol (PTP) support structure. */ struct efx_ptp_data; struct hwtstamp_config; struct efx_self_tests; /** * struct efx_buffer - A general-purpose DMA buffer * @addr: host base address of the buffer * @dma_addr: DMA base address of the buffer * @len: Buffer length, in bytes * * The NIC uses these buffers for its interrupt status registers and * MAC stats dumps. */ struct efx_buffer { void *addr; dma_addr_t dma_addr; unsigned int len; }; /** * struct efx_tx_buffer - buffer state for a TX descriptor * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be * freed when descriptor completes * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data * member is the associated buffer to drop a page reference on. * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option * descriptor. * @dma_addr: DMA address of the fragment. * @flags: Flags for allocation and DMA mapping type * @len: Length of this fragment. * This field is zero when the queue slot is empty. * @unmap_len: Length of this fragment to unmap * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. * Only valid if @unmap_len != 0. */ struct efx_tx_buffer { union { const struct sk_buff *skb; struct xdp_frame *xdpf; }; union { efx_qword_t option; /* EF10 */ dma_addr_t dma_addr; }; unsigned short flags; unsigned short len; unsigned short unmap_len; unsigned short dma_offset; }; #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */ #define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */ #define EFX_TX_BUF_EFV 0x100 /* buffer was sent from representor */ /** * struct efx_tx_queue - An Efx TX queue * * This is a ring buffer of TX fragments. * Since the TX completion path always executes on the same * CPU and the xmit path can operate on different CPUs, * performance is increased by ensuring that the completion * path and the xmit path operate on different cache lines. * This is particularly important if the xmit path is always * executing on one CPU which is different from the completion * path. There is also a cache line for members which are * read but not written on the fast path. * * @efx: The associated Efx NIC * @queue: DMA queue number * @label: Label for TX completion events. * Is our index within @channel->tx_queue array. * @type: configuration type of this TX queue. A bitmask of %EFX_TXQ_TYPE_* flags. * @tso_version: Version of TSO in use for this queue. * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series. * @channel: The associated channel * @core_txq: The networking core TX queue structure * @buffer: The software buffer ring * @cb_page: Array of pages of copy buffers. Carved up according to * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks. * @txd: The hardware descriptor ring * @ptr_mask: The size of the ring minus 1. * @piobuf: PIO buffer region for this TX queue (shared with its partner). * Size of the region is efx_piobuf_size. * @piobuf_offset: Buffer offset to be specified in PIO descriptors * @initialised: Has hardware queue been initialised? * @timestamping: Is timestamping enabled for this channel? * @xdp_tx: Is this an XDP tx queue? * @old_complete_packets: Value of @complete_packets as of last * efx_init_tx_queue() * @old_complete_bytes: Value of @complete_bytes as of last * efx_init_tx_queue() * @old_tso_bursts: Value of @tso_bursts as of last efx_init_tx_queue() * @old_tso_packets: Value of @tso_packets as of last efx_init_tx_queue() * @read_count: Current read pointer. * This is the number of buffers that have been removed from both rings. * @old_write_count: The value of @write_count when last checked. * This is here for performance reasons. The xmit path will * only get the up-to-date value of @write_count if this * variable indicates that the queue is empty. This is to * avoid cache-line ping-pong between the xmit path and the * completion path. * @merge_events: Number of TX merged completion events * @bytes_compl: Number of bytes completed during this NAPI poll * (efx_process_channel()). For BQL. * @pkts_compl: Number of packets completed during this NAPI poll. * @complete_packets: Number of packets completed since this struct was * created. Only counts SKB packets, not XDP TX (it accumulates * the same values that are reported to BQL). * @complete_bytes: Number of bytes completed since this struct was * created. For TSO, counts the superframe size, not the sizes of * generated frames on the wire (i.e. the headers are only counted * once) * @complete_xdp_packets: Number of XDP TX packets completed since this * struct was created. * @complete_xdp_bytes: Number of XDP TX bytes completed since this * struct was created. * @completed_timestamp_major: Top part of the most recent tx timestamp. * @completed_timestamp_minor: Low part of the most recent tx timestamp. * @insert_count: Current insert pointer * This is the number of buffers that have been added to the * software ring. * @write_count: Current write pointer * This is the number of buffers that have been added to the * hardware ring. * @packet_write_count: Completable write pointer * This is the write pointer of the last packet written. * Normally this will equal @write_count, but as option descriptors * don't produce completion events, they won't update this. * Filled in iff @efx->type->option_descriptors; only used for PIO. * Thus, this is only written and used on EF10. * @old_read_count: The value of read_count when last checked. * This is here for performance reasons. The xmit path will * only get the up-to-date value of read_count if this * variable indicates that the queue is full. This is to * avoid cache-line ping-pong between the xmit path and the * completion path. * @tso_bursts: Number of times TSO xmit invoked by kernel * @tso_long_headers: Number of packets with headers too long for standard * blocks * @tso_packets: Number of packets via the TSO xmit path * @tso_fallbacks: Number of times TSO fallback used * @pushes: Number of times the TX push feature has been used * @pio_packets: Number of times the TX PIO feature has been used * @xmit_pending: Are any packets waiting to be pushed to the NIC * @cb_packets: Number of times the TX copybreak feature has been used * @notify_count: Count of notified descriptors to the NIC * @tx_packets: Number of packets sent since this struct was created * @empty_read_count: If the completion path has seen the queue as empty * and the transmission path has not yet checked this, the value of * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. */ struct efx_tx_queue { /* Members which don't change on the fast path */ struct efx_nic *efx ____cacheline_aligned_in_smp; unsigned int queue; unsigned int label; unsigned int type; unsigned int tso_version; bool tso_encap; struct efx_channel *channel; struct netdev_queue *core_txq; struct efx_tx_buffer *buffer; struct efx_buffer *cb_page; struct efx_buffer txd; unsigned int ptr_mask; void __iomem *piobuf; unsigned int piobuf_offset; bool initialised; bool timestamping; bool xdp_tx; unsigned long old_complete_packets; unsigned long old_complete_bytes; unsigned int old_tso_bursts; unsigned int old_tso_packets; /* Members used mainly on the completion path */ unsigned int read_count ____cacheline_aligned_in_smp; unsigned int old_write_count; unsigned int merge_events; unsigned int bytes_compl; unsigned int pkts_compl; unsigned long complete_packets; unsigned long complete_bytes; unsigned long complete_xdp_packets; unsigned long complete_xdp_bytes; u32 completed_timestamp_major; u32 completed_timestamp_minor; /* Members used only on the xmit path */ unsigned int insert_count ____cacheline_aligned_in_smp; unsigned int write_count; unsigned int packet_write_count; unsigned int old_read_count; unsigned int tso_bursts; unsigned int tso_long_headers; unsigned int tso_packets; unsigned int tso_fallbacks; unsigned int pushes; unsigned int pio_packets; bool xmit_pending; unsigned int cb_packets; unsigned int notify_count; /* Statistics to supplement MAC stats */ unsigned long tx_packets; /* Members shared between paths and sometimes updated */ unsigned int empty_read_count ____cacheline_aligned_in_smp; #define EFX_EMPTY_COUNT_VALID 0x80000000 atomic_t flush_outstanding; }; #define EFX_TX_CB_ORDER 7 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN /** * struct efx_rx_buffer - An Efx RX data buffer * @dma_addr: DMA base address of the buffer * @page: The associated page buffer. * Will be %NULL if the buffer slot is currently free. * @page_offset: If pending: offset in @page of DMA base address. * If completed: offset in @page of Ethernet header. * @len: If pending: length for DMA descriptor. * If completed: received length, excluding hash prefix. * @flags: Flags for buffer and packet state. These are only set on the * first buffer of a scattered packet. */ struct efx_rx_buffer { dma_addr_t dma_addr; struct page *page; u16 page_offset; u16 len; u16 flags; }; #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 #define EFX_RX_PKT_CSUMMED 0x0002 #define EFX_RX_PKT_DISCARD 0x0004 #define EFX_RX_PKT_TCP 0x0040 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ #define EFX_RX_PKT_CSUM_LEVEL 0x0200 /** * struct efx_rx_page_state - Page-based rx buffer state * * Inserted at the start of every page allocated for receive buffers. * Used to facilitate sharing dma mappings between recycled rx buffers * and those passed up to the kernel. * * @dma_addr: The dma address of this page. */ struct efx_rx_page_state { dma_addr_t dma_addr; unsigned int __pad[] ____cacheline_aligned; }; /** * struct efx_rx_queue - An Efx RX queue * @efx: The associated Efx NIC * @core_index: Index of network core RX queue. Will be >= 0 iff this * is associated with a real RX queue. * @buffer: The software buffer ring * @rxd: The hardware descriptor ring * @ptr_mask: The size of the ring minus 1. * @refill_enabled: Enable refill whenever fill level is low * @flush_pending: Set when a RX flush is pending. Has the same lifetime as * @rxq_flush_pending. * @grant_credits: Posted RX descriptors need to be granted to the MAE with * %MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS. For %EFX_EXTRA_CHANNEL_TC, * and only supported on EF100. * @added_count: Number of buffers added to the receive queue. * @notified_count: Number of buffers given to NIC (<= @added_count). * @granted_count: Number of buffers granted to the MAE (<= @notified_count). * @removed_count: Number of buffers removed from the receive queue. * @scatter_n: Used by NIC specific receive code. * @scatter_len: Used by NIC specific receive code. * @page_ring: The ring to store DMA mapped pages for reuse. * @page_add: Counter to calculate the write pointer for the recycle ring. * @page_remove: Counter to calculate the read pointer for the recycle ring. * @page_recycle_count: The number of pages that have been recycled. * @page_recycle_failed: The number of pages that couldn't be recycled because * the kernel still held a reference to them. * @page_recycle_full: The number of pages that were released because the * recycle ring was full. * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. * @max_fill: RX descriptor maximum fill level (<= ring size) * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill * (<= @max_fill) * @min_fill: RX descriptor minimum non-zero fill level. * This records the minimum fill level observed when a ring * refill was triggered. * @recycle_count: RX buffer recycle counter. * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). * @grant_work: workitem used to grant credits to the MAE if @grant_credits * @rx_packets: Number of packets received since this struct was created * @rx_bytes: Number of bytes received since this struct was created * @old_rx_packets: Value of @rx_packets as of last efx_init_rx_queue() * @old_rx_bytes: Value of @rx_bytes as of last efx_init_rx_queue() * @xdp_rxq_info: XDP specific RX queue information. * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?. */ struct efx_rx_queue { struct efx_nic *efx; int core_index; struct efx_rx_buffer *buffer; struct efx_buffer rxd; unsigned int ptr_mask; bool refill_enabled; bool flush_pending; bool grant_credits; unsigned int added_count; unsigned int notified_count; unsigned int granted_count; unsigned int removed_count; unsigned int scatter_n; unsigned int scatter_len; struct page **page_ring; unsigned int page_add; unsigned int page_remove; unsigned int page_recycle_count; unsigned int page_recycle_failed; unsigned int page_recycle_full; unsigned int page_ptr_mask; unsigned int max_fill; unsigned int fast_fill_trigger; unsigned int min_fill; unsigned int min_overfill; unsigned int recycle_count; struct timer_list slow_fill; unsigned int slow_fill_count; struct work_struct grant_work; /* Statistics to supplement MAC stats */ unsigned long rx_packets; unsigned long rx_bytes; unsigned long old_rx_packets; unsigned long old_rx_bytes; struct xdp_rxq_info xdp_rxq_info; bool xdp_rxq_info_valid; }; enum efx_sync_events_state { SYNC_EVENTS_DISABLED = 0, SYNC_EVENTS_QUIESCENT, SYNC_EVENTS_REQUESTED, SYNC_EVENTS_VALID, }; /** * struct efx_channel - An Efx channel * * A channel comprises an event queue, at least one TX queue, at least * one RX queue, and an associated tasklet for processing the event * queue. * * @efx: Associated Efx NIC * @channel: Channel instance number * @type: Channel type definition * @eventq_init: Event queue initialised flag * @enabled: Channel enabled indicator * @irq: IRQ number (MSI and MSI-X only) * @irq_moderation_us: IRQ moderation value (in microseconds) * @napi_dev: Net device used with NAPI * @napi_str: NAPI control structure * @state: state for NAPI vs busy polling * @state_lock: lock protecting @state * @eventq: Event queue buffer * @eventq_mask: Event queue pointer mask * @eventq_read_ptr: Event queue read pointer * @event_test_cpu: Last CPU to handle interrupt or test event for this channel * @irq_count: Number of IRQs since last adaptive moderation decision * @irq_mod_score: IRQ moderation score * @rfs_filter_count: number of accelerated RFS filters currently in place; * equals the count of @rps_flow_id slots filled * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters * were checked for expiry * @rfs_expire_index: next accelerated RFS filter ID to check for expiry * @n_rfs_succeeded: number of successful accelerated RFS filter insertions * @n_rfs_failed: number of failed accelerated RFS filter insertions * @filter_work: Work item for efx_filter_rfs_expire() * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, * indexed by filter ID * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors * @n_rx_overlength: Count of RX_OVERLENGTH errors * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to * lack of descriptors * @n_rx_merge_events: Number of RX merged completion events * @n_rx_merge_packets: Number of RX packets completed by merged events * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was * not recognised * @old_n_rx_hw_drops: Count of all RX packets dropped for any reason as of last * efx_start_channels() * @old_n_rx_hw_drop_overruns: Value of @n_rx_nodesc_trunc as of last * efx_start_channels() * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by * __efx_rx_packet(), or zero if there is none * @rx_pkt_index: Ring index of first buffer for next packet to be delivered * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 * @rx_list: list of SKBs from current RX, awaiting processing * @rx_queue: RX queue for this channel * @tx_queue: TX queues for this channel * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type * @sync_events_state: Current state of sync events on this channel * @sync_timestamp_major: Major part of the last ptp sync event * @sync_timestamp_minor: Minor part of the last ptp sync event */ struct efx_channel { struct efx_nic *efx; int channel; const struct efx_channel_type *type; bool eventq_init; bool enabled; int irq; unsigned int irq_moderation_us; struct net_device *napi_dev; struct napi_struct napi_str; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long busy_poll_state; #endif struct efx_buffer eventq; unsigned int eventq_mask; unsigned int eventq_read_ptr; int event_test_cpu; unsigned int irq_count; unsigned int irq_mod_score; #ifdef CONFIG_RFS_ACCEL unsigned int rfs_filter_count; unsigned int rfs_last_expiry; unsigned int rfs_expire_index; unsigned int n_rfs_succeeded; unsigned int n_rfs_failed; struct delayed_work filter_work; #define RPS_FLOW_ID_INVALID 0xFFFFFFFF u32 *rps_flow_id; #endif unsigned int n_rx_ip_hdr_chksum_err; unsigned int n_rx_tcp_udp_chksum_err; unsigned int n_rx_outer_ip_hdr_chksum_err; unsigned int n_rx_outer_tcp_udp_chksum_err; unsigned int n_rx_inner_ip_hdr_chksum_err; unsigned int n_rx_inner_tcp_udp_chksum_err; unsigned int n_rx_eth_crc_err; unsigned int n_rx_frm_trunc; unsigned int n_rx_overlength; unsigned int n_skbuff_leaks; unsigned int n_rx_nodesc_trunc; unsigned int n_rx_merge_events; unsigned int n_rx_merge_packets; unsigned int n_rx_xdp_drops; unsigned int n_rx_xdp_bad_drops; unsigned int n_rx_xdp_tx; unsigned int n_rx_xdp_redirect; unsigned int n_rx_mport_bad; unsigned int old_n_rx_hw_drops; unsigned int old_n_rx_hw_drop_overruns; unsigned int rx_pkt_n_frags; unsigned int rx_pkt_index; struct list_head *rx_list; struct efx_rx_queue rx_queue; struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL]; struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES]; enum efx_sync_events_state sync_events_state; u32 sync_timestamp_major; u32 sync_timestamp_minor; }; /** * struct efx_msi_context - Context for each MSI * @efx: The associated NIC * @index: Index of the channel/IRQ * @name: Name of the channel/IRQ * * Unlike &struct efx_channel, this is never reallocated and is always * safe for the IRQ handler to access. */ struct efx_msi_context { struct efx_nic *efx; unsigned int index; char name[IFNAMSIZ + 6]; }; /** * struct efx_channel_type - distinguishes traffic and extra channels * @handle_no_channel: Handle failure to allocate an extra channel * @pre_probe: Set up extra state prior to initialisation * @start: called early in efx_start_channels() * @stop: called early in efx_stop_channels() * @post_remove: Tear down extra state after finalisation, if allocated. * May be called on channels that have not been probed. * @get_name: Generate the channel's name (used for its IRQ handler) * @copy: Copy the channel state prior to reallocation. May be %NULL if * reallocation is not supported. * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet() * @want_txqs: Determine whether this channel should have TX queues * created. If %NULL, TX queues are not created. * @keep_eventq: Flag for whether event queue should be kept initialised * while the device is stopped * @want_pio: Flag for whether PIO buffers should be linked to this * channel's TX queues. */ struct efx_channel_type { void (*handle_no_channel)(struct efx_nic *); int (*pre_probe)(struct efx_channel *); int (*start)(struct efx_channel *); void (*stop)(struct efx_channel *); void (*post_remove)(struct efx_channel *); void (*get_name)(struct efx_channel *, char *buf, size_t len); struct efx_channel *(*copy)(const struct efx_channel *); bool (*receive_skb)(struct efx_channel *, struct sk_buff *); bool (*receive_raw)(struct efx_rx_queue *, u32); bool (*want_txqs)(struct efx_channel *); bool keep_eventq; bool want_pio; }; enum efx_led_mode { EFX_LED_OFF = 0, EFX_LED_ON = 1, EFX_LED_DEFAULT = 2 }; #define STRING_TABLE_LOOKUP(val, member) \ ((val) < member ## _max) ? member ## _names[val] : "(invalid)" extern const char *const efx_loopback_mode_names[]; extern const unsigned int efx_loopback_mode_max; #define LOOPBACK_MODE(efx) \ STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) enum efx_int_mode { /* Be careful if altering to correct macro below */ EFX_INT_MODE_MSIX = 0, EFX_INT_MODE_MSI = 1, EFX_INT_MODE_LEGACY = 2, EFX_INT_MODE_MAX /* Insert any new items before this */ }; #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) enum nic_state { STATE_UNINIT = 0, /* device being probed/removed */ STATE_PROBED, /* hardware probed */ STATE_NET_DOWN, /* netdev registered */ STATE_NET_UP, /* ready for traffic */ STATE_DISABLED, /* device disabled due to hardware errors */ STATE_RECOVERY = 0x100,/* recovering from PCI error */ STATE_FROZEN = 0x200, /* frozen by power management */ }; static inline bool efx_net_active(enum nic_state state) { return state == STATE_NET_DOWN || state == STATE_NET_UP; } static inline bool efx_frozen(enum nic_state state) { return state & STATE_FROZEN; } static inline bool efx_recovering(enum nic_state state) { return state & STATE_RECOVERY; } static inline enum nic_state efx_freeze(enum nic_state state) { WARN_ON(!efx_net_active(state)); return state | STATE_FROZEN; } static inline enum nic_state efx_thaw(enum nic_state state) { WARN_ON(!efx_frozen(state)); return state & ~STATE_FROZEN; } static inline enum nic_state efx_recover(enum nic_state state) { WARN_ON(!efx_net_active(state)); return state | STATE_RECOVERY; } static inline enum nic_state efx_recovered(enum nic_state state) { WARN_ON(!efx_recovering(state)); return state & ~STATE_RECOVERY; } /* Forward declaration */ struct efx_nic; /* Pseudo bit-mask flow control field */ #define EFX_FC_RX FLOW_CTRL_RX #define EFX_FC_TX FLOW_CTRL_TX #define EFX_FC_AUTO 4 /** * struct efx_link_state - Current state of the link * @up: Link is up * @fd: Link is full-duplex * @fc: Actual flow control flags * @speed: Link speed (Mbps) */ struct efx_link_state { bool up; bool fd; u8 fc; unsigned int speed; }; static inline bool efx_link_state_equal(const struct efx_link_state *left, const struct efx_link_state *right) { return left->up == right->up && left->fd == right->fd && left->fc == right->fc && left->speed == right->speed; } /** * enum efx_phy_mode - PHY operating mode flags * @PHY_MODE_NORMAL: on and should pass traffic * @PHY_MODE_TX_DISABLED: on with TX disabled * @PHY_MODE_LOW_POWER: set to low power through MDIO * @PHY_MODE_OFF: switched off through external control * @PHY_MODE_SPECIAL: on but will not pass traffic */ enum efx_phy_mode { PHY_MODE_NORMAL = 0, PHY_MODE_TX_DISABLED = 1, PHY_MODE_LOW_POWER = 2, PHY_MODE_OFF = 4, PHY_MODE_SPECIAL = 8, }; static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) { return !!(mode & ~PHY_MODE_TX_DISABLED); } /** * struct efx_hw_stat_desc - Description of a hardware statistic * @name: Name of the statistic as visible through ethtool, or %NULL if * it should not be exposed * @dma_width: Width in bits (0 for non-DMA statistics) * @offset: Offset within stats (ignored for non-DMA statistics) */ struct efx_hw_stat_desc { const char *name; u16 dma_width; u16 offset; }; struct vfdi_status; /* The reserved RSS context value */ #define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff /** * struct efx_rss_context_priv - driver private data for an RSS context * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC. * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled */ struct efx_rss_context_priv { u32 context_id; bool rx_hash_udp_4tuple; }; /** * struct efx_rss_context - an RSS context * @priv: hardware-specific state * @rx_hash_key: Toeplitz hash key for this RSS context * @indir_table: Indirection table for this RSS context */ struct efx_rss_context { struct efx_rss_context_priv priv; u8 rx_hash_key[40]; u32 rx_indir_table[128]; }; #ifdef CONFIG_RFS_ACCEL /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING * is used to test if filter does or will exist. */ #define EFX_ARFS_FILTER_ID_PENDING -1 #define EFX_ARFS_FILTER_ID_ERROR -2 #define EFX_ARFS_FILTER_ID_REMOVING -3 /** * struct efx_arfs_rule - record of an ARFS filter and its IDs * @node: linkage into hash table * @spec: details of the filter (used as key for hash table). Use efx->type to * determine which member to use. * @rxq_index: channel to which the filter will steer traffic. * @arfs_id: filter ID which was returned to ARFS * @filter_id: index in software filter table. May be * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet, * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter. */ struct efx_arfs_rule { struct hlist_node node; struct efx_filter_spec spec; u16 rxq_index; u16 arfs_id; s32 filter_id; }; /* Size chosen so that the table is one page (4kB) */ #define EFX_ARFS_HASH_TABLE_SIZE 512 /** * struct efx_async_filter_insertion - Request to asynchronously insert a filter * @net_dev: Reference to the netdevice * @spec: The filter to insert * @work: Workitem for this request * @rxq_index: Identifies the channel for which this request was made * @flow_id: Identifies the kernel-side flow for which this request was made */ struct efx_async_filter_insertion { struct net_device *net_dev; struct efx_filter_spec spec; struct work_struct work; u16 rxq_index; u32 flow_id; }; /* Maximum number of ARFS workitems that may be in flight on an efx_nic */ #define EFX_RPS_MAX_IN_FLIGHT 8 #endif /* CONFIG_RFS_ACCEL */ enum efx_xdp_tx_queues_mode { EFX_XDP_TX_QUEUES_DEDICATED, /* one queue per core, locking not needed */ EFX_XDP_TX_QUEUES_SHARED, /* each queue used by more than 1 core */ EFX_XDP_TX_QUEUES_BORROWED /* queues borrowed from net stack */ }; struct efx_mae; /** * struct efx_nic - an Efx NIC * @name: Device name (net device name or bus id before net device registered) * @pci_dev: The PCI device * @node: List node for maintaning primary/secondary function lists * @primary: &struct efx_nic instance for the primary function of this * controller. May be the same structure, and may be %NULL if no * primary function is bound. Serialised by rtnl_lock. * @secondary_list: List of &struct efx_nic instances for the secondary PCI * functions of the controller, if this is for the primary function. * Serialised by rtnl_lock. * @type: Controller type attributes * @legacy_irq: IRQ number * @workqueue: Workqueue for port reconfigures and the HW monitor. * Work items do not hold and must not acquire RTNL. * @workqueue_name: Name of workqueue * @reset_work: Scheduled reset workitem * @membase_phys: Memory BAR value as physical address * @membase: Memory BAR value * @vi_stride: step between per-VI registers / memory regions * @interrupt_mode: Interrupt mode * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds * @timer_max_ns: Interrupt timer maximum value, in nanoseconds * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues * @irqs_hooked: Channel interrupts are hooked * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues * @irq_rx_moderation_us: IRQ moderation time for RX event queues * @msg_enable: Log message enable flags * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. * @reset_pending: Bitmask for pending resets * @tx_queue: TX DMA queues * @rx_queue: RX DMA queues * @channel: Channels * @msi_context: Context for each MSI * @extra_channel_types: Types of extra (non-traffic) channels that * should be allocated for this NIC * @mae: Details of the Match Action Engine * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues. * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit. * @xdp_txq_queues_mode: XDP TX queues sharing strategy. * @rxq_entries: Size of receive queues requested by user. * @txq_entries: Size of transmit queues requested by user. * @txq_stop_thresh: TX queue fill level at or above which we stop it. * @txq_wake_thresh: TX queue fill level at or below which we wake it. * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches * @sram_lim_qw: Qword address limit of SRAM * @n_channels: Number of channels in use * @n_rx_channels: Number of channels used for RX (= number of RX queues) * @n_tx_channels: Number of channels used for TX * @n_extra_tx_channels: Number of extra channels with TX queues * @tx_queues_per_channel: number of TX queues probed on each channel * @n_xdp_channels: Number of channels used for XDP TX * @xdp_channel_offset: Offset of zeroth channel used for XPD TX. * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel. * @rx_ip_align: RX DMA address offset to have IP header aligned in * in accordance with NET_IP_ALIGN * @rx_dma_len: Current maximum RX DMA length * @rx_buffer_order: Order (log2) of number of pages for each RX buffer * @rx_buffer_truesize: Amortised allocation size of an RX buffer, * for use in sk_buff::truesize * @rx_prefix_size: Size of RX prefix before packet data * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data * (valid only if @rx_prefix_size != 0; always negative) * @rx_packet_len_offset: Offset of RX packet length from start of packet data * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) * @rx_packet_ts_offset: Offset of timestamp from start of packet data * (valid only if channel->sync_timestamps_enabled; always negative) * @rx_scatter: Scatter mode enabled for receives * @rss_context: Main RSS context. * @vport_id: The function's vport ID, only relevant for PFs * @int_error_count: Number of internal errors seen recently * @int_error_expire: Time at which error count will be expired * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will * acknowledge but do nothing else. * @irq_status: Interrupt status buffer * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 * @irq_level: IRQ level/index for IRQs not triggered by an event queue * @selftest_work: Work item for asynchronous self-test * @mtd_list: List of MTDs attached to the NIC * @nic_data: Hardware dependent state * @mcdi: Management-Controller-to-Driver Interface state * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, * efx_monitor() and efx_reconfigure_port() * @port_enabled: Port enabled indicator. * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and * efx_mac_work() with kernel interfaces. Safe to read under any * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must * be held to modify it. * @port_initialized: Port initialized? * @net_dev: Operating system network device. Consider holding the rtnl lock * @fixed_features: Features which cannot be turned off * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS) * @stats_buffer: DMA buffer for statistics * @phy_type: PHY type * @phy_data: PHY private data (including PHY-specific stats) * @mdio: PHY MDIO interface * @mdio_bus: PHY MDIO bus ID (only used by Siena) * @phy_mode: PHY operating mode. Serialised by @mac_lock. * @link_advertising: Autonegotiation advertising flags * @fec_config: Forward Error Correction configuration flags. For bit positions * see &enum ethtool_fec_config_bits. * @link_state: Current state of the link * @n_link_state_changes: Number of times the link has changed state * @wanted_fc: Wanted flow control flags * @fc_disable: When non-zero flow control is disabled. Typically used to * ensure that network back pressure doesn't delay dma queue flushes. * Serialised by the rtnl lock. * @mac_work: Work item for changing MAC promiscuity and multicast hash * @loopback_mode: Loopback status * @loopback_modes: Supported loopback mode bitmask * @loopback_selftest: Offline self-test private state * @xdp_prog: Current XDP programme for this interface * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state * @filter_state: Architecture-dependent filter table state * @rps_mutex: Protects RPS state of all channels * @rps_slot_map: bitmap of in-flight entries in @rps_slot * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work() * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and * @rps_next_id). * @rps_hash_table: Mapping between ARFS filters and their various IDs * @rps_next_id: next arfs_id for an ARFS filter * @active_queues: Count of RX and TX queues that haven't been flushed and drained. * @rxq_flush_pending: Count of number of receive queues that need to be flushed. * Decremented when the efx_flush_rx_queue() is called. * @rxq_flush_outstanding: Count of number of RX flushes started but not yet * completed (either success or failure). Not used when MCDI is used to * flush receive queues. * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. * @vf_count: Number of VFs intended to be enabled. * @vf_init_count: Number of VFs that have been fully initialised. * @vi_scale: log2 number of vnics per VF. * @vf_reps_lock: Protects vf_reps list * @vf_reps: local VF reps * @ptp_data: PTP state data * @ptp_warned: has this NIC seen and warned about unexpected PTP events? * @vpd_sn: Serial number read from VPD * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their * xdp_rxq_info structures? * @netdev_notifier: Netdevice notifier. * @netevent_notifier: Netevent notifier (for neighbour updates). * @tc: state for TC offload (EF100). * @devlink: reference to devlink structure owned by this device * @dl_port: devlink port associated with the PF * @mem_bar: The BAR that is mapped into membase. * @reg_base: Offset from the start of the bar to the function control window. * @monitor_work: Hardware monitor workitem * @biu_lock: BIU (bus interface unit) lock * @last_irq_cpu: Last CPU to handle a possible test interrupt. This * field is used by efx_test_interrupts() to verify that an * interrupt has occurred. * @stats_lock: Statistics update lock. Must be held when calling * efx_nic_type::{update,start,stop}_stats. * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb * * This is stored in the private area of the &struct net_device. */ struct efx_nic { /* The following fields should be written very rarely */ char name[IFNAMSIZ]; struct list_head node; struct efx_nic *primary; struct list_head secondary_list; struct pci_dev *pci_dev; unsigned int port_num; const struct efx_nic_type *type; int legacy_irq; bool eeh_disabled_legacy_irq; struct workqueue_struct *workqueue; char workqueue_name[16]; struct work_struct reset_work; resource_size_t membase_phys; void __iomem *membase; unsigned int vi_stride; enum efx_int_mode interrupt_mode; unsigned int timer_quantum_ns; unsigned int timer_max_ns; bool irq_rx_adaptive; bool irqs_hooked; unsigned int irq_mod_step_us; unsigned int irq_rx_moderation_us; u32 msg_enable; enum nic_state state; unsigned long reset_pending; struct efx_channel *channel[EFX_MAX_CHANNELS]; struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; const struct efx_channel_type * extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; struct efx_mae *mae; unsigned int xdp_tx_queue_count; struct efx_tx_queue **xdp_tx_queues; enum efx_xdp_tx_queues_mode xdp_txq_queues_mode; unsigned rxq_entries; unsigned txq_entries; unsigned int txq_stop_thresh; unsigned int txq_wake_thresh; unsigned tx_dc_base; unsigned rx_dc_base; unsigned sram_lim_qw; unsigned int max_channels; unsigned int max_vis; unsigned int max_tx_channels; unsigned n_channels; unsigned n_rx_channels; unsigned rss_spread; unsigned tx_channel_offset; unsigned n_tx_channels; unsigned n_extra_tx_channels; unsigned int tx_queues_per_channel; unsigned int n_xdp_channels; unsigned int xdp_channel_offset; unsigned int xdp_tx_per_channel; unsigned int rx_ip_align; unsigned int rx_dma_len; unsigned int rx_buffer_order; unsigned int rx_buffer_truesize; unsigned int rx_page_buf_step; unsigned int rx_bufs_per_page; unsigned int rx_pages_per_batch; unsigned int rx_prefix_size; int rx_packet_hash_offset; int rx_packet_len_offset; int rx_packet_ts_offset; bool rx_scatter; struct efx_rss_context rss_context; u32 vport_id; unsigned int_error_count; unsigned long int_error_expire; bool must_realloc_vis; bool irq_soft_enabled; struct efx_buffer irq_status; unsigned irq_zero_count; unsigned irq_level; struct delayed_work selftest_work; #ifdef CONFIG_SFC_MTD struct list_head mtd_list; #endif void *nic_data; struct efx_mcdi_data *mcdi; struct mutex mac_lock; struct work_struct mac_work; bool port_enabled; bool mc_bist_for_other_fn; bool port_initialized; struct net_device *net_dev; netdev_features_t fixed_features; u16 num_mac_stats; struct efx_buffer stats_buffer; u64 rx_nodesc_drops_total; u64 rx_nodesc_drops_while_down; bool rx_nodesc_drops_prev_state; unsigned int phy_type; void *phy_data; struct mdio_if_info mdio; unsigned int mdio_bus; enum efx_phy_mode phy_mode; __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising); u32 fec_config; struct efx_link_state link_state; unsigned int n_link_state_changes; u8 wanted_fc; unsigned fc_disable; atomic_t rx_reset; enum efx_loopback_mode loopback_mode; u64 loopback_modes; void *loopback_selftest; /* We access loopback_selftest immediately before running XDP, * so we want them next to each other. */ struct bpf_prog __rcu *xdp_prog; struct rw_semaphore filter_sem; void *filter_state; #ifdef CONFIG_RFS_ACCEL struct mutex rps_mutex; unsigned long rps_slot_map; struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT]; spinlock_t rps_hash_lock; struct hlist_head *rps_hash_table; u32 rps_next_id; #endif atomic_t active_queues; atomic_t rxq_flush_pending; atomic_t rxq_flush_outstanding; wait_queue_head_t flush_wq; #ifdef CONFIG_SFC_SRIOV unsigned vf_count; unsigned vf_init_count; unsigned vi_scale; #endif spinlock_t vf_reps_lock; struct list_head vf_reps; struct efx_ptp_data *ptp_data; bool ptp_warned; char *vpd_sn; bool xdp_rxq_info_failed; struct notifier_block netdev_notifier; struct notifier_block netevent_notifier; struct efx_tc_state *tc; struct devlink *devlink; struct devlink_port *dl_port; unsigned int mem_bar; u32 reg_base; /* The following fields may be written more often */ struct delayed_work monitor_work ____cacheline_aligned_in_smp; spinlock_t biu_lock; int last_irq_cpu; spinlock_t stats_lock; atomic_t n_rx_noskb_drops; }; /** * struct efx_probe_data - State after hardware probe * @pci_dev: The PCI device * @efx: Efx NIC details */ struct efx_probe_data { struct pci_dev *pci_dev; struct efx_nic efx; }; static inline struct efx_nic *efx_netdev_priv(struct net_device *dev) { struct efx_probe_data **probe_ptr = netdev_priv(dev); struct efx_probe_data *probe_data = *probe_ptr; return &probe_data->efx; } static inline int efx_dev_registered(struct efx_nic *efx) { return efx->net_dev->reg_state == NETREG_REGISTERED; } static inline unsigned int efx_port_num(struct efx_nic *efx) { return efx->port_num; } struct efx_mtd_partition { struct list_head node; struct mtd_info mtd; const char *dev_type_name; const char *type_name; char name[IFNAMSIZ + 20]; }; struct efx_udp_tunnel { #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */ __be16 port; }; /** * struct efx_nic_type - Efx device type definition * @mem_bar: Get the memory BAR * @mem_map_size: Get memory BAR mapped size * @probe: Probe the controller * @remove: Free resources allocated by probe() * @init: Initialise the controller * @dimension_resources: Dimension controller resources (buffer table, * and VIs once the available interrupt resources are clear) * @fini: Shut down the controller * @monitor: Periodic function for polling link state and hardware monitor * @map_reset_reason: Map ethtool reset reason to a reset method * @map_reset_flags: Map ethtool reset flags to a reset method, if possible * @reset: Reset the controller hardware and possibly the PHY. This will * be called while the controller is uninitialised. * @probe_port: Probe the MAC and PHY * @remove_port: Free resources allocated by probe_port() * @handle_global_event: Handle a "global" event (may be %NULL) * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) * @prepare_flr: Prepare for an FLR * @finish_flr: Clean up after an FLR * @describe_stats: Describe statistics for ethtool * @update_stats: Update statistics not provided by event handling. * Either argument may be %NULL. * @update_stats_atomic: Update statistics while in atomic context, if that * is more limiting than @update_stats. Otherwise, leave %NULL and * driver core will call @update_stats. * @start_stats: Start the regular fetching of statistics * @pull_stats: Pull stats from the NIC and wait until they arrive. * @stop_stats: Stop the regular fetching of statistics * @push_irq_moderation: Apply interrupt moderation value * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings * to the hardware. Serialised by the mac_lock. * @check_mac_fault: Check MAC fault state. True if fault present. * @get_wol: Get WoL configuration from driver state * @set_wol: Push WoL configuration to the NIC * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) * @get_fec_stats: Get standard FEC statistics. * @test_chip: Test registers. This is expected to reset the NIC. * @test_nvram: Test validity of NVRAM contents * @mcdi_request: Send an MCDI request with the given header and SDU. * The SDU length may be any value from 0 up to the protocol- * defined maximum, but its buffer will be padded to a multiple * of 4 bytes. * @mcdi_poll_response: Test whether an MCDI response is available. * @mcdi_read_response: Read the MCDI response PDU. The offset will * be a multiple of 4. The length may not be, but the buffer * will be padded so it is safe to round up. * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, * return an appropriate error code for aborting any current * request; otherwise return 0. * @irq_enable_master: Enable IRQs on the NIC. Each event queue must * be separately enabled after this. * @irq_test_generate: Generate a test IRQ * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event * queue must be separately disabled before this. * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is * a pointer to the &struct efx_msi_context for the channel. * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument * is a pointer to the &struct efx_nic. * @tx_probe: Allocate resources for TX queue (and select TXQ type) * @tx_init: Initialise TX queue on the NIC * @tx_remove: Free resources for TX queue * @tx_write: Write TX descriptors and doorbell * @tx_enqueue: Add an SKB to TX queue * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC * @rx_push_rss_context_config: Write RSS hash key and indirection table for * user RSS context to the NIC * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user * RSS context back from the NIC * @rx_probe: Allocate resources for RX queue * @rx_init: Initialise RX queue on the NIC * @rx_remove: Free resources for RX queue * @rx_write: Write RX descriptors and doorbell * @rx_defer_refill: Generate a refill reminder event * @rx_packet: Receive the queued RX buffer on a channel * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash * @ev_probe: Allocate resources for event queue * @ev_init: Initialise event queue on the NIC * @ev_fini: Deinitialise event queue on the NIC * @ev_remove: Free resources for event queue * @ev_process: Process events for a queue, up to the given NAPI quota * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ * @ev_test_generate: Generate a test event * @filter_table_probe: Probe filter capabilities and set up filter software state * @filter_table_restore: Restore filters removed from hardware * @filter_table_remove: Remove filters from hardware and tear down software state * @filter_update_rx_scatter: Update filters after change to rx scatter setting * @filter_insert: add or replace a filter * @filter_remove_safe: remove a filter by ID, carefully * @filter_get_safe: retrieve a filter by ID, carefully * @filter_clear_rx: Remove all RX filters whose priority is less than or * equal to the given priority and is not %EFX_FILTER_PRI_AUTO * @filter_count_rx_used: Get the number of filters in use at a given priority * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 * @filter_get_rx_ids: Get list of RX filters at a given priority * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. * This must check whether the specified table entry is used by RFS * and that rps_may_expire_flow() returns true for it. * @mtd_probe: Probe and add MTD partitions associated with this net device, * using efx_mtd_add() * @mtd_rename: Set an MTD partition name using the net device name * @mtd_read: Read from an MTD partition * @mtd_erase: Erase part of an MTD partition * @mtd_write: Write to an MTD partition * @mtd_sync: Wait for write-back to complete on MTD partition. This * also notifies the driver that a writer has finished using this * partition. * @ptp_write_host_time: Send host time to MC as part of sync protocol * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX * timestamping, possibly only temporarily for the purposes of a reset. * @ptp_set_ts_config: Set hardware timestamp configuration. The flags * and tx_type will already have been validated but this operation * must validate and update rx_filter. * @get_phys_port_id: Get the underlying physical port id. * @set_mac_address: Set the MAC address of the device * @tso_versions: Returns mask of firmware-assisted TSO versions supported. * If %NULL, then device does not support any TSO version. * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required. * @udp_tnl_has_port: Check if a port has been added as UDP tunnel * @print_additional_fwver: Dump NIC-specific additional FW version info * @sensor_event: Handle a sensor event from MCDI * @rx_recycle_ring_size: Size of the RX recycle ring * @revision: Hardware architecture revision * @txd_ptr_tbl_base: TX descriptor ring base address * @rxd_ptr_tbl_base: RX descriptor ring base address * @buf_tbl_base: Buffer table base address * @evq_ptr_tbl_base: Event queue pointer table base address * @evq_rptr_tbl_base: Event queue read-pointer table base address * @max_dma_mask: Maximum possible DMA mask * @rx_prefix_size: Size of RX prefix before packet data * @rx_hash_offset: Offset of RX flow hash within prefix * @rx_ts_offset: Offset of timestamp within prefix * @rx_buffer_padding: Size of padding at end of RX packet * @can_rx_scatter: NIC is able to scatter packets to multiple buffers * @always_rx_scatter: NIC will always scatter packets to multiple buffers * @option_descriptors: NIC supports TX option descriptors * @min_interrupt_mode: Lowest capability interrupt mode supported * from &enum efx_int_mode. * @timer_period_max: Maximum period of interrupt timer (in ticks) * @offload_features: net_device feature flags for protocol offload * features implemented in hardware * @mcdi_max_ver: Maximum MCDI version supported * @hwtstamp_filters: Mask of hardware timestamp filter types supported */ struct efx_nic_type { bool is_vf; unsigned int (*mem_bar)(struct efx_nic *efx); unsigned int (*mem_map_size)(struct efx_nic *efx); int (*probe)(struct efx_nic *efx); void (*remove)(struct efx_nic *efx); int (*init)(struct efx_nic *efx); int (*dimension_resources)(struct efx_nic *efx); void (*fini)(struct efx_nic *efx); void (*monitor)(struct efx_nic *efx); enum reset_type (*map_reset_reason)(enum reset_type reason); int (*map_reset_flags)(u32 *flags); int (*reset)(struct efx_nic *efx, enum reset_type method); int (*probe_port)(struct efx_nic *efx); void (*remove_port)(struct efx_nic *efx); bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); int (*fini_dmaq)(struct efx_nic *efx); void (*prepare_flr)(struct efx_nic *efx); void (*finish_flr)(struct efx_nic *efx); size_t (*describe_stats)(struct efx_nic *efx, u8 *names); size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats); size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats, struct rtnl_link_stats64 *core_stats); void (*start_stats)(struct efx_nic *efx); void (*pull_stats)(struct efx_nic *efx); void (*stop_stats)(struct efx_nic *efx); void (*push_irq_moderation)(struct efx_channel *channel); int (*reconfigure_port)(struct efx_nic *efx); void (*prepare_enable_fc_tx)(struct efx_nic *efx); int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only); bool (*check_mac_fault)(struct efx_nic *efx); void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); int (*set_wol)(struct efx_nic *efx, u32 type); void (*resume_wol)(struct efx_nic *efx); void (*get_fec_stats)(struct efx_nic *efx, struct ethtool_fec_stats *fec_stats); unsigned int (*check_caps)(const struct efx_nic *efx, u8 flag, u32 offset); int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); int (*test_nvram)(struct efx_nic *efx); void (*mcdi_request)(struct efx_nic *efx, const efx_dword_t *hdr, size_t hdr_len, const efx_dword_t *sdu, size_t sdu_len); bool (*mcdi_poll_response)(struct efx_nic *efx); void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, size_t pdu_offset, size_t pdu_len); int (*mcdi_poll_reboot)(struct efx_nic *efx); void (*mcdi_reboot_detected)(struct efx_nic *efx); void (*irq_enable_master)(struct efx_nic *efx); int (*irq_test_generate)(struct efx_nic *efx); void (*irq_disable_non_ev)(struct efx_nic *efx); irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); int (*tx_probe)(struct efx_tx_queue *tx_queue); void (*tx_init)(struct efx_tx_queue *tx_queue); void (*tx_remove)(struct efx_tx_queue *tx_queue); void (*tx_write)(struct efx_tx_queue *tx_queue); netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb); unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue, dma_addr_t dma_addr, unsigned int len); int (*rx_push_rss_config)(struct efx_nic *efx, bool user, const u32 *rx_indir_table, const u8 *key); int (*rx_pull_rss_config)(struct efx_nic *efx); int (*rx_push_rss_context_config)(struct efx_nic *efx, struct efx_rss_context_priv *ctx, const u32 *rx_indir_table, const u8 *key, bool delete); int (*rx_pull_rss_context_config)(struct efx_nic *efx, struct efx_rss_context *ctx); void (*rx_restore_rss_contexts)(struct efx_nic *efx); int (*rx_probe)(struct efx_rx_queue *rx_queue); void (*rx_init)(struct efx_rx_queue *rx_queue); void (*rx_remove)(struct efx_rx_queue *rx_queue); void (*rx_write)(struct efx_rx_queue *rx_queue); void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); void (*rx_packet)(struct efx_channel *channel); bool (*rx_buf_hash_valid)(const u8 *prefix); int (*ev_probe)(struct efx_channel *channel); int (*ev_init)(struct efx_channel *channel); void (*ev_fini)(struct efx_channel *channel); void (*ev_remove)(struct efx_channel *channel); int (*ev_process)(struct efx_channel *channel, int quota); void (*ev_read_ack)(struct efx_channel *channel); void (*ev_test_generate)(struct efx_channel *channel); int (*filter_table_probe)(struct efx_nic *efx); void (*filter_table_restore)(struct efx_nic *efx); void (*filter_table_remove)(struct efx_nic *efx); void (*filter_update_rx_scatter)(struct efx_nic *efx); s32 (*filter_insert)(struct efx_nic *efx, struct efx_filter_spec *spec, bool replace); int (*filter_remove_safe)(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id); int (*filter_get_safe)(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id, struct efx_filter_spec *); int (*filter_clear_rx)(struct efx_nic *efx, enum efx_filter_priority priority); u32 (*filter_count_rx_used)(struct efx_nic *efx, enum efx_filter_priority priority); u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); s32 (*filter_get_rx_ids)(struct efx_nic *efx, enum efx_filter_priority priority, u32 *buf, u32 size); #ifdef CONFIG_RFS_ACCEL bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); #endif #ifdef CONFIG_SFC_MTD int (*mtd_probe)(struct efx_nic *efx); void (*mtd_rename)(struct efx_mtd_partition *part); int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, u8 *buffer); int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u8 *buffer); int (*mtd_sync)(struct mtd_info *mtd); #endif void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); int (*ptp_set_ts_config)(struct efx_nic *efx, struct kernel_hwtstamp_config *init); int (*sriov_configure)(struct efx_nic *efx, int num_vfs); int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid); int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid); int (*get_phys_port_id)(struct efx_nic *efx, struct netdev_phys_item_id *ppid); int (*sriov_init)(struct efx_nic *efx); void (*sriov_fini)(struct efx_nic *efx); bool (*sriov_wanted)(struct efx_nic *efx); int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac); int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, u8 qos); int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, bool spoofchk); int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, struct ifla_vf_info *ivi); int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, int link_state); int (*vswitching_probe)(struct efx_nic *efx); int (*vswitching_restore)(struct efx_nic *efx); void (*vswitching_remove)(struct efx_nic *efx); int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); int (*set_mac_address)(struct efx_nic *efx); u32 (*tso_versions)(struct efx_nic *efx); int (*udp_tnl_push_ports)(struct efx_nic *efx); bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port); size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf, size_t len); void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev); unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx); int revision; unsigned int txd_ptr_tbl_base; unsigned int rxd_ptr_tbl_base; unsigned int buf_tbl_base; unsigned int evq_ptr_tbl_base; unsigned int evq_rptr_tbl_base; u64 max_dma_mask; unsigned int rx_prefix_size; unsigned int rx_hash_offset; unsigned int rx_ts_offset; unsigned int rx_buffer_padding; bool can_rx_scatter; bool always_rx_scatter; bool option_descriptors; unsigned int min_interrupt_mode; unsigned int timer_period_max; netdev_features_t offload_features; int mcdi_max_ver; unsigned int max_rx_ip_filters; u32 hwtstamp_filters; unsigned int rx_hash_key_size; }; /************************************************************************** * * Prototypes and inline functions * *************************************************************************/ static inline struct efx_channel * efx_get_channel(struct efx_nic *efx, unsigned index) { EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels); return efx->channel[index]; } /* Iterate over all used channels */ #define efx_for_each_channel(_channel, _efx) \ for (_channel = (_efx)->channel[0]; \ _channel; \ _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ (_efx)->channel[_channel->channel + 1] : NULL) /* Iterate over all used channels in reverse */ #define efx_for_each_channel_rev(_channel, _efx) \ for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ _channel; \ _channel = _channel->channel ? \ (_efx)->channel[_channel->channel - 1] : NULL) static inline struct efx_channel * efx_get_tx_channel(struct efx_nic *efx, unsigned int index) { EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels); return efx->channel[efx->tx_channel_offset + index]; } static inline struct efx_channel * efx_get_xdp_channel(struct efx_nic *efx, unsigned int index) { EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels); return efx->channel[efx->xdp_channel_offset + index]; } static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel) { return channel->channel - channel->efx->xdp_channel_offset < channel->efx->n_xdp_channels; } static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) { return channel && channel->channel >= channel->efx->tx_channel_offset; } static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel) { if (efx_channel_is_xdp_tx(channel)) return channel->efx->xdp_tx_per_channel; return channel->efx->tx_queues_per_channel; } static inline struct efx_tx_queue * efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type) { EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES); return channel->tx_queue_by_type[type]; } static inline struct efx_tx_queue * efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type) { struct efx_channel *channel = efx_get_tx_channel(efx, index); return efx_channel_get_tx_queue(channel, type); } /* Iterate over all TX queues belonging to a channel */ #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ if (!efx_channel_has_tx_queues(_channel)) \ ; \ else \ for (_tx_queue = (_channel)->tx_queue; \ _tx_queue < (_channel)->tx_queue + \ efx_channel_num_tx_queues(_channel); \ _tx_queue++) static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) { return channel->rx_queue.core_index >= 0; } static inline struct efx_rx_queue * efx_channel_get_rx_queue(struct efx_channel *channel) { EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel)); return &channel->rx_queue; } /* Iterate over all RX queues belonging to a channel */ #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ if (!efx_channel_has_rx_queue(_channel)) \ ; \ else \ for (_rx_queue = &(_channel)->rx_queue; \ _rx_queue; \ _rx_queue = NULL) static inline struct efx_channel * efx_rx_queue_channel(struct efx_rx_queue *rx_queue) { return container_of(rx_queue, struct efx_channel, rx_queue); } static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) { return efx_rx_queue_channel(rx_queue)->channel; } /* Returns a pointer to the specified receive buffer in the RX * descriptor queue. */ static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, unsigned int index) { return &rx_queue->buffer[index]; } static inline struct efx_rx_buffer * efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) { if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) return efx_rx_buffer(rx_queue, 0); else return rx_buf + 1; } /** * EFX_MAX_FRAME_LEN - calculate maximum frame length * * This calculates the maximum frame length that will be used for a * given MTU. The frame length will be equal to the MTU plus a * constant amount of header space and padding. This is the quantity * that the net driver will program into the MAC as the maximum frame * length. * * The 10G MAC requires 8-byte alignment on the frame * length, so we round up to the nearest 8. * * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an * XGMII cycle). If the frame length reaches the maximum value in the * same cycle, the XMAC can miss the IPG altogether. We work around * this by adding a further 16 bytes. */ #define EFX_FRAME_PAD 16 #define EFX_MAX_FRAME_LEN(mtu) \ (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) { return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; } static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; } /* Get the max fill level of the TX queues on this channel */ static inline unsigned int efx_channel_tx_fill_level(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; unsigned int fill_level = 0; efx_for_each_channel_tx_queue(tx_queue, channel) fill_level = max(fill_level, tx_queue->insert_count - tx_queue->read_count); return fill_level; } /* Conservative approximation of efx_channel_tx_fill_level using cached value */ static inline unsigned int efx_channel_tx_old_fill_level(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; unsigned int fill_level = 0; efx_for_each_channel_tx_queue(tx_queue, channel) fill_level = max(fill_level, tx_queue->insert_count - tx_queue->old_read_count); return fill_level; } /* Get all supported features. * If a feature is not fixed, it is present in hw_features. * If a feature is fixed, it does not present in hw_features, but * always in features. */ static inline netdev_features_t efx_supported_features(const struct efx_nic *efx) { const struct net_device *net_dev = efx->net_dev; return net_dev->features | net_dev->hw_features; } /* Get the current TX queue insert index. */ static inline unsigned int efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) { return tx_queue->insert_count & tx_queue->ptr_mask; } /* Get a TX buffer. */ static inline struct efx_tx_buffer * __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) { return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; } /* Get a TX buffer, checking it's not currently in use. */ static inline struct efx_tx_buffer * efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) { struct efx_tx_buffer *buffer = __efx_tx_queue_get_insert_buffer(tx_queue); EFX_WARN_ON_ONCE_PARANOID(buffer->len); EFX_WARN_ON_ONCE_PARANOID(buffer->flags); EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len); return buffer; } #endif /* EFX_NET_DRIVER_H */