// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2018 Solarflare Communications Inc. * Copyright 2019-2020 Xilinx Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include "net_driver.h" #include "tx_common.h" #include "nic_common.h" #include "mcdi_functions.h" #include "ef100_regs.h" #include "io.h" #include "ef100_tx.h" #include "ef100_nic.h" int ef100_tx_probe(struct efx_tx_queue *tx_queue) { /* Allocate an extra descriptor for the QMDA status completion entry */ return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf, (tx_queue->ptr_mask + 2) * sizeof(efx_oword_t), GFP_KERNEL); } void ef100_tx_init(struct efx_tx_queue *tx_queue) { /* must be the inverse of lookup in efx_get_tx_channel */ tx_queue->core_txq = netdev_get_tx_queue(tx_queue->efx->net_dev, tx_queue->channel->channel - tx_queue->efx->tx_channel_offset); if (efx_mcdi_tx_init(tx_queue, false)) netdev_WARN(tx_queue->efx->net_dev, "failed to initialise TXQ %d\n", tx_queue->queue); } static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb) { struct efx_nic *efx = tx_queue->efx; struct ef100_nic_data *nic_data; struct efx_tx_buffer *buffer; struct tcphdr *tcphdr; struct iphdr *iphdr; size_t header_len; u32 mss; nic_data = efx->nic_data; if (!skb_is_gso_tcp(skb)) return false; if (!(efx->net_dev->features & NETIF_F_TSO)) return false; mss = skb_shinfo(skb)->gso_size; if (unlikely(mss < 4)) { WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss); return false; } header_len = efx_tx_tso_header_length(skb); if (header_len > nic_data->tso_max_hdr_len) return false; if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) { /* net_dev->gso_max_segs should've caught this */ WARN_ON_ONCE(1); return false; } if (skb->data_len / mss > nic_data->tso_max_frames) return false; /* net_dev->gso_max_size should've caught this */ if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len)) return false; /* Reserve an empty buffer for the TSO V3 descriptor. * Convey the length of the header since we already know it. */ buffer = efx_tx_queue_get_insert_buffer(tx_queue); buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT; buffer->len = header_len; buffer->unmap_len = 0; buffer->skb = skb; ++tx_queue->insert_count; /* Adjust the TCP checksum to exclude the total length, since we set * ED_INNER_IP_LEN in the descriptor. */ tcphdr = tcp_hdr(skb); if (skb_is_gso_v6(skb)) { tcphdr->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else { iphdr = ip_hdr(skb); tcphdr->check = ~csum_tcpudp_magic(iphdr->saddr, iphdr->daddr, 0, IPPROTO_TCP, 0); } return true; } static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) { if (likely(tx_queue->txd.buf.addr)) return ((efx_oword_t *)tx_queue->txd.buf.addr) + index; else return NULL; } static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue) { unsigned int write_ptr; efx_dword_t reg; tx_queue->xmit_pending = false; if (unlikely(tx_queue->notify_count == tx_queue->write_count)) return; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; /* The write pointer goes into the high word */ EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr); efx_writed_page(tx_queue->efx, ®, ER_GZ_TX_RING_DOORBELL, tx_queue->queue); tx_queue->notify_count = tx_queue->write_count; } static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue) { ef100_notify_tx_desc(tx_queue); ++tx_queue->pushes; } static void ef100_set_tx_csum_partial(const struct sk_buff *skb, struct efx_tx_buffer *buffer, efx_oword_t *txd) { efx_oword_t csum; int csum_start; if (!skb || skb->ip_summed != CHECKSUM_PARTIAL) return; /* skb->csum_start has the offset from head, but we need the offset * from data. */ csum_start = skb_checksum_start_offset(skb); EFX_POPULATE_OWORD_3(csum, ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1, ESF_GZ_TX_SEND_CSO_PARTIAL_START_W, csum_start >> 1, ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W, skb->csum_offset >> 1); EFX_OR_OWORD(*txd, *txd, csum); } static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd) { u16 vlan_tci = skb_vlan_tag_get(skb); efx_oword_t vlan; EFX_POPULATE_OWORD_2(vlan, ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1, ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci); EFX_OR_OWORD(*txd, *txd, vlan); } static void ef100_make_send_desc(struct efx_nic *efx, const struct sk_buff *skb, struct efx_tx_buffer *buffer, efx_oword_t *txd, unsigned int segment_count) { /* TX send descriptor */ EFX_POPULATE_OWORD_3(*txd, ESF_GZ_TX_SEND_NUM_SEGS, segment_count, ESF_GZ_TX_SEND_LEN, buffer->len, ESF_GZ_TX_SEND_ADDR, buffer->dma_addr); if (likely(efx->net_dev->features & NETIF_F_HW_CSUM)) ef100_set_tx_csum_partial(skb, buffer, txd); if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX && skb && skb_vlan_tag_present(skb)) ef100_set_tx_hw_vlan(skb, txd); } static void ef100_make_tso_desc(struct efx_nic *efx, const struct sk_buff *skb, struct efx_tx_buffer *buffer, efx_oword_t *txd, unsigned int segment_count) { u32 mangleid = (efx->net_dev->features & NETIF_F_TSO_MANGLEID) || skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID ? ESE_GZ_TX_DESC_IP4_ID_NO_OP : ESE_GZ_TX_DESC_IP4_ID_INC_MOD16; u16 vlan_enable = efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX ? skb_vlan_tag_present(skb) : 0; unsigned int len, ip_offset, tcp_offset, payload_segs; u16 vlan_tci = skb_vlan_tag_get(skb); u32 mss = skb_shinfo(skb)->gso_size; len = skb->len - buffer->len; /* We use 1 for the TSO descriptor and 1 for the header */ payload_segs = segment_count - 2; ip_offset = skb_network_offset(skb); tcp_offset = skb_transport_offset(skb); EFX_POPULATE_OWORD_13(*txd, ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO, ESF_GZ_TX_TSO_MSS, mss, ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1, ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs, ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1, ESF_GZ_TX_TSO_PAYLOAD_LEN, len, ESF_GZ_TX_TSO_CSO_INNER_L4, 1, ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1, ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1, ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid, ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1, ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable, ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci ); } static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue, const struct sk_buff *skb, unsigned int segment_count) { unsigned int old_write_count = tx_queue->write_count; unsigned int new_write_count = old_write_count; struct efx_tx_buffer *buffer; unsigned int next_desc_type; unsigned int write_ptr; efx_oword_t *txd; unsigned int nr_descs = tx_queue->insert_count - old_write_count; if (unlikely(nr_descs == 0)) return; if (segment_count) next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO; else next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND; /* if it's a raw write (such as XDP) then always SEND single frames */ if (!skb) nr_descs = 1; do { write_ptr = new_write_count & tx_queue->ptr_mask; buffer = &tx_queue->buffer[write_ptr]; txd = ef100_tx_desc(tx_queue, write_ptr); ++new_write_count; /* Create TX descriptor ring entry */ tx_queue->packet_write_count = new_write_count; switch (next_desc_type) { case ESE_GZ_TX_DESC_TYPE_SEND: ef100_make_send_desc(tx_queue->efx, skb, buffer, txd, nr_descs); break; case ESE_GZ_TX_DESC_TYPE_TSO: /* TX TSO descriptor */ WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3)); ef100_make_tso_desc(tx_queue->efx, skb, buffer, txd, nr_descs); break; default: /* TX segment descriptor */ EFX_POPULATE_OWORD_3(*txd, ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG, ESF_GZ_TX_SEG_LEN, buffer->len, ESF_GZ_TX_SEG_ADDR, buffer->dma_addr); } /* if it's a raw write (such as XDP) then always SEND */ next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG : ESE_GZ_TX_DESC_TYPE_SEND; } while (new_write_count != tx_queue->insert_count); wmb(); /* Ensure descriptors are written before they are fetched */ tx_queue->write_count = new_write_count; /* The write_count above must be updated before reading * channel->holdoff_doorbell to avoid a race with the * completion path, so ensure these operations are not * re-ordered. This also flushes the update of write_count * back into the cache. */ smp_mb(); } void ef100_tx_write(struct efx_tx_queue *tx_queue) { ef100_tx_make_descriptors(tx_queue, NULL, 0); ef100_tx_push_buffers(tx_queue); } void ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event) { unsigned int tx_done = EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC); unsigned int qlabel = EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL); struct efx_tx_queue *tx_queue = efx_channel_get_tx_queue(channel, qlabel); unsigned int tx_index = (tx_queue->read_count + tx_done - 1) & tx_queue->ptr_mask; efx_xmit_done(tx_queue, tx_index); } /* Add a socket buffer to a TX queue * * You must hold netif_tx_lock() to call this function. * * Returns 0 on success, error code otherwise. In case of an error this * function will free the SKB. */ int ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) { unsigned int old_insert_count = tx_queue->insert_count; struct efx_nic *efx = tx_queue->efx; bool xmit_more = netdev_xmit_more(); unsigned int fill_level; unsigned int segments; int rc; if (!tx_queue->buffer || !tx_queue->ptr_mask) { netif_stop_queue(efx->net_dev); dev_kfree_skb_any(skb); return -ENODEV; } segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0; if (segments == 1) segments = 0; /* Don't use TSO/GSO for a single segment. */ if (segments && !ef100_tx_can_tso(tx_queue, skb)) { rc = efx_tx_tso_fallback(tx_queue, skb); tx_queue->tso_fallbacks++; if (rc) goto err; else return 0; } /* Map for DMA and create descriptors */ rc = efx_tx_map_data(tx_queue, skb, segments); if (rc) goto err; ef100_tx_make_descriptors(tx_queue, skb, segments); fill_level = efx_channel_tx_old_fill_level(tx_queue->channel); if (fill_level > efx->txq_stop_thresh) { struct efx_tx_queue *txq2; netif_tx_stop_queue(tx_queue->core_txq); /* Re-read after a memory barrier in case we've raced with * the completion path. Otherwise there's a danger we'll never * restart the queue if all completions have just happened. */ smp_mb(); efx_for_each_channel_tx_queue(txq2, tx_queue->channel) txq2->old_read_count = READ_ONCE(txq2->read_count); fill_level = efx_channel_tx_old_fill_level(tx_queue->channel); if (fill_level < efx->txq_stop_thresh) netif_tx_start_queue(tx_queue->core_txq); } tx_queue->xmit_pending = true; /* If xmit_more then we don't need to push the doorbell, unless there * are 256 descriptors already queued in which case we have to push to * ensure we never push more than 256 at once. */ if (__netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) || tx_queue->write_count - tx_queue->notify_count > 255) ef100_tx_push_buffers(tx_queue); if (segments) { tx_queue->tso_bursts++; tx_queue->tso_packets += segments; tx_queue->tx_packets += segments; } else { tx_queue->tx_packets++; } return 0; err: efx_enqueue_unwind(tx_queue, old_insert_count); if (!IS_ERR_OR_NULL(skb)) dev_kfree_skb_any(skb); /* If we're not expecting another transmit and we had something to push * on this queue then we need to push here to get the previous packets * out. We only enter this branch from before the xmit_more handling * above, so xmit_pending still refers to the old state. */ if (tx_queue->xmit_pending && !xmit_more) ef100_tx_push_buffers(tx_queue); return rc; }