// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include #include "ice_sched.h" /** * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB * @pi: port information structure * @info: Scheduler element information from firmware * * This function inserts the root node of the scheduling tree topology * to the SW DB. */ static int ice_sched_add_root_node(struct ice_port_info *pi, struct ice_aqc_txsched_elem_data *info) { struct ice_sched_node *root; struct ice_hw *hw; if (!pi) return -EINVAL; hw = pi->hw; root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL); if (!root) return -ENOMEM; root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0], sizeof(*root->children), GFP_KERNEL); if (!root->children) { devm_kfree(ice_hw_to_dev(hw), root); return -ENOMEM; } memcpy(&root->info, info, sizeof(*info)); pi->root = root; return 0; } /** * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB * @start_node: pointer to the starting ice_sched_node struct in a sub-tree * @teid: node TEID to search * * This function searches for a node matching the TEID in the scheduling tree * from the SW DB. The search is recursive and is restricted by the number of * layers it has searched through; stopping at the max supported layer. * * This function needs to be called when holding the port_info->sched_lock */ struct ice_sched_node * ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid) { u16 i; /* The TEID is same as that of the start_node */ if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid) return start_node; /* The node has no children or is at the max layer */ if (!start_node->num_children || start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM || start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) return NULL; /* Check if TEID matches to any of the children nodes */ for (i = 0; i < start_node->num_children; i++) if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid) return start_node->children[i]; /* Search within each child's sub-tree */ for (i = 0; i < start_node->num_children; i++) { struct ice_sched_node *tmp; tmp = ice_sched_find_node_by_teid(start_node->children[i], teid); if (tmp) return tmp; } return NULL; } /** * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd * @hw: pointer to the HW struct * @cmd_opc: cmd opcode * @elems_req: number of elements to request * @buf: pointer to buffer * @buf_size: buffer size in bytes * @elems_resp: returns total number of elements response * @cd: pointer to command details structure or NULL * * This function sends a scheduling elements cmd (cmd_opc) */ static int ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc, u16 elems_req, void *buf, u16 buf_size, u16 *elems_resp, struct ice_sq_cd *cd) { struct ice_aqc_sched_elem_cmd *cmd; struct ice_aq_desc desc; int status; cmd = &desc.params.sched_elem_cmd; ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc); cmd->num_elem_req = cpu_to_le16(elems_req); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status && elems_resp) *elems_resp = le16_to_cpu(cmd->num_elem_resp); return status; } /** * ice_aq_query_sched_elems - query scheduler elements * @hw: pointer to the HW struct * @elems_req: number of elements to query * @buf: pointer to buffer * @buf_size: buffer size in bytes * @elems_ret: returns total number of elements returned * @cd: pointer to command details structure or NULL * * Query scheduling elements (0x0404) */ int ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req, struct ice_aqc_txsched_elem_data *buf, u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) { return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems, elems_req, (void *)buf, buf_size, elems_ret, cd); } /** * ice_sched_add_node - Insert the Tx scheduler node in SW DB * @pi: port information structure * @layer: Scheduler layer of the node * @info: Scheduler element information from firmware * @prealloc_node: preallocated ice_sched_node struct for SW DB * * This function inserts a scheduler node to the SW DB. */ int ice_sched_add_node(struct ice_port_info *pi, u8 layer, struct ice_aqc_txsched_elem_data *info, struct ice_sched_node *prealloc_node) { struct ice_aqc_txsched_elem_data elem; struct ice_sched_node *parent; struct ice_sched_node *node; struct ice_hw *hw; int status; if (!pi) return -EINVAL; hw = pi->hw; /* A valid parent node should be there */ parent = ice_sched_find_node_by_teid(pi->root, le32_to_cpu(info->parent_teid)); if (!parent) { ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n", le32_to_cpu(info->parent_teid)); return -EINVAL; } /* query the current node information from FW before adding it * to the SW DB */ status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem); if (status) return status; if (prealloc_node) node = prealloc_node; else node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; if (hw->max_children[layer]) { node->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[layer], sizeof(*node->children), GFP_KERNEL); if (!node->children) { devm_kfree(ice_hw_to_dev(hw), node); return -ENOMEM; } } node->in_use = true; node->parent = parent; node->tx_sched_layer = layer; parent->children[parent->num_children++] = node; node->info = elem; return 0; } /** * ice_aq_delete_sched_elems - delete scheduler elements * @hw: pointer to the HW struct * @grps_req: number of groups to delete * @buf: pointer to buffer * @buf_size: buffer size in bytes * @grps_del: returns total number of elements deleted * @cd: pointer to command details structure or NULL * * Delete scheduling elements (0x040F) */ static int ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req, struct ice_aqc_delete_elem *buf, u16 buf_size, u16 *grps_del, struct ice_sq_cd *cd) { return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems, grps_req, (void *)buf, buf_size, grps_del, cd); } /** * ice_sched_remove_elems - remove nodes from HW * @hw: pointer to the HW struct * @parent: pointer to the parent node * @node_teid: node teid to be deleted * * This function remove nodes from HW */ static int ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent, u32 node_teid) { DEFINE_RAW_FLEX(struct ice_aqc_delete_elem, buf, teid, 1); u16 buf_size = __struct_size(buf); u16 num_groups_removed = 0; int status; buf->hdr.parent_teid = parent->info.node_teid; buf->hdr.num_elems = cpu_to_le16(1); buf->teid[0] = cpu_to_le32(node_teid); status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size, &num_groups_removed, NULL); if (status || num_groups_removed != 1) ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n", hw->adminq.sq_last_status); return status; } /** * ice_sched_get_first_node - get the first node of the given layer * @pi: port information structure * @parent: pointer the base node of the subtree * @layer: layer number * * This function retrieves the first node of the given layer from the subtree */ static struct ice_sched_node * ice_sched_get_first_node(struct ice_port_info *pi, struct ice_sched_node *parent, u8 layer) { return pi->sib_head[parent->tc_num][layer]; } /** * ice_sched_get_tc_node - get pointer to TC node * @pi: port information structure * @tc: TC number * * This function returns the TC node pointer */ struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc) { u8 i; if (!pi || !pi->root) return NULL; for (i = 0; i < pi->root->num_children; i++) if (pi->root->children[i]->tc_num == tc) return pi->root->children[i]; return NULL; } /** * ice_free_sched_node - Free a Tx scheduler node from SW DB * @pi: port information structure * @node: pointer to the ice_sched_node struct * * This function frees up a node from SW DB as well as from HW * * This function needs to be called with the port_info->sched_lock held */ void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node) { struct ice_sched_node *parent; struct ice_hw *hw = pi->hw; u8 i, j; /* Free the children before freeing up the parent node * The parent array is updated below and that shifts the nodes * in the array. So always pick the first child if num children > 0 */ while (node->num_children) ice_free_sched_node(pi, node->children[0]); /* Leaf, TC and root nodes can't be deleted by SW */ if (node->tx_sched_layer >= hw->sw_entry_point_layer && node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT && node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) { u32 teid = le32_to_cpu(node->info.node_teid); ice_sched_remove_elems(hw, node->parent, teid); } parent = node->parent; /* root has no parent */ if (parent) { struct ice_sched_node *p; /* update the parent */ for (i = 0; i < parent->num_children; i++) if (parent->children[i] == node) { for (j = i + 1; j < parent->num_children; j++) parent->children[j - 1] = parent->children[j]; parent->num_children--; break; } p = ice_sched_get_first_node(pi, node, node->tx_sched_layer); while (p) { if (p->sibling == node) { p->sibling = node->sibling; break; } p = p->sibling; } /* update the sibling head if head is getting removed */ if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node) pi->sib_head[node->tc_num][node->tx_sched_layer] = node->sibling; } devm_kfree(ice_hw_to_dev(hw), node->children); kfree(node->name); xa_erase(&pi->sched_node_ids, node->id); devm_kfree(ice_hw_to_dev(hw), node); } /** * ice_aq_get_dflt_topo - gets default scheduler topology * @hw: pointer to the HW struct * @lport: logical port number * @buf: pointer to buffer * @buf_size: buffer size in bytes * @num_branches: returns total number of queue to port branches * @cd: pointer to command details structure or NULL * * Get default scheduler topology (0x400) */ static int ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport, struct ice_aqc_get_topo_elem *buf, u16 buf_size, u8 *num_branches, struct ice_sq_cd *cd) { struct ice_aqc_get_topo *cmd; struct ice_aq_desc desc; int status; cmd = &desc.params.get_topo; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo); cmd->port_num = lport; status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status && num_branches) *num_branches = cmd->num_branches; return status; } /** * ice_aq_add_sched_elems - adds scheduling element * @hw: pointer to the HW struct * @grps_req: the number of groups that are requested to be added * @buf: pointer to buffer * @buf_size: buffer size in bytes * @grps_added: returns total number of groups added * @cd: pointer to command details structure or NULL * * Add scheduling elements (0x0401) */ static int ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req, struct ice_aqc_add_elem *buf, u16 buf_size, u16 *grps_added, struct ice_sq_cd *cd) { return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems, grps_req, (void *)buf, buf_size, grps_added, cd); } /** * ice_aq_cfg_sched_elems - configures scheduler elements * @hw: pointer to the HW struct * @elems_req: number of elements to configure * @buf: pointer to buffer * @buf_size: buffer size in bytes * @elems_cfgd: returns total number of elements configured * @cd: pointer to command details structure or NULL * * Configure scheduling elements (0x0403) */ static int ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req, struct ice_aqc_txsched_elem_data *buf, u16 buf_size, u16 *elems_cfgd, struct ice_sq_cd *cd) { return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems, elems_req, (void *)buf, buf_size, elems_cfgd, cd); } /** * ice_aq_move_sched_elems - move scheduler element (just 1 group) * @hw: pointer to the HW struct * @buf: pointer to buffer * @buf_size: buffer size in bytes * @grps_movd: returns total number of groups moved * * Move scheduling elements (0x0408) */ int ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf, u16 buf_size, u16 *grps_movd) { return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems, 1, buf, buf_size, grps_movd, NULL); } /** * ice_aq_suspend_sched_elems - suspend scheduler elements * @hw: pointer to the HW struct * @elems_req: number of elements to suspend * @buf: pointer to buffer * @buf_size: buffer size in bytes * @elems_ret: returns total number of elements suspended * @cd: pointer to command details structure or NULL * * Suspend scheduling elements (0x0409) */ static int ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) { return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems, elems_req, (void *)buf, buf_size, elems_ret, cd); } /** * ice_aq_resume_sched_elems - resume scheduler elements * @hw: pointer to the HW struct * @elems_req: number of elements to resume * @buf: pointer to buffer * @buf_size: buffer size in bytes * @elems_ret: returns total number of elements resumed * @cd: pointer to command details structure or NULL * * resume scheduling elements (0x040A) */ static int ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf, u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd) { return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems, elems_req, (void *)buf, buf_size, elems_ret, cd); } /** * ice_aq_query_sched_res - query scheduler resource * @hw: pointer to the HW struct * @buf_size: buffer size in bytes * @buf: pointer to buffer * @cd: pointer to command details structure or NULL * * Query scheduler resource allocation (0x0412) */ static int ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size, struct ice_aqc_query_txsched_res_resp *buf, struct ice_sq_cd *cd) { struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res); return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); } /** * ice_sched_suspend_resume_elems - suspend or resume HW nodes * @hw: pointer to the HW struct * @num_nodes: number of nodes * @node_teids: array of node teids to be suspended or resumed * @suspend: true means suspend / false means resume * * This function suspends or resumes HW nodes */ int ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids, bool suspend) { u16 i, buf_size, num_elem_ret = 0; __le32 *buf; int status; buf_size = sizeof(*buf) * num_nodes; buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); if (!buf) return -ENOMEM; for (i = 0; i < num_nodes; i++) buf[i] = cpu_to_le32(node_teids[i]); if (suspend) status = ice_aq_suspend_sched_elems(hw, num_nodes, buf, buf_size, &num_elem_ret, NULL); else status = ice_aq_resume_sched_elems(hw, num_nodes, buf, buf_size, &num_elem_ret, NULL); if (status || num_elem_ret != num_nodes) ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n"); devm_kfree(ice_hw_to_dev(hw), buf); return status; } /** * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC * @hw: pointer to the HW struct * @vsi_handle: VSI handle * @tc: TC number * @new_numqs: number of queues */ static int ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) { struct ice_vsi_ctx *vsi_ctx; struct ice_q_ctx *q_ctx; u16 idx; vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); if (!vsi_ctx) return -EINVAL; /* allocate LAN queue contexts */ if (!vsi_ctx->lan_q_ctx[tc]) { q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, sizeof(*q_ctx), GFP_KERNEL); if (!q_ctx) return -ENOMEM; for (idx = 0; idx < new_numqs; idx++) { q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; q_ctx[idx].q_teid = ICE_INVAL_TEID; } vsi_ctx->lan_q_ctx[tc] = q_ctx; vsi_ctx->num_lan_q_entries[tc] = new_numqs; return 0; } /* num queues are increased, update the queue contexts */ if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) { u16 prev_num = vsi_ctx->num_lan_q_entries[tc]; q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, sizeof(*q_ctx), GFP_KERNEL); if (!q_ctx) return -ENOMEM; memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc], prev_num * sizeof(*q_ctx)); devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]); for (idx = prev_num; idx < new_numqs; idx++) { q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE; q_ctx[idx].q_teid = ICE_INVAL_TEID; } vsi_ctx->lan_q_ctx[tc] = q_ctx; vsi_ctx->num_lan_q_entries[tc] = new_numqs; } return 0; } /** * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC * @hw: pointer to the HW struct * @vsi_handle: VSI handle * @tc: TC number * @new_numqs: number of queues */ static int ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs) { struct ice_vsi_ctx *vsi_ctx; struct ice_q_ctx *q_ctx; vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); if (!vsi_ctx) return -EINVAL; /* allocate RDMA queue contexts */ if (!vsi_ctx->rdma_q_ctx[tc]) { vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, sizeof(*q_ctx), GFP_KERNEL); if (!vsi_ctx->rdma_q_ctx[tc]) return -ENOMEM; vsi_ctx->num_rdma_q_entries[tc] = new_numqs; return 0; } /* num queues are increased, update the queue contexts */ if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) { u16 prev_num = vsi_ctx->num_rdma_q_entries[tc]; q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs, sizeof(*q_ctx), GFP_KERNEL); if (!q_ctx) return -ENOMEM; memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc], prev_num * sizeof(*q_ctx)); devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]); vsi_ctx->rdma_q_ctx[tc] = q_ctx; vsi_ctx->num_rdma_q_entries[tc] = new_numqs; } return 0; } /** * ice_aq_rl_profile - performs a rate limiting task * @hw: pointer to the HW struct * @opcode: opcode for add, query, or remove profile(s) * @num_profiles: the number of profiles * @buf: pointer to buffer * @buf_size: buffer size in bytes * @num_processed: number of processed add or remove profile(s) to return * @cd: pointer to command details structure * * RL profile function to add, query, or remove profile(s) */ static int ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode, u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd) { struct ice_aqc_rl_profile *cmd; struct ice_aq_desc desc; int status; cmd = &desc.params.rl_profile; ice_fill_dflt_direct_cmd_desc(&desc, opcode); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); cmd->num_profiles = cpu_to_le16(num_profiles); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status && num_processed) *num_processed = le16_to_cpu(cmd->num_processed); return status; } /** * ice_aq_add_rl_profile - adds rate limiting profile(s) * @hw: pointer to the HW struct * @num_profiles: the number of profile(s) to be add * @buf: pointer to buffer * @buf_size: buffer size in bytes * @num_profiles_added: total number of profiles added to return * @cd: pointer to command details structure * * Add RL profile (0x0410) */ static int ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, u16 buf_size, u16 *num_profiles_added, struct ice_sq_cd *cd) { return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles, buf, buf_size, num_profiles_added, cd); } /** * ice_aq_remove_rl_profile - removes RL profile(s) * @hw: pointer to the HW struct * @num_profiles: the number of profile(s) to remove * @buf: pointer to buffer * @buf_size: buffer size in bytes * @num_profiles_removed: total number of profiles removed to return * @cd: pointer to command details structure or NULL * * Remove RL profile (0x0415) */ static int ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles, struct ice_aqc_rl_profile_elem *buf, u16 buf_size, u16 *num_profiles_removed, struct ice_sq_cd *cd) { return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles, num_profiles, buf, buf_size, num_profiles_removed, cd); } /** * ice_sched_del_rl_profile - remove RL profile * @hw: pointer to the HW struct * @rl_info: rate limit profile information * * If the profile ID is not referenced anymore, it removes profile ID with * its associated parameters from HW DB,and locally. The caller needs to * hold scheduler lock. */ static int ice_sched_del_rl_profile(struct ice_hw *hw, struct ice_aqc_rl_profile_info *rl_info) { struct ice_aqc_rl_profile_elem *buf; u16 num_profiles_removed; u16 num_profiles = 1; int status; if (rl_info->prof_id_ref != 0) return -EBUSY; /* Safe to remove profile ID */ buf = &rl_info->profile; status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf), &num_profiles_removed, NULL); if (status || num_profiles_removed != num_profiles) return -EIO; /* Delete stale entry now */ list_del(&rl_info->list_entry); devm_kfree(ice_hw_to_dev(hw), rl_info); return status; } /** * ice_sched_clear_rl_prof - clears RL prof entries * @pi: port information structure * * This function removes all RL profile from HW as well as from SW DB. */ static void ice_sched_clear_rl_prof(struct ice_port_info *pi) { u16 ln; for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { struct ice_aqc_rl_profile_info *rl_prof_elem; struct ice_aqc_rl_profile_info *rl_prof_tmp; list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, &pi->rl_prof_list[ln], list_entry) { struct ice_hw *hw = pi->hw; int status; rl_prof_elem->prof_id_ref = 0; status = ice_sched_del_rl_profile(hw, rl_prof_elem); if (status) { ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); /* On error, free mem required */ list_del(&rl_prof_elem->list_entry); devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); } } } } /** * ice_sched_clear_agg - clears the aggregator related information * @hw: pointer to the hardware structure * * This function removes aggregator list and free up aggregator related memory * previously allocated. */ void ice_sched_clear_agg(struct ice_hw *hw) { struct ice_sched_agg_info *agg_info; struct ice_sched_agg_info *atmp; list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) { struct ice_sched_agg_vsi_info *agg_vsi_info; struct ice_sched_agg_vsi_info *vtmp; list_for_each_entry_safe(agg_vsi_info, vtmp, &agg_info->agg_vsi_list, list_entry) { list_del(&agg_vsi_info->list_entry); devm_kfree(ice_hw_to_dev(hw), agg_vsi_info); } list_del(&agg_info->list_entry); devm_kfree(ice_hw_to_dev(hw), agg_info); } } /** * ice_sched_clear_tx_topo - clears the scheduler tree nodes * @pi: port information structure * * This function removes all the nodes from HW as well as from SW DB. */ static void ice_sched_clear_tx_topo(struct ice_port_info *pi) { if (!pi) return; /* remove RL profiles related lists */ ice_sched_clear_rl_prof(pi); if (pi->root) { ice_free_sched_node(pi, pi->root); pi->root = NULL; } } /** * ice_sched_clear_port - clear the scheduler elements from SW DB for a port * @pi: port information structure * * Cleanup scheduling elements from SW DB */ void ice_sched_clear_port(struct ice_port_info *pi) { if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) return; pi->port_state = ICE_SCHED_PORT_STATE_INIT; mutex_lock(&pi->sched_lock); ice_sched_clear_tx_topo(pi); mutex_unlock(&pi->sched_lock); mutex_destroy(&pi->sched_lock); } /** * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports * @hw: pointer to the HW struct * * Cleanup scheduling elements from SW DB for all the ports */ void ice_sched_cleanup_all(struct ice_hw *hw) { if (!hw) return; devm_kfree(ice_hw_to_dev(hw), hw->layer_info); hw->layer_info = NULL; ice_sched_clear_port(hw->port_info); hw->num_tx_sched_layers = 0; hw->num_tx_sched_phys_layers = 0; hw->flattened_layers = 0; hw->max_cgds = 0; } /** * ice_sched_add_elems - add nodes to HW and SW DB * @pi: port information structure * @tc_node: pointer to the branch node * @parent: pointer to the parent node * @layer: layer number to add nodes * @num_nodes: number of nodes * @num_nodes_added: pointer to num nodes added * @first_node_teid: if new nodes are added then return the TEID of first node * @prealloc_nodes: preallocated nodes struct for software DB * * This function add nodes to HW as well as to SW DB for a given layer */ int ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node, struct ice_sched_node *parent, u8 layer, u16 num_nodes, u16 *num_nodes_added, u32 *first_node_teid, struct ice_sched_node **prealloc_nodes) { struct ice_sched_node *prev, *new_node; struct ice_aqc_add_elem *buf; u16 i, num_groups_added = 0; struct ice_hw *hw = pi->hw; size_t buf_size; int status = 0; u32 teid; buf_size = struct_size(buf, generic, num_nodes); buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL); if (!buf) return -ENOMEM; buf->hdr.parent_teid = parent->info.node_teid; buf->hdr.num_elems = cpu_to_le16(num_nodes); for (i = 0; i < num_nodes; i++) { buf->generic[i].parent_teid = parent->info.node_teid; buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC; buf->generic[i].data.valid_sections = ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR; buf->generic[i].data.generic = 0; buf->generic[i].data.cir_bw.bw_profile_idx = cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); buf->generic[i].data.cir_bw.bw_alloc = cpu_to_le16(ICE_SCHED_DFLT_BW_WT); buf->generic[i].data.eir_bw.bw_profile_idx = cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); buf->generic[i].data.eir_bw.bw_alloc = cpu_to_le16(ICE_SCHED_DFLT_BW_WT); } status = ice_aq_add_sched_elems(hw, 1, buf, buf_size, &num_groups_added, NULL); if (status || num_groups_added != 1) { ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n", hw->adminq.sq_last_status); devm_kfree(ice_hw_to_dev(hw), buf); return -EIO; } *num_nodes_added = num_nodes; /* add nodes to the SW DB */ for (i = 0; i < num_nodes; i++) { if (prealloc_nodes) status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]); else status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL); if (status) { ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n", status); break; } teid = le32_to_cpu(buf->generic[i].node_teid); new_node = ice_sched_find_node_by_teid(parent, teid); if (!new_node) { ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid); break; } new_node->sibling = NULL; new_node->tc_num = tc_node->tc_num; new_node->tx_weight = ICE_SCHED_DFLT_BW_WT; new_node->tx_share = ICE_SCHED_DFLT_BW; new_node->tx_max = ICE_SCHED_DFLT_BW; new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL); if (!new_node->name) return -ENOMEM; status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX), GFP_KERNEL); if (status) { ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n", status); break; } snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id); /* add it to previous node sibling pointer */ /* Note: siblings are not linked across branches */ prev = ice_sched_get_first_node(pi, tc_node, layer); if (prev && prev != new_node) { while (prev->sibling) prev = prev->sibling; prev->sibling = new_node; } /* initialize the sibling head */ if (!pi->sib_head[tc_node->tc_num][layer]) pi->sib_head[tc_node->tc_num][layer] = new_node; if (i == 0) *first_node_teid = teid; } devm_kfree(ice_hw_to_dev(hw), buf); return status; } /** * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer * @pi: port information structure * @tc_node: pointer to TC node * @parent: pointer to parent node * @layer: layer number to add nodes * @num_nodes: number of nodes to be added * @first_node_teid: pointer to the first node TEID * @num_nodes_added: pointer to number of nodes added * * Add nodes into specific HW layer. */ static int ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi, struct ice_sched_node *tc_node, struct ice_sched_node *parent, u8 layer, u16 num_nodes, u32 *first_node_teid, u16 *num_nodes_added) { u16 max_child_nodes; *num_nodes_added = 0; if (!num_nodes) return 0; if (!parent || layer < pi->hw->sw_entry_point_layer) return -EINVAL; /* max children per node per layer */ max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; /* current number of children + required nodes exceed max children */ if ((parent->num_children + num_nodes) > max_child_nodes) { /* Fail if the parent is a TC node */ if (parent == tc_node) return -EIO; return -ENOSPC; } return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes, num_nodes_added, first_node_teid, NULL); } /** * ice_sched_add_nodes_to_layer - Add nodes to a given layer * @pi: port information structure * @tc_node: pointer to TC node * @parent: pointer to parent node * @layer: layer number to add nodes * @num_nodes: number of nodes to be added * @first_node_teid: pointer to the first node TEID * @num_nodes_added: pointer to number of nodes added * * This function add nodes to a given layer. */ int ice_sched_add_nodes_to_layer(struct ice_port_info *pi, struct ice_sched_node *tc_node, struct ice_sched_node *parent, u8 layer, u16 num_nodes, u32 *first_node_teid, u16 *num_nodes_added) { u32 *first_teid_ptr = first_node_teid; u16 new_num_nodes = num_nodes; int status = 0; *num_nodes_added = 0; while (*num_nodes_added < num_nodes) { u16 max_child_nodes, num_added = 0; u32 temp; status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent, layer, new_num_nodes, first_teid_ptr, &num_added); if (!status) *num_nodes_added += num_added; /* added more nodes than requested ? */ if (*num_nodes_added > num_nodes) { ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes, *num_nodes_added); status = -EIO; break; } /* break if all the nodes are added successfully */ if (!status && (*num_nodes_added == num_nodes)) break; /* break if the error is not max limit */ if (status && status != -ENOSPC) break; /* Exceeded the max children */ max_child_nodes = pi->hw->max_children[parent->tx_sched_layer]; /* utilize all the spaces if the parent is not full */ if (parent->num_children < max_child_nodes) { new_num_nodes = max_child_nodes - parent->num_children; } else { /* This parent is full, try the next sibling */ parent = parent->sibling; /* Don't modify the first node TEID memory if the * first node was added already in the above call. * Instead send some temp memory for all other * recursive calls. */ if (num_added) first_teid_ptr = &temp; new_num_nodes = num_nodes - *num_nodes_added; } } return status; } /** * ice_sched_get_qgrp_layer - get the current queue group layer number * @hw: pointer to the HW struct * * This function returns the current queue group layer number */ static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw) { /* It's always total layers - 1, the array is 0 relative so -2 */ return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; } /** * ice_sched_get_vsi_layer - get the current VSI layer number * @hw: pointer to the HW struct * * This function returns the current VSI layer number */ u8 ice_sched_get_vsi_layer(struct ice_hw *hw) { /* Num Layers VSI layer * 9 6 * 7 4 * 5 or less sw_entry_point_layer */ /* calculate the VSI layer based on number of layers. */ if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS) return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET; else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS) /* qgroup and VSI layers are same */ return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET; return hw->sw_entry_point_layer; } /** * ice_sched_get_agg_layer - get the current aggregator layer number * @hw: pointer to the HW struct * * This function returns the current aggregator layer number */ u8 ice_sched_get_agg_layer(struct ice_hw *hw) { /* Num Layers aggregator layer * 9 4 * 7 or less sw_entry_point_layer */ /* calculate the aggregator layer based on number of layers. */ if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS) return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET; else return hw->sw_entry_point_layer; } /** * ice_rm_dflt_leaf_node - remove the default leaf node in the tree * @pi: port information structure * * This function removes the leaf node that was created by the FW * during initialization */ static void ice_rm_dflt_leaf_node(struct ice_port_info *pi) { struct ice_sched_node *node; node = pi->root; while (node) { if (!node->num_children) break; node = node->children[0]; } if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) { u32 teid = le32_to_cpu(node->info.node_teid); int status; /* remove the default leaf node */ status = ice_sched_remove_elems(pi->hw, node->parent, teid); if (!status) ice_free_sched_node(pi, node); } } /** * ice_sched_rm_dflt_nodes - free the default nodes in the tree * @pi: port information structure * * This function frees all the nodes except root and TC that were created by * the FW during initialization */ static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi) { struct ice_sched_node *node; ice_rm_dflt_leaf_node(pi); /* remove the default nodes except TC and root nodes */ node = pi->root; while (node) { if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer && node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC && node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) { ice_free_sched_node(pi, node); break; } if (!node->num_children) break; node = node->children[0]; } } /** * ice_sched_init_port - Initialize scheduler by querying information from FW * @pi: port info structure for the tree to cleanup * * This function is the initial call to find the total number of Tx scheduler * resources, default topology created by firmware and storing the information * in SW DB. */ int ice_sched_init_port(struct ice_port_info *pi) { struct ice_aqc_get_topo_elem *buf; struct ice_hw *hw; u8 num_branches; u16 num_elems; int status; u8 i, j; if (!pi) return -EINVAL; hw = pi->hw; /* Query the Default Topology from FW */ buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL); if (!buf) return -ENOMEM; /* Query default scheduling tree topology */ status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN, &num_branches, NULL); if (status) goto err_init_port; /* num_branches should be between 1-8 */ if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) { ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n", num_branches); status = -EINVAL; goto err_init_port; } /* get the number of elements on the default/first branch */ num_elems = le16_to_cpu(buf[0].hdr.num_elems); /* num_elems should always be between 1-9 */ if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) { ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n", num_elems); status = -EINVAL; goto err_init_port; } /* If the last node is a leaf node then the index of the queue group * layer is two less than the number of elements. */ if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) pi->last_node_teid = le32_to_cpu(buf[0].generic[num_elems - 2].node_teid); else pi->last_node_teid = le32_to_cpu(buf[0].generic[num_elems - 1].node_teid); /* Insert the Tx Sched root node */ status = ice_sched_add_root_node(pi, &buf[0].generic[0]); if (status) goto err_init_port; /* Parse the default tree and cache the information */ for (i = 0; i < num_branches; i++) { num_elems = le16_to_cpu(buf[i].hdr.num_elems); /* Skip root element as already inserted */ for (j = 1; j < num_elems; j++) { /* update the sw entry point */ if (buf[0].generic[j].data.elem_type == ICE_AQC_ELEM_TYPE_ENTRY_POINT) hw->sw_entry_point_layer = j; status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL); if (status) goto err_init_port; } } /* Remove the default nodes. */ if (pi->root) ice_sched_rm_dflt_nodes(pi); /* initialize the port for handling the scheduler tree */ pi->port_state = ICE_SCHED_PORT_STATE_READY; mutex_init(&pi->sched_lock); for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++) INIT_LIST_HEAD(&pi->rl_prof_list[i]); err_init_port: if (status && pi->root) { ice_free_sched_node(pi, pi->root); pi->root = NULL; } kfree(buf); return status; } /** * ice_sched_query_res_alloc - query the FW for num of logical sched layers * @hw: pointer to the HW struct * * query FW for allocated scheduler resources and store in HW struct */ int ice_sched_query_res_alloc(struct ice_hw *hw) { struct ice_aqc_query_txsched_res_resp *buf; __le16 max_sibl; int status = 0; u16 i; if (hw->layer_info) return status; buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL); if (!buf) return -ENOMEM; status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL); if (status) goto sched_query_out; hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels); hw->num_tx_sched_phys_layers = le16_to_cpu(buf->sched_props.phys_levels); hw->flattened_layers = buf->sched_props.flattening_bitmap; hw->max_cgds = buf->sched_props.max_pf_cgds; /* max sibling group size of current layer refers to the max children * of the below layer node. * layer 1 node max children will be layer 2 max sibling group size * layer 2 node max children will be layer 3 max sibling group size * and so on. This array will be populated from root (index 0) to * qgroup layer 7. Leaf node has no children. */ for (i = 0; i < hw->num_tx_sched_layers - 1; i++) { max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz; hw->max_children[i] = le16_to_cpu(max_sibl); } hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props, (hw->num_tx_sched_layers * sizeof(*hw->layer_info)), GFP_KERNEL); if (!hw->layer_info) { status = -ENOMEM; goto sched_query_out; } sched_query_out: devm_kfree(ice_hw_to_dev(hw), buf); return status; } /** * ice_sched_get_psm_clk_freq - determine the PSM clock frequency * @hw: pointer to the HW struct * * Determine the PSM clock frequency and store in HW struct */ void ice_sched_get_psm_clk_freq(struct ice_hw *hw) { u32 val, clk_src; val = rd32(hw, GLGEN_CLKSTAT_SRC); clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val); #define PSM_CLK_SRC_367_MHZ 0x0 #define PSM_CLK_SRC_416_MHZ 0x1 #define PSM_CLK_SRC_446_MHZ 0x2 #define PSM_CLK_SRC_390_MHZ 0x3 switch (clk_src) { case PSM_CLK_SRC_367_MHZ: hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ; break; case PSM_CLK_SRC_416_MHZ: hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ; break; case PSM_CLK_SRC_446_MHZ: hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; break; case PSM_CLK_SRC_390_MHZ: hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ; break; default: ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n", clk_src); /* fall back to a safe default */ hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ; } } /** * ice_sched_find_node_in_subtree - Find node in part of base node subtree * @hw: pointer to the HW struct * @base: pointer to the base node * @node: pointer to the node to search * * This function checks whether a given node is part of the base node * subtree or not */ static bool ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base, struct ice_sched_node *node) { u8 i; for (i = 0; i < base->num_children; i++) { struct ice_sched_node *child = base->children[i]; if (node == child) return true; if (child->tx_sched_layer > node->tx_sched_layer) return false; /* this recursion is intentional, and wouldn't * go more than 8 calls */ if (ice_sched_find_node_in_subtree(hw, child, node)) return true; } return false; } /** * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node * @pi: port information structure * @vsi_node: software VSI handle * @qgrp_node: first queue group node identified for scanning * @owner: LAN or RDMA * * This function retrieves a free LAN or RDMA queue group node by scanning * qgrp_node and its siblings for the queue group with the fewest number * of queues currently assigned. */ static struct ice_sched_node * ice_sched_get_free_qgrp(struct ice_port_info *pi, struct ice_sched_node *vsi_node, struct ice_sched_node *qgrp_node, u8 owner) { struct ice_sched_node *min_qgrp; u8 min_children; if (!qgrp_node) return qgrp_node; min_children = qgrp_node->num_children; if (!min_children) return qgrp_node; min_qgrp = qgrp_node; /* scan all queue groups until find a node which has less than the * minimum number of children. This way all queue group nodes get * equal number of shares and active. The bandwidth will be equally * distributed across all queues. */ while (qgrp_node) { /* make sure the qgroup node is part of the VSI subtree */ if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) if (qgrp_node->num_children < min_children && qgrp_node->owner == owner) { /* replace the new min queue group node */ min_qgrp = qgrp_node; min_children = min_qgrp->num_children; /* break if it has no children, */ if (!min_children) break; } qgrp_node = qgrp_node->sibling; } return min_qgrp; } /** * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node * @pi: port information structure * @vsi_handle: software VSI handle * @tc: branch number * @owner: LAN or RDMA * * This function retrieves a free LAN or RDMA queue group node */ struct ice_sched_node * ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 owner) { struct ice_sched_node *vsi_node, *qgrp_node; struct ice_vsi_ctx *vsi_ctx; u8 qgrp_layer, vsi_layer; u16 max_children; qgrp_layer = ice_sched_get_qgrp_layer(pi->hw); vsi_layer = ice_sched_get_vsi_layer(pi->hw); max_children = pi->hw->max_children[qgrp_layer]; vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); if (!vsi_ctx) return NULL; vsi_node = vsi_ctx->sched.vsi_node[tc]; /* validate invalid VSI ID */ if (!vsi_node) return NULL; /* If the queue group and VSI layer are same then queues * are all attached directly to VSI */ if (qgrp_layer == vsi_layer) return vsi_node; /* get the first queue group node from VSI sub-tree */ qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer); while (qgrp_node) { /* make sure the qgroup node is part of the VSI subtree */ if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node)) if (qgrp_node->num_children < max_children && qgrp_node->owner == owner) break; qgrp_node = qgrp_node->sibling; } /* Select the best queue group */ return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner); } /** * ice_sched_get_vsi_node - Get a VSI node based on VSI ID * @pi: pointer to the port information structure * @tc_node: pointer to the TC node * @vsi_handle: software VSI handle * * This function retrieves a VSI node for a given VSI ID from a given * TC branch */ static struct ice_sched_node * ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, u16 vsi_handle) { struct ice_sched_node *node; u8 vsi_layer; vsi_layer = ice_sched_get_vsi_layer(pi->hw); node = ice_sched_get_first_node(pi, tc_node, vsi_layer); /* Check whether it already exists */ while (node) { if (node->vsi_handle == vsi_handle) return node; node = node->sibling; } return node; } /** * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID * @pi: pointer to the port information structure * @tc_node: pointer to the TC node * @agg_id: aggregator ID * * This function retrieves an aggregator node for a given aggregator ID from * a given TC branch */ struct ice_sched_node * ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node, u32 agg_id) { struct ice_sched_node *node; struct ice_hw *hw = pi->hw; u8 agg_layer; if (!hw) return NULL; agg_layer = ice_sched_get_agg_layer(hw); node = ice_sched_get_first_node(pi, tc_node, agg_layer); /* Check whether it already exists */ while (node) { if (node->agg_id == agg_id) return node; node = node->sibling; } return node; } /** * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes * @hw: pointer to the HW struct * @num_qs: number of queues * @num_nodes: num nodes array * * This function calculates the number of VSI child nodes based on the * number of queues. */ static void ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes) { u16 num = num_qs; u8 i, qgl, vsil; qgl = ice_sched_get_qgrp_layer(hw); vsil = ice_sched_get_vsi_layer(hw); /* calculate num nodes from queue group to VSI layer */ for (i = qgl; i > vsil; i--) { /* round to the next integer if there is a remainder */ num = DIV_ROUND_UP(num, hw->max_children[i]); /* need at least one node */ num_nodes[i] = num ? num : 1; } } /** * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree * @pi: port information structure * @vsi_handle: software VSI handle * @tc_node: pointer to the TC node * @num_nodes: pointer to the num nodes that needs to be added per layer * @owner: node owner (LAN or RDMA) * * This function adds the VSI child nodes to tree. It gets called for * LAN and RDMA separately. */ static int ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, struct ice_sched_node *tc_node, u16 *num_nodes, u8 owner) { struct ice_sched_node *parent, *node; struct ice_hw *hw = pi->hw; u32 first_node_teid; u16 num_added = 0; u8 i, qgl, vsil; qgl = ice_sched_get_qgrp_layer(hw); vsil = ice_sched_get_vsi_layer(hw); parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); for (i = vsil + 1; i <= qgl; i++) { int status; if (!parent) return -EIO; status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, num_nodes[i], &first_node_teid, &num_added); if (status || num_nodes[i] != num_added) return -EIO; /* The newly added node can be a new parent for the next * layer nodes */ if (num_added) { parent = ice_sched_find_node_by_teid(tc_node, first_node_teid); node = parent; while (node) { node->owner = owner; node = node->sibling; } } else { parent = parent->children[0]; } } return 0; } /** * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes * @pi: pointer to the port info structure * @tc_node: pointer to TC node * @num_nodes: pointer to num nodes array * * This function calculates the number of supported nodes needed to add this * VSI into Tx tree including the VSI, parent and intermediate nodes in below * layers */ static void ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi, struct ice_sched_node *tc_node, u16 *num_nodes) { struct ice_sched_node *node; u8 vsil; int i; vsil = ice_sched_get_vsi_layer(pi->hw); for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--) /* Add intermediate nodes if TC has no children and * need at least one node for VSI */ if (!tc_node->num_children || i == vsil) { num_nodes[i]++; } else { /* If intermediate nodes are reached max children * then add a new one. */ node = ice_sched_get_first_node(pi, tc_node, (u8)i); /* scan all the siblings */ while (node) { if (node->num_children < pi->hw->max_children[i]) break; node = node->sibling; } /* tree has one intermediate node to add this new VSI. * So no need to calculate supported nodes for below * layers. */ if (node) break; /* all the nodes are full, allocate a new one */ num_nodes[i]++; } } /** * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree * @pi: port information structure * @vsi_handle: software VSI handle * @tc_node: pointer to TC node * @num_nodes: pointer to num nodes array * * This function adds the VSI supported nodes into Tx tree including the * VSI, its parent and intermediate nodes in below layers */ static int ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle, struct ice_sched_node *tc_node, u16 *num_nodes) { struct ice_sched_node *parent = tc_node; u32 first_node_teid; u16 num_added = 0; u8 i, vsil; if (!pi) return -EINVAL; vsil = ice_sched_get_vsi_layer(pi->hw); for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) { int status; status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, num_nodes[i], &first_node_teid, &num_added); if (status || num_nodes[i] != num_added) return -EIO; /* The newly added node can be a new parent for the next * layer nodes */ if (num_added) parent = ice_sched_find_node_by_teid(tc_node, first_node_teid); else parent = parent->children[0]; if (!parent) return -EIO; if (i == vsil) parent->vsi_handle = vsi_handle; } return 0; } /** * ice_sched_add_vsi_to_topo - add a new VSI into tree * @pi: port information structure * @vsi_handle: software VSI handle * @tc: TC number * * This function adds a new VSI into scheduler tree */ static int ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc) { u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; struct ice_sched_node *tc_node; tc_node = ice_sched_get_tc_node(pi, tc); if (!tc_node) return -EINVAL; /* calculate number of supported nodes needed for this VSI */ ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes); /* add VSI supported nodes to TC subtree */ return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node, num_nodes); } /** * ice_sched_update_vsi_child_nodes - update VSI child nodes * @pi: port information structure * @vsi_handle: software VSI handle * @tc: TC number * @new_numqs: new number of max queues * @owner: owner of this subtree * * This function updates the VSI child nodes based on the number of queues */ static int ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 new_numqs, u8 owner) { u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; struct ice_sched_node *vsi_node; struct ice_sched_node *tc_node; struct ice_vsi_ctx *vsi_ctx; struct ice_hw *hw = pi->hw; u16 prev_numqs; int status = 0; tc_node = ice_sched_get_tc_node(pi, tc); if (!tc_node) return -EIO; vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); if (!vsi_node) return -EIO; vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); if (!vsi_ctx) return -EINVAL; if (owner == ICE_SCHED_NODE_OWNER_LAN) prev_numqs = vsi_ctx->sched.max_lanq[tc]; else prev_numqs = vsi_ctx->sched.max_rdmaq[tc]; /* num queues are not changed or less than the previous number */ if (new_numqs <= prev_numqs) return status; if (owner == ICE_SCHED_NODE_OWNER_LAN) { status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs); if (status) return status; } else { status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs); if (status) return status; } if (new_numqs) ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes); /* Keep the max number of queue configuration all the time. Update the * tree only if number of queues > previous number of queues. This may * leave some extra nodes in the tree if number of queues < previous * number but that wouldn't harm anything. Removing those extra nodes * may complicate the code if those nodes are part of SRL or * individually rate limited. */ status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node, new_num_nodes, owner); if (status) return status; if (owner == ICE_SCHED_NODE_OWNER_LAN) vsi_ctx->sched.max_lanq[tc] = new_numqs; else vsi_ctx->sched.max_rdmaq[tc] = new_numqs; return 0; } /** * ice_sched_cfg_vsi - configure the new/existing VSI * @pi: port information structure * @vsi_handle: software VSI handle * @tc: TC number * @maxqs: max number of queues * @owner: LAN or RDMA * @enable: TC enabled or disabled * * This function adds/updates VSI nodes based on the number of queues. If TC is * enabled and VSI is in suspended state then resume the VSI back. If TC is * disabled then suspend the VSI if it is not already. */ int ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs, u8 owner, bool enable) { struct ice_sched_node *vsi_node, *tc_node; struct ice_vsi_ctx *vsi_ctx; struct ice_hw *hw = pi->hw; int status = 0; ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle); tc_node = ice_sched_get_tc_node(pi, tc); if (!tc_node) return -EINVAL; vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); if (!vsi_ctx) return -EINVAL; vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); /* suspend the VSI if TC is not enabled */ if (!enable) { if (vsi_node && vsi_node->in_use) { u32 teid = le32_to_cpu(vsi_node->info.node_teid); status = ice_sched_suspend_resume_elems(hw, 1, &teid, true); if (!status) vsi_node->in_use = false; } return status; } /* TC is enabled, if it is a new VSI then add it to the tree */ if (!vsi_node) { status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc); if (status) return status; vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); if (!vsi_node) return -EIO; vsi_ctx->sched.vsi_node[tc] = vsi_node; vsi_node->in_use = true; /* invalidate the max queues whenever VSI gets added first time * into the scheduler tree (boot or after reset). We need to * recreate the child nodes all the time in these cases. */ vsi_ctx->sched.max_lanq[tc] = 0; vsi_ctx->sched.max_rdmaq[tc] = 0; } /* update the VSI child nodes */ status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs, owner); if (status) return status; /* TC is enabled, resume the VSI if it is in the suspend state */ if (!vsi_node->in_use) { u32 teid = le32_to_cpu(vsi_node->info.node_teid); status = ice_sched_suspend_resume_elems(hw, 1, &teid, false); if (!status) vsi_node->in_use = true; } return status; } /** * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry * @pi: port information structure * @vsi_handle: software VSI handle * * This function removes single aggregator VSI info entry from * aggregator list. */ static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle) { struct ice_sched_agg_info *agg_info; struct ice_sched_agg_info *atmp; list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list, list_entry) { struct ice_sched_agg_vsi_info *agg_vsi_info; struct ice_sched_agg_vsi_info *vtmp; list_for_each_entry_safe(agg_vsi_info, vtmp, &agg_info->agg_vsi_list, list_entry) if (agg_vsi_info->vsi_handle == vsi_handle) { list_del(&agg_vsi_info->list_entry); devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); return; } } } /** * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree * @node: pointer to the sub-tree node * * This function checks for a leaf node presence in a given sub-tree node. */ static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node) { u8 i; for (i = 0; i < node->num_children; i++) if (ice_sched_is_leaf_node_present(node->children[i])) return true; /* check for a leaf node */ return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF); } /** * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes * @pi: port information structure * @vsi_handle: software VSI handle * @owner: LAN or RDMA * * This function removes the VSI and its LAN or RDMA children nodes from the * scheduler tree. */ static int ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner) { struct ice_vsi_ctx *vsi_ctx; int status = -EINVAL; u8 i; ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle); if (!ice_is_vsi_valid(pi->hw, vsi_handle)) return status; mutex_lock(&pi->sched_lock); vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); if (!vsi_ctx) goto exit_sched_rm_vsi_cfg; ice_for_each_traffic_class(i) { struct ice_sched_node *vsi_node, *tc_node; u8 j = 0; tc_node = ice_sched_get_tc_node(pi, i); if (!tc_node) continue; vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); if (!vsi_node) continue; if (ice_sched_is_leaf_node_present(vsi_node)) { ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i); status = -EBUSY; goto exit_sched_rm_vsi_cfg; } while (j < vsi_node->num_children) { if (vsi_node->children[j]->owner == owner) { ice_free_sched_node(pi, vsi_node->children[j]); /* reset the counter again since the num * children will be updated after node removal */ j = 0; } else { j++; } } /* remove the VSI if it has no children */ if (!vsi_node->num_children) { ice_free_sched_node(pi, vsi_node); vsi_ctx->sched.vsi_node[i] = NULL; /* clean up aggregator related VSI info if any */ ice_sched_rm_agg_vsi_info(pi, vsi_handle); } if (owner == ICE_SCHED_NODE_OWNER_LAN) vsi_ctx->sched.max_lanq[i] = 0; else vsi_ctx->sched.max_rdmaq[i] = 0; } status = 0; exit_sched_rm_vsi_cfg: mutex_unlock(&pi->sched_lock); return status; } /** * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes * @pi: port information structure * @vsi_handle: software VSI handle * * This function clears the VSI and its LAN children nodes from scheduler tree * for all TCs. */ int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle) { return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN); } /** * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes * @pi: port information structure * @vsi_handle: software VSI handle * * This function clears the VSI and its RDMA children nodes from scheduler tree * for all TCs. */ int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle) { return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA); } /** * ice_get_agg_info - get the aggregator ID * @hw: pointer to the hardware structure * @agg_id: aggregator ID * * This function validates aggregator ID. The function returns info if * aggregator ID is present in list otherwise it returns null. */ static struct ice_sched_agg_info * ice_get_agg_info(struct ice_hw *hw, u32 agg_id) { struct ice_sched_agg_info *agg_info; list_for_each_entry(agg_info, &hw->agg_list, list_entry) if (agg_info->agg_id == agg_id) return agg_info; return NULL; } /** * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree * @hw: pointer to the HW struct * @node: pointer to a child node * @num_nodes: num nodes count array * * This function walks through the aggregator subtree to find a free parent * node */ struct ice_sched_node * ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node, u16 *num_nodes) { u8 l = node->tx_sched_layer; u8 vsil, i; vsil = ice_sched_get_vsi_layer(hw); /* Is it VSI parent layer ? */ if (l == vsil - 1) return (node->num_children < hw->max_children[l]) ? node : NULL; /* We have intermediate nodes. Let's walk through the subtree. If the * intermediate node has space to add a new node then clear the count */ if (node->num_children < hw->max_children[l]) num_nodes[l] = 0; /* The below recursive call is intentional and wouldn't go more than * 2 or 3 iterations. */ for (i = 0; i < node->num_children; i++) { struct ice_sched_node *parent; parent = ice_sched_get_free_vsi_parent(hw, node->children[i], num_nodes); if (parent) return parent; } return NULL; } /** * ice_sched_update_parent - update the new parent in SW DB * @new_parent: pointer to a new parent node * @node: pointer to a child node * * This function removes the child from the old parent and adds it to a new * parent */ void ice_sched_update_parent(struct ice_sched_node *new_parent, struct ice_sched_node *node) { struct ice_sched_node *old_parent; u8 i, j; old_parent = node->parent; /* update the old parent children */ for (i = 0; i < old_parent->num_children; i++) if (old_parent->children[i] == node) { for (j = i + 1; j < old_parent->num_children; j++) old_parent->children[j - 1] = old_parent->children[j]; old_parent->num_children--; break; } /* now move the node to a new parent */ new_parent->children[new_parent->num_children++] = node; node->parent = new_parent; node->info.parent_teid = new_parent->info.node_teid; } /** * ice_sched_move_nodes - move child nodes to a given parent * @pi: port information structure * @parent: pointer to parent node * @num_items: number of child nodes to be moved * @list: pointer to child node teids * * This function move the child nodes to a given parent. */ int ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent, u16 num_items, u32 *list) { DEFINE_RAW_FLEX(struct ice_aqc_move_elem, buf, teid, 1); u16 buf_len = __struct_size(buf); struct ice_sched_node *node; u16 i, grps_movd = 0; struct ice_hw *hw; int status = 0; hw = pi->hw; if (!parent || !num_items) return -EINVAL; /* Does parent have enough space */ if (parent->num_children + num_items > hw->max_children[parent->tx_sched_layer]) return -ENOSPC; for (i = 0; i < num_items; i++) { node = ice_sched_find_node_by_teid(pi->root, list[i]); if (!node) { status = -EINVAL; break; } buf->hdr.src_parent_teid = node->info.parent_teid; buf->hdr.dest_parent_teid = parent->info.node_teid; buf->teid[0] = node->info.node_teid; buf->hdr.num_elems = cpu_to_le16(1); status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd); if (status && grps_movd != 1) { status = -EIO; break; } /* update the SW DB */ ice_sched_update_parent(parent, node); } return status; } /** * ice_sched_move_vsi_to_agg - move VSI to aggregator node * @pi: port information structure * @vsi_handle: software VSI handle * @agg_id: aggregator ID * @tc: TC number * * This function moves a VSI to an aggregator node or its subtree. * Intermediate nodes may be created if required. */ static int ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id, u8 tc) { struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent; u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; u32 first_node_teid, vsi_teid; u16 num_nodes_added; u8 aggl, vsil, i; int status; tc_node = ice_sched_get_tc_node(pi, tc); if (!tc_node) return -EIO; agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); if (!agg_node) return -ENOENT; vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle); if (!vsi_node) return -ENOENT; /* Is this VSI already part of given aggregator? */ if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node)) return 0; aggl = ice_sched_get_agg_layer(pi->hw); vsil = ice_sched_get_vsi_layer(pi->hw); /* set intermediate node count to 1 between aggregator and VSI layers */ for (i = aggl + 1; i < vsil; i++) num_nodes[i] = 1; /* Check if the aggregator subtree has any free node to add the VSI */ for (i = 0; i < agg_node->num_children; i++) { parent = ice_sched_get_free_vsi_parent(pi->hw, agg_node->children[i], num_nodes); if (parent) goto move_nodes; } /* add new nodes */ parent = agg_node; for (i = aggl + 1; i < vsil; i++) { status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, num_nodes[i], &first_node_teid, &num_nodes_added); if (status || num_nodes[i] != num_nodes_added) return -EIO; /* The newly added node can be a new parent for the next * layer nodes */ if (num_nodes_added) parent = ice_sched_find_node_by_teid(tc_node, first_node_teid); else parent = parent->children[0]; if (!parent) return -EIO; } move_nodes: vsi_teid = le32_to_cpu(vsi_node->info.node_teid); return ice_sched_move_nodes(pi, parent, 1, &vsi_teid); } /** * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator * @pi: port information structure * @agg_info: aggregator info * @tc: traffic class number * @rm_vsi_info: true or false * * This function move all the VSI(s) to the default aggregator and delete * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The * caller holds the scheduler lock. */ static int ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, u8 tc, bool rm_vsi_info) { struct ice_sched_agg_vsi_info *agg_vsi_info; struct ice_sched_agg_vsi_info *tmp; int status = 0; list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list, list_entry) { u16 vsi_handle = agg_vsi_info->vsi_handle; /* Move VSI to default aggregator */ if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc)) continue; status = ice_sched_move_vsi_to_agg(pi, vsi_handle, ICE_DFLT_AGG_ID, tc); if (status) break; clear_bit(tc, agg_vsi_info->tc_bitmap); if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) { list_del(&agg_vsi_info->list_entry); devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info); } } return status; } /** * ice_sched_is_agg_inuse - check whether the aggregator is in use or not * @pi: port information structure * @node: node pointer * * This function checks whether the aggregator is attached with any VSI or not. */ static bool ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node) { u8 vsil, i; vsil = ice_sched_get_vsi_layer(pi->hw); if (node->tx_sched_layer < vsil - 1) { for (i = 0; i < node->num_children; i++) if (ice_sched_is_agg_inuse(pi, node->children[i])) return true; return false; } else { return node->num_children ? true : false; } } /** * ice_sched_rm_agg_cfg - remove the aggregator node * @pi: port information structure * @agg_id: aggregator ID * @tc: TC number * * This function removes the aggregator node and intermediate nodes if any * from the given TC */ static int ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) { struct ice_sched_node *tc_node, *agg_node; struct ice_hw *hw = pi->hw; tc_node = ice_sched_get_tc_node(pi, tc); if (!tc_node) return -EIO; agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); if (!agg_node) return -ENOENT; /* Can't remove the aggregator node if it has children */ if (ice_sched_is_agg_inuse(pi, agg_node)) return -EBUSY; /* need to remove the whole subtree if aggregator node is the * only child. */ while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) { struct ice_sched_node *parent = agg_node->parent; if (!parent) return -EIO; if (parent->num_children > 1) break; agg_node = parent; } ice_free_sched_node(pi, agg_node); return 0; } /** * ice_rm_agg_cfg_tc - remove aggregator configuration for TC * @pi: port information structure * @agg_info: aggregator ID * @tc: TC number * @rm_vsi_info: bool value true or false * * This function removes aggregator reference to VSI of given TC. It removes * the aggregator configuration completely for requested TC. The caller needs * to hold the scheduler lock. */ static int ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info, u8 tc, bool rm_vsi_info) { int status = 0; /* If nothing to remove - return success */ if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) goto exit_rm_agg_cfg_tc; status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info); if (status) goto exit_rm_agg_cfg_tc; /* Delete aggregator node(s) */ status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc); if (status) goto exit_rm_agg_cfg_tc; clear_bit(tc, agg_info->tc_bitmap); exit_rm_agg_cfg_tc: return status; } /** * ice_save_agg_tc_bitmap - save aggregator TC bitmap * @pi: port information structure * @agg_id: aggregator ID * @tc_bitmap: 8 bits TC bitmap * * Save aggregator TC bitmap. This function needs to be called with scheduler * lock held. */ static int ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id, unsigned long *tc_bitmap) { struct ice_sched_agg_info *agg_info; agg_info = ice_get_agg_info(pi->hw, agg_id); if (!agg_info) return -EINVAL; bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap, ICE_MAX_TRAFFIC_CLASS); return 0; } /** * ice_sched_add_agg_cfg - create an aggregator node * @pi: port information structure * @agg_id: aggregator ID * @tc: TC number * * This function creates an aggregator node and intermediate nodes if required * for the given TC */ static int ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc) { struct ice_sched_node *parent, *agg_node, *tc_node; u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 }; struct ice_hw *hw = pi->hw; u32 first_node_teid; u16 num_nodes_added; int status = 0; u8 i, aggl; tc_node = ice_sched_get_tc_node(pi, tc); if (!tc_node) return -EIO; agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id); /* Does Agg node already exist ? */ if (agg_node) return status; aggl = ice_sched_get_agg_layer(hw); /* need one node in Agg layer */ num_nodes[aggl] = 1; /* Check whether the intermediate nodes have space to add the * new aggregator. If they are full, then SW needs to allocate a new * intermediate node on those layers */ for (i = hw->sw_entry_point_layer; i < aggl; i++) { parent = ice_sched_get_first_node(pi, tc_node, i); /* scan all the siblings */ while (parent) { if (parent->num_children < hw->max_children[i]) break; parent = parent->sibling; } /* all the nodes are full, reserve one for this layer */ if (!parent) num_nodes[i]++; } /* add the aggregator node */ parent = tc_node; for (i = hw->sw_entry_point_layer; i <= aggl; i++) { if (!parent) return -EIO; status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i, num_nodes[i], &first_node_teid, &num_nodes_added); if (status || num_nodes[i] != num_nodes_added) return -EIO; /* The newly added node can be a new parent for the next * layer nodes */ if (num_nodes_added) { parent = ice_sched_find_node_by_teid(tc_node, first_node_teid); /* register aggregator ID with the aggregator node */ if (parent && i == aggl) parent->agg_id = agg_id; } else { parent = parent->children[0]; } } return 0; } /** * ice_sched_cfg_agg - configure aggregator node * @pi: port information structure * @agg_id: aggregator ID * @agg_type: aggregator type queue, VSI, or aggregator group * @tc_bitmap: bits TC bitmap * * It registers a unique aggregator node into scheduler services. It * allows a user to register with a unique ID to track it's resources. * The aggregator type determines if this is a queue group, VSI group * or aggregator group. It then creates the aggregator node(s) for requested * TC(s) or removes an existing aggregator node including its configuration * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator * resources and remove aggregator ID. * This function needs to be called with scheduler lock held. */ static int ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, unsigned long *tc_bitmap) { struct ice_sched_agg_info *agg_info; struct ice_hw *hw = pi->hw; int status = 0; u8 tc; agg_info = ice_get_agg_info(hw, agg_id); if (!agg_info) { /* Create new entry for new aggregator ID */ agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info), GFP_KERNEL); if (!agg_info) return -ENOMEM; agg_info->agg_id = agg_id; agg_info->agg_type = agg_type; agg_info->tc_bitmap[0] = 0; /* Initialize the aggregator VSI list head */ INIT_LIST_HEAD(&agg_info->agg_vsi_list); /* Add new entry in aggregator list */ list_add(&agg_info->list_entry, &hw->agg_list); } /* Create aggregator node(s) for requested TC(s) */ ice_for_each_traffic_class(tc) { if (!ice_is_tc_ena(*tc_bitmap, tc)) { /* Delete aggregator cfg TC if it exists previously */ status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false); if (status) break; continue; } /* Check if aggregator node for TC already exists */ if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc)) continue; /* Create new aggregator node for TC */ status = ice_sched_add_agg_cfg(pi, agg_id, tc); if (status) break; /* Save aggregator node's TC information */ set_bit(tc, agg_info->tc_bitmap); } return status; } /** * ice_cfg_agg - config aggregator node * @pi: port information structure * @agg_id: aggregator ID * @agg_type: aggregator type queue, VSI, or aggregator group * @tc_bitmap: bits TC bitmap * * This function configures aggregator node(s). */ int ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type, u8 tc_bitmap) { unsigned long bitmap = tc_bitmap; int status; mutex_lock(&pi->sched_lock); status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap); if (!status) status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap); mutex_unlock(&pi->sched_lock); return status; } /** * ice_get_agg_vsi_info - get the aggregator ID * @agg_info: aggregator info * @vsi_handle: software VSI handle * * The function returns aggregator VSI info based on VSI handle. This function * needs to be called with scheduler lock held. */ static struct ice_sched_agg_vsi_info * ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle) { struct ice_sched_agg_vsi_info *agg_vsi_info; list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) if (agg_vsi_info->vsi_handle == vsi_handle) return agg_vsi_info; return NULL; } /** * ice_get_vsi_agg_info - get the aggregator info of VSI * @hw: pointer to the hardware structure * @vsi_handle: Sw VSI handle * * The function returns aggregator info of VSI represented via vsi_handle. The * VSI has in this case a different aggregator than the default one. This * function needs to be called with scheduler lock held. */ static struct ice_sched_agg_info * ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle) { struct ice_sched_agg_info *agg_info; list_for_each_entry(agg_info, &hw->agg_list, list_entry) { struct ice_sched_agg_vsi_info *agg_vsi_info; agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); if (agg_vsi_info) return agg_info; } return NULL; } /** * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap * @pi: port information structure * @agg_id: aggregator ID * @vsi_handle: software VSI handle * @tc_bitmap: TC bitmap of enabled TC(s) * * Save VSI to aggregator TC bitmap. This function needs to call with scheduler * lock held. */ static int ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, unsigned long *tc_bitmap) { struct ice_sched_agg_vsi_info *agg_vsi_info; struct ice_sched_agg_info *agg_info; agg_info = ice_get_agg_info(pi->hw, agg_id); if (!agg_info) return -EINVAL; /* check if entry already exist */ agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); if (!agg_vsi_info) return -EINVAL; bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap, ICE_MAX_TRAFFIC_CLASS); return 0; } /** * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator * @pi: port information structure * @agg_id: aggregator ID * @vsi_handle: software VSI handle * @tc_bitmap: TC bitmap of enabled TC(s) * * This function moves VSI to a new or default aggregator node. If VSI is * already associated to the aggregator node then no operation is performed on * the tree. This function needs to be called with scheduler lock held. */ static int ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, unsigned long *tc_bitmap) { struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL; struct ice_sched_agg_info *agg_info, *old_agg_info; struct ice_hw *hw = pi->hw; int status = 0; u8 tc; if (!ice_is_vsi_valid(pi->hw, vsi_handle)) return -EINVAL; agg_info = ice_get_agg_info(hw, agg_id); if (!agg_info) return -EINVAL; /* If the VSI is already part of another aggregator then update * its VSI info list */ old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle); if (old_agg_info && old_agg_info != agg_info) { struct ice_sched_agg_vsi_info *vtmp; list_for_each_entry_safe(iter, vtmp, &old_agg_info->agg_vsi_list, list_entry) if (iter->vsi_handle == vsi_handle) { old_agg_vsi_info = iter; break; } } /* check if entry already exist */ agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); if (!agg_vsi_info) { /* Create new entry for VSI under aggregator list */ agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_vsi_info), GFP_KERNEL); if (!agg_vsi_info) return -EINVAL; /* add VSI ID into the aggregator list */ agg_vsi_info->vsi_handle = vsi_handle; list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list); } /* Move VSI node to new aggregator node for requested TC(s) */ ice_for_each_traffic_class(tc) { if (!ice_is_tc_ena(*tc_bitmap, tc)) continue; /* Move VSI to new aggregator */ status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc); if (status) break; set_bit(tc, agg_vsi_info->tc_bitmap); if (old_agg_vsi_info) clear_bit(tc, old_agg_vsi_info->tc_bitmap); } if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) { list_del(&old_agg_vsi_info->list_entry); devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info); } return status; } /** * ice_sched_rm_unused_rl_prof - remove unused RL profile * @pi: port information structure * * This function removes unused rate limit profiles from the HW and * SW DB. The caller needs to hold scheduler lock. */ static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi) { u16 ln; for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) { struct ice_aqc_rl_profile_info *rl_prof_elem; struct ice_aqc_rl_profile_info *rl_prof_tmp; list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp, &pi->rl_prof_list[ln], list_entry) { if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem)) ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n"); } } } /** * ice_sched_update_elem - update element * @hw: pointer to the HW struct * @node: pointer to node * @info: node info to update * * Update the HW DB, and local SW DB of node. Update the scheduling * parameters of node from argument info data buffer (Info->data buf) and * returns success or error on config sched element failure. The caller * needs to hold scheduler lock. */ static int ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node, struct ice_aqc_txsched_elem_data *info) { struct ice_aqc_txsched_elem_data buf; u16 elem_cfgd = 0; u16 num_elems = 1; int status; buf = *info; /* Parent TEID is reserved field in this aq call */ buf.parent_teid = 0; /* Element type is reserved field in this aq call */ buf.data.elem_type = 0; /* Flags is reserved field in this aq call */ buf.data.flags = 0; /* Update HW DB */ /* Configure element node */ status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf), &elem_cfgd, NULL); if (status || elem_cfgd != num_elems) { ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n"); return -EIO; } /* Config success case */ /* Now update local SW DB */ /* Only copy the data portion of info buffer */ node->info.data = info->data; return status; } /** * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params * @hw: pointer to the HW struct * @node: sched node to configure * @rl_type: rate limit type CIR, EIR, or shared * @bw_alloc: BW weight/allocation * * This function configures node element's BW allocation. */ static int ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node, enum ice_rl_type rl_type, u16 bw_alloc) { struct ice_aqc_txsched_elem_data buf; struct ice_aqc_txsched_elem *data; buf = node->info; data = &buf.data; if (rl_type == ICE_MIN_BW) { data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc); } else if (rl_type == ICE_MAX_BW) { data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc); } else { return -EINVAL; } /* Configure element */ return ice_sched_update_elem(hw, node, &buf); } /** * ice_move_vsi_to_agg - moves VSI to new or default aggregator * @pi: port information structure * @agg_id: aggregator ID * @vsi_handle: software VSI handle * @tc_bitmap: TC bitmap of enabled TC(s) * * Move or associate VSI to a new or default aggregator node. */ int ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle, u8 tc_bitmap) { unsigned long bitmap = tc_bitmap; int status; mutex_lock(&pi->sched_lock); status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle, (unsigned long *)&bitmap); if (!status) status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle, (unsigned long *)&bitmap); mutex_unlock(&pi->sched_lock); return status; } /** * ice_set_clear_cir_bw - set or clear CIR BW * @bw_t_info: bandwidth type information structure * @bw: bandwidth in Kbps - Kilo bits per sec * * Save or clear CIR bandwidth (BW) in the passed param bw_t_info. */ static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) { if (bw == ICE_SCHED_DFLT_BW) { clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); bw_t_info->cir_bw.bw = 0; } else { /* Save type of BW information */ set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap); bw_t_info->cir_bw.bw = bw; } } /** * ice_set_clear_eir_bw - set or clear EIR BW * @bw_t_info: bandwidth type information structure * @bw: bandwidth in Kbps - Kilo bits per sec * * Save or clear EIR bandwidth (BW) in the passed param bw_t_info. */ static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw) { if (bw == ICE_SCHED_DFLT_BW) { clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); bw_t_info->eir_bw.bw = 0; } else { /* EIR BW and Shared BW profiles are mutually exclusive and * hence only one of them may be set for any given element. * First clear earlier saved shared BW information. */ clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); bw_t_info->shared_bw = 0; /* save EIR BW information */ set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); bw_t_info->eir_bw.bw = bw; } } /** * ice_set_clear_shared_bw - set or clear shared BW * @bw_t_info: bandwidth type information structure * @bw: bandwidth in Kbps - Kilo bits per sec * * Save or clear shared bandwidth (BW) in the passed param bw_t_info. */ static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw) { if (bw == ICE_SCHED_DFLT_BW) { clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); bw_t_info->shared_bw = 0; } else { /* EIR BW and Shared BW profiles are mutually exclusive and * hence only one of them may be set for any given element. * First clear earlier saved EIR BW information. */ clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap); bw_t_info->eir_bw.bw = 0; /* save shared BW information */ set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap); bw_t_info->shared_bw = bw; } } /** * ice_sched_save_vsi_bw - save VSI node's BW information * @pi: port information structure * @vsi_handle: sw VSI handle * @tc: traffic class * @rl_type: rate limit type min, max, or shared * @bw: bandwidth in Kbps - Kilo bits per sec * * Save BW information of VSI type node for post replay use. */ static int ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc, enum ice_rl_type rl_type, u32 bw) { struct ice_vsi_ctx *vsi_ctx; if (!ice_is_vsi_valid(pi->hw, vsi_handle)) return -EINVAL; vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); if (!vsi_ctx) return -EINVAL; switch (rl_type) { case ICE_MIN_BW: ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); break; case ICE_MAX_BW: ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw); break; case ICE_SHARED_BW: ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw); break; default: return -EINVAL; } return 0; } /** * ice_sched_calc_wakeup - calculate RL profile wakeup parameter * @hw: pointer to the HW struct * @bw: bandwidth in Kbps * * This function calculates the wakeup parameter of RL profile. */ static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw) { s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f; s32 wakeup_f_int; u16 wakeup = 0; /* Get the wakeup integer value */ bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec); if (wakeup_int > 63) { wakeup = (u16)((1 << 15) | wakeup_int); } else { /* Calculate fraction value up to 4 decimals * Convert Integer value to a constant multiplier */ wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int; wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER * hw->psm_clk_freq, bytes_per_sec); /* Get Fraction value */ wakeup_f = wakeup_a - wakeup_b; /* Round up the Fractional value via Ceil(Fractional value) */ if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2)) wakeup_f += 1; wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION, ICE_RL_PROF_MULTIPLIER); wakeup |= (u16)(wakeup_int << 9); wakeup |= (u16)(0x1ff & wakeup_f_int); } return wakeup; } /** * ice_sched_bw_to_rl_profile - convert BW to profile parameters * @hw: pointer to the HW struct * @bw: bandwidth in Kbps * @profile: profile parameters to return * * This function converts the BW to profile structure format. */ static int ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw, struct ice_aqc_rl_profile_elem *profile) { s64 bytes_per_sec, ts_rate, mv_tmp; int status = -EINVAL; bool found = false; s32 encode = 0; s64 mv = 0; s32 i; /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */ if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW) return status; /* Bytes per second from Kbps */ bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE); /* encode is 6 bits but really useful are 5 bits */ for (i = 0; i < 64; i++) { u64 pow_result = BIT_ULL(i); ts_rate = div64_long((s64)hw->psm_clk_freq, pow_result * ICE_RL_PROF_TS_MULTIPLIER); if (ts_rate <= 0) continue; /* Multiplier value */ mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER, ts_rate); /* Round to the nearest ICE_RL_PROF_MULTIPLIER */ mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER); /* First multiplier value greater than the given * accuracy bytes */ if (mv > ICE_RL_PROF_ACCURACY_BYTES) { encode = i; found = true; break; } } if (found) { u16 wm; wm = ice_sched_calc_wakeup(hw, bw); profile->rl_multiply = cpu_to_le16(mv); profile->wake_up_calc = cpu_to_le16(wm); profile->rl_encode = cpu_to_le16(encode); status = 0; } else { status = -ENOENT; } return status; } /** * ice_sched_add_rl_profile - add RL profile * @pi: port information structure * @rl_type: type of rate limit BW - min, max, or shared * @bw: bandwidth in Kbps - Kilo bits per sec * @layer_num: specifies in which layer to create profile * * This function first checks the existing list for corresponding BW * parameter. If it exists, it returns the associated profile otherwise * it creates a new rate limit profile for requested BW, and adds it to * the HW DB and local list. It returns the new profile or null on error. * The caller needs to hold the scheduler lock. */ static struct ice_aqc_rl_profile_info * ice_sched_add_rl_profile(struct ice_port_info *pi, enum ice_rl_type rl_type, u32 bw, u8 layer_num) { struct ice_aqc_rl_profile_info *rl_prof_elem; u16 profiles_added = 0, num_profiles = 1; struct ice_aqc_rl_profile_elem *buf; struct ice_hw *hw; u8 profile_type; int status; if (!pi || layer_num >= pi->hw->num_tx_sched_layers) return NULL; switch (rl_type) { case ICE_MIN_BW: profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; break; case ICE_MAX_BW: profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; break; case ICE_SHARED_BW: profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; break; default: return NULL; } hw = pi->hw; list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], list_entry) if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == profile_type && rl_prof_elem->bw == bw) /* Return existing profile ID info */ return rl_prof_elem; /* Create new profile ID */ rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem), GFP_KERNEL); if (!rl_prof_elem) return NULL; status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile); if (status) goto exit_add_rl_prof; rl_prof_elem->bw = bw; /* layer_num is zero relative, and fw expects level from 1 to 9 */ rl_prof_elem->profile.level = layer_num + 1; rl_prof_elem->profile.flags = profile_type; rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size); /* Create new entry in HW DB */ buf = &rl_prof_elem->profile; status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf), &profiles_added, NULL); if (status || profiles_added != num_profiles) goto exit_add_rl_prof; /* Good entry - add in the list */ rl_prof_elem->prof_id_ref = 0; list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]); return rl_prof_elem; exit_add_rl_prof: devm_kfree(ice_hw_to_dev(hw), rl_prof_elem); return NULL; } /** * ice_sched_cfg_node_bw_lmt - configure node sched params * @hw: pointer to the HW struct * @node: sched node to configure * @rl_type: rate limit type CIR, EIR, or shared * @rl_prof_id: rate limit profile ID * * This function configures node element's BW limit. */ static int ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node, enum ice_rl_type rl_type, u16 rl_prof_id) { struct ice_aqc_txsched_elem_data buf; struct ice_aqc_txsched_elem *data; buf = node->info; data = &buf.data; switch (rl_type) { case ICE_MIN_BW: data->valid_sections |= ICE_AQC_ELEM_VALID_CIR; data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); break; case ICE_MAX_BW: /* EIR BW and Shared BW profiles are mutually exclusive and * hence only one of them may be set for any given element */ if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) return -EIO; data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id); break; case ICE_SHARED_BW: /* Check for removing shared BW */ if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) { /* remove shared profile */ data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED; data->srl_id = 0; /* clear SRL field */ /* enable back EIR to default profile */ data->valid_sections |= ICE_AQC_ELEM_VALID_EIR; data->eir_bw.bw_profile_idx = cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID); break; } /* EIR BW and Shared BW profiles are mutually exclusive and * hence only one of them may be set for any given element */ if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) && (le16_to_cpu(data->eir_bw.bw_profile_idx) != ICE_SCHED_DFLT_RL_PROF_ID)) return -EIO; /* EIR BW is set to default, disable it */ data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR; /* Okay to enable shared BW now */ data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED; data->srl_id = cpu_to_le16(rl_prof_id); break; default: /* Unknown rate limit type */ return -EINVAL; } /* Configure element */ return ice_sched_update_elem(hw, node, &buf); } /** * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID * @node: sched node * @rl_type: rate limit type * * If existing profile matches, it returns the corresponding rate * limit profile ID, otherwise it returns an invalid ID as error. */ static u16 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node, enum ice_rl_type rl_type) { u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID; struct ice_aqc_txsched_elem *data; data = &node->info.data; switch (rl_type) { case ICE_MIN_BW: if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR) rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx); break; case ICE_MAX_BW: if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR) rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx); break; case ICE_SHARED_BW: if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED) rl_prof_id = le16_to_cpu(data->srl_id); break; default: break; } return rl_prof_id; } /** * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer * @pi: port information structure * @rl_type: type of rate limit BW - min, max, or shared * @layer_index: layer index * * This function returns requested profile creation layer. */ static u8 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type, u8 layer_index) { struct ice_hw *hw = pi->hw; if (layer_index >= hw->num_tx_sched_layers) return ICE_SCHED_INVAL_LAYER_NUM; switch (rl_type) { case ICE_MIN_BW: if (hw->layer_info[layer_index].max_cir_rl_profiles) return layer_index; break; case ICE_MAX_BW: if (hw->layer_info[layer_index].max_eir_rl_profiles) return layer_index; break; case ICE_SHARED_BW: /* if current layer doesn't support SRL profile creation * then try a layer up or down. */ if (hw->layer_info[layer_index].max_srl_profiles) return layer_index; else if (layer_index < hw->num_tx_sched_layers - 1 && hw->layer_info[layer_index + 1].max_srl_profiles) return layer_index + 1; else if (layer_index > 0 && hw->layer_info[layer_index - 1].max_srl_profiles) return layer_index - 1; break; default: break; } return ICE_SCHED_INVAL_LAYER_NUM; } /** * ice_sched_get_srl_node - get shared rate limit node * @node: tree node * @srl_layer: shared rate limit layer * * This function returns SRL node to be used for shared rate limit purpose. * The caller needs to hold scheduler lock. */ static struct ice_sched_node * ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer) { if (srl_layer > node->tx_sched_layer) return node->children[0]; else if (srl_layer < node->tx_sched_layer) /* Node can't be created without a parent. It will always * have a valid parent except root node. */ return node->parent; else return node; } /** * ice_sched_rm_rl_profile - remove RL profile ID * @pi: port information structure * @layer_num: layer number where profiles are saved * @profile_type: profile type like EIR, CIR, or SRL * @profile_id: profile ID to remove * * This function removes rate limit profile from layer 'layer_num' of type * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold * scheduler lock. */ static int ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type, u16 profile_id) { struct ice_aqc_rl_profile_info *rl_prof_elem; int status = 0; if (layer_num >= pi->hw->num_tx_sched_layers) return -EINVAL; /* Check the existing list for RL profile */ list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num], list_entry) if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) == profile_type && le16_to_cpu(rl_prof_elem->profile.profile_id) == profile_id) { if (rl_prof_elem->prof_id_ref) rl_prof_elem->prof_id_ref--; /* Remove old profile ID from database */ status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem); if (status && status != -EBUSY) ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n"); break; } if (status == -EBUSY) status = 0; return status; } /** * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default * @pi: port information structure * @node: pointer to node structure * @rl_type: rate limit type min, max, or shared * @layer_num: layer number where RL profiles are saved * * This function configures node element's BW rate limit profile ID of * type CIR, EIR, or SRL to default. This function needs to be called * with the scheduler lock held. */ static int ice_sched_set_node_bw_dflt(struct ice_port_info *pi, struct ice_sched_node *node, enum ice_rl_type rl_type, u8 layer_num) { struct ice_hw *hw; u8 profile_type; u16 rl_prof_id; u16 old_id; int status; hw = pi->hw; switch (rl_type) { case ICE_MIN_BW: profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR; rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; break; case ICE_MAX_BW: profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR; rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID; break; case ICE_SHARED_BW: profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL; /* No SRL is configured for default case */ rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID; break; default: return -EINVAL; } /* Save existing RL prof ID for later clean up */ old_id = ice_sched_get_node_rl_prof_id(node, rl_type); /* Configure BW scheduling parameters */ status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); if (status) return status; /* Remove stale RL profile ID */ if (old_id == ICE_SCHED_DFLT_RL_PROF_ID || old_id == ICE_SCHED_INVAL_PROF_ID) return 0; return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id); } /** * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness * @pi: port information structure * @node: pointer to node structure * @layer_num: layer number where rate limit profiles are saved * @rl_type: rate limit type min, max, or shared * @bw: bandwidth value * * This function prepares node element's bandwidth to SRL or EIR exclusively. * EIR BW and Shared BW profiles are mutually exclusive and hence only one of * them may be set for any given element. This function needs to be called * with the scheduler lock held. */ static int ice_sched_set_eir_srl_excl(struct ice_port_info *pi, struct ice_sched_node *node, u8 layer_num, enum ice_rl_type rl_type, u32 bw) { if (rl_type == ICE_SHARED_BW) { /* SRL node passed in this case, it may be different node */ if (bw == ICE_SCHED_DFLT_BW) /* SRL being removed, ice_sched_cfg_node_bw_lmt() * enables EIR to default. EIR is not set in this * case, so no additional action is required. */ return 0; /* SRL being configured, set EIR to default here. * ice_sched_cfg_node_bw_lmt() disables EIR when it * configures SRL */ return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW, layer_num); } else if (rl_type == ICE_MAX_BW && node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) { /* Remove Shared profile. Set default shared BW call * removes shared profile for a node. */ return ice_sched_set_node_bw_dflt(pi, node, ICE_SHARED_BW, layer_num); } return 0; } /** * ice_sched_set_node_bw - set node's bandwidth * @pi: port information structure * @node: tree node * @rl_type: rate limit type min, max, or shared * @bw: bandwidth in Kbps - Kilo bits per sec * @layer_num: layer number * * This function adds new profile corresponding to requested BW, configures * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile * ID from local database. The caller needs to hold scheduler lock. */ int ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node, enum ice_rl_type rl_type, u32 bw, u8 layer_num) { struct ice_aqc_rl_profile_info *rl_prof_info; struct ice_hw *hw = pi->hw; u16 old_id, rl_prof_id; int status = -EINVAL; rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num); if (!rl_prof_info) return status; rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id); /* Save existing RL prof ID for later clean up */ old_id = ice_sched_get_node_rl_prof_id(node, rl_type); /* Configure BW scheduling parameters */ status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id); if (status) return status; /* New changes has been applied */ /* Increment the profile ID reference count */ rl_prof_info->prof_id_ref++; /* Check for old ID removal */ if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) || old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id) return 0; return ice_sched_rm_rl_profile(pi, layer_num, rl_prof_info->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M, old_id); } /** * ice_sched_set_node_priority - set node's priority * @pi: port information structure * @node: tree node * @priority: number 0-7 representing priority among siblings * * This function sets priority of a node among it's siblings. */ int ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node, u16 priority) { struct ice_aqc_txsched_elem_data buf; struct ice_aqc_txsched_elem *data; buf = node->info; data = &buf.data; data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority); return ice_sched_update_elem(pi->hw, node, &buf); } /** * ice_sched_set_node_weight - set node's weight * @pi: port information structure * @node: tree node * @weight: number 1-200 representing weight for WFQ * * This function sets weight of the node for WFQ algorithm. */ int ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight) { struct ice_aqc_txsched_elem_data buf; struct ice_aqc_txsched_elem *data; buf = node->info; data = &buf.data; data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR | ICE_AQC_ELEM_VALID_GENERIC; data->cir_bw.bw_alloc = cpu_to_le16(weight); data->eir_bw.bw_alloc = cpu_to_le16(weight); data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0); return ice_sched_update_elem(pi->hw, node, &buf); } /** * ice_sched_set_node_bw_lmt - set node's BW limit * @pi: port information structure * @node: tree node * @rl_type: rate limit type min, max, or shared * @bw: bandwidth in Kbps - Kilo bits per sec * * It updates node's BW limit parameters like BW RL profile ID of type CIR, * EIR, or SRL. The caller needs to hold scheduler lock. */ int ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node, enum ice_rl_type rl_type, u32 bw) { struct ice_sched_node *cfg_node = node; int status; struct ice_hw *hw; u8 layer_num; if (!pi) return -EINVAL; hw = pi->hw; /* Remove unused RL profile IDs from HW and SW DB */ ice_sched_rm_unused_rl_prof(pi); layer_num = ice_sched_get_rl_prof_layer(pi, rl_type, node->tx_sched_layer); if (layer_num >= hw->num_tx_sched_layers) return -EINVAL; if (rl_type == ICE_SHARED_BW) { /* SRL node may be different */ cfg_node = ice_sched_get_srl_node(node, layer_num); if (!cfg_node) return -EIO; } /* EIR BW and Shared BW profiles are mutually exclusive and * hence only one of them may be set for any given element */ status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type, bw); if (status) return status; if (bw == ICE_SCHED_DFLT_BW) return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type, layer_num); return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num); } /** * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default * @pi: port information structure * @node: pointer to node structure * @rl_type: rate limit type min, max, or shared * * This function configures node element's BW rate limit profile ID of * type CIR, EIR, or SRL to default. This function needs to be called * with the scheduler lock held. */ static int ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi, struct ice_sched_node *node, enum ice_rl_type rl_type) { return ice_sched_set_node_bw_lmt(pi, node, rl_type, ICE_SCHED_DFLT_BW); } /** * ice_sched_validate_srl_node - Check node for SRL applicability * @node: sched node to configure * @sel_layer: selected SRL layer * * This function checks if the SRL can be applied to a selected layer node on * behalf of the requested node (first argument). This function needs to be * called with scheduler lock held. */ static int ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer) { /* SRL profiles are not available on all layers. Check if the * SRL profile can be applied to a node above or below the * requested node. SRL configuration is possible only if the * selected layer's node has single child. */ if (sel_layer == node->tx_sched_layer || ((sel_layer == node->tx_sched_layer + 1) && node->num_children == 1) || ((sel_layer == node->tx_sched_layer - 1) && (node->parent && node->parent->num_children == 1))) return 0; return -EIO; } /** * ice_sched_save_q_bw - save queue node's BW information * @q_ctx: queue context structure * @rl_type: rate limit type min, max, or shared * @bw: bandwidth in Kbps - Kilo bits per sec * * Save BW information of queue type node for post replay use. */ static int ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw) { switch (rl_type) { case ICE_MIN_BW: ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw); break; case ICE_MAX_BW: ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw); break; case ICE_SHARED_BW: ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw); break; default: return -EINVAL; } return 0; } /** * ice_sched_set_q_bw_lmt - sets queue BW limit * @pi: port information structure * @vsi_handle: sw VSI handle * @tc: traffic class * @q_handle: software queue handle * @rl_type: min, max, or shared * @bw: bandwidth in Kbps * * This function sets BW limit of queue scheduling node. */ static int ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, enum ice_rl_type rl_type, u32 bw) { struct ice_sched_node *node; struct ice_q_ctx *q_ctx; int status = -EINVAL; if (!ice_is_vsi_valid(pi->hw, vsi_handle)) return -EINVAL; mutex_lock(&pi->sched_lock); q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle); if (!q_ctx) goto exit_q_bw_lmt; node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); if (!node) { ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n"); goto exit_q_bw_lmt; } /* Return error if it is not a leaf node */ if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) goto exit_q_bw_lmt; /* SRL bandwidth layer selection */ if (rl_type == ICE_SHARED_BW) { u8 sel_layer; /* selected layer */ sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type, node->tx_sched_layer); if (sel_layer >= pi->hw->num_tx_sched_layers) { status = -EINVAL; goto exit_q_bw_lmt; } status = ice_sched_validate_srl_node(node, sel_layer); if (status) goto exit_q_bw_lmt; } if (bw == ICE_SCHED_DFLT_BW) status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); else status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); if (!status) status = ice_sched_save_q_bw(q_ctx, rl_type, bw); exit_q_bw_lmt: mutex_unlock(&pi->sched_lock); return status; } /** * ice_cfg_q_bw_lmt - configure queue BW limit * @pi: port information structure * @vsi_handle: sw VSI handle * @tc: traffic class * @q_handle: software queue handle * @rl_type: min, max, or shared * @bw: bandwidth in Kbps * * This function configures BW limit of queue scheduling node. */ int ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, enum ice_rl_type rl_type, u32 bw) { return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, bw); } /** * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit * @pi: port information structure * @vsi_handle: sw VSI handle * @tc: traffic class * @q_handle: software queue handle * @rl_type: min, max, or shared * * This function configures BW default limit of queue scheduling node. */ int ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle, enum ice_rl_type rl_type) { return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type, ICE_SCHED_DFLT_BW); } /** * ice_sched_get_node_by_id_type - get node from ID type * @pi: port information structure * @id: identifier * @agg_type: type of aggregator * @tc: traffic class * * This function returns node identified by ID of type aggregator, and * based on traffic class (TC). This function needs to be called with * the scheduler lock held. */ static struct ice_sched_node * ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id, enum ice_agg_type agg_type, u8 tc) { struct ice_sched_node *node = NULL; switch (agg_type) { case ICE_AGG_TYPE_VSI: { struct ice_vsi_ctx *vsi_ctx; u16 vsi_handle = (u16)id; if (!ice_is_vsi_valid(pi->hw, vsi_handle)) break; /* Get sched_vsi_info */ vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle); if (!vsi_ctx) break; node = vsi_ctx->sched.vsi_node[tc]; break; } case ICE_AGG_TYPE_AGG: { struct ice_sched_node *tc_node; tc_node = ice_sched_get_tc_node(pi, tc); if (tc_node) node = ice_sched_get_agg_node(pi, tc_node, id); break; } default: break; } return node; } /** * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC * @pi: port information structure * @id: ID (software VSI handle or AGG ID) * @agg_type: aggregator type (VSI or AGG type node) * @tc: traffic class * @rl_type: min or max * @bw: bandwidth in Kbps * * This function sets BW limit of VSI or Aggregator scheduling node * based on TC information from passed in argument BW. */ static int ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id, enum ice_agg_type agg_type, u8 tc, enum ice_rl_type rl_type, u32 bw) { struct ice_sched_node *node; int status = -EINVAL; if (!pi) return status; if (rl_type == ICE_UNKNOWN_BW) return status; mutex_lock(&pi->sched_lock); node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc); if (!node) { ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n"); goto exit_set_node_bw_lmt_per_tc; } if (bw == ICE_SCHED_DFLT_BW) status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type); else status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw); exit_set_node_bw_lmt_per_tc: mutex_unlock(&pi->sched_lock); return status; } /** * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC * @pi: port information structure * @vsi_handle: software VSI handle * @tc: traffic class * @rl_type: min or max * @bw: bandwidth in Kbps * * This function configures BW limit of VSI scheduling node based on TC * information. */ int ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, enum ice_rl_type rl_type, u32 bw) { int status; status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, ICE_AGG_TYPE_VSI, tc, rl_type, bw); if (!status) { mutex_lock(&pi->sched_lock); status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw); mutex_unlock(&pi->sched_lock); } return status; } /** * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC * @pi: port information structure * @vsi_handle: software VSI handle * @tc: traffic class * @rl_type: min or max * * This function configures default BW limit of VSI scheduling node based on TC * information. */ int ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc, enum ice_rl_type rl_type) { int status; status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle, ICE_AGG_TYPE_VSI, tc, rl_type, ICE_SCHED_DFLT_BW); if (!status) { mutex_lock(&pi->sched_lock); status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, ICE_SCHED_DFLT_BW); mutex_unlock(&pi->sched_lock); } return status; } /** * ice_cfg_rl_burst_size - Set burst size value * @hw: pointer to the HW struct * @bytes: burst size in bytes * * This function configures/set the burst size to requested new value. The new * burst size value is used for future rate limit calls. It doesn't change the * existing or previously created RL profiles. */ int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes) { u16 burst_size_to_prog; if (bytes < ICE_MIN_BURST_SIZE_ALLOWED || bytes > ICE_MAX_BURST_SIZE_ALLOWED) return -EINVAL; if (ice_round_to_num(bytes, 64) <= ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) { /* 64 byte granularity case */ /* Disable MSB granularity bit */ burst_size_to_prog = ICE_64_BYTE_GRANULARITY; /* round number to nearest 64 byte granularity */ bytes = ice_round_to_num(bytes, 64); /* The value is in 64 byte chunks */ burst_size_to_prog |= (u16)(bytes / 64); } else { /* k bytes granularity case */ /* Enable MSB granularity bit */ burst_size_to_prog = ICE_KBYTE_GRANULARITY; /* round number to nearest 1024 granularity */ bytes = ice_round_to_num(bytes, 1024); /* check rounding doesn't go beyond allowed */ if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY) bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY; /* The value is in k bytes */ burst_size_to_prog |= (u16)(bytes / 1024); } hw->max_burst_size = burst_size_to_prog; return 0; } /** * ice_sched_replay_node_prio - re-configure node priority * @hw: pointer to the HW struct * @node: sched node to configure * @priority: priority value * * This function configures node element's priority value. It * needs to be called with scheduler lock held. */ static int ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node, u8 priority) { struct ice_aqc_txsched_elem_data buf; struct ice_aqc_txsched_elem *data; int status; buf = node->info; data = &buf.data; data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC; data->generic = priority; /* Configure element */ status = ice_sched_update_elem(hw, node, &buf); return status; } /** * ice_sched_replay_node_bw - replay node(s) BW * @hw: pointer to the HW struct * @node: sched node to configure * @bw_t_info: BW type information * * This function restores node's BW from bw_t_info. The caller needs * to hold the scheduler lock. */ static int ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node, struct ice_bw_type_info *bw_t_info) { struct ice_port_info *pi = hw->port_info; int status = -EINVAL; u16 bw_alloc; if (!node) return status; if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT)) return 0; if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) { status = ice_sched_replay_node_prio(hw, node, bw_t_info->generic); if (status) return status; } if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) { status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, bw_t_info->cir_bw.bw); if (status) return status; } if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) { bw_alloc = bw_t_info->cir_bw.bw_alloc; status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW, bw_alloc); if (status) return status; } if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) { status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, bw_t_info->eir_bw.bw); if (status) return status; } if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) { bw_alloc = bw_t_info->eir_bw.bw_alloc; status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW, bw_alloc); if (status) return status; } if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap)) status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW, bw_t_info->shared_bw); return status; } /** * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap * @pi: port info struct * @tc_bitmap: 8 bits TC bitmap to check * @ena_tc_bitmap: 8 bits enabled TC bitmap to return * * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs * may be missing, it returns enabled TCs. This function needs to be called with * scheduler lock held. */ static void ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, unsigned long *tc_bitmap, unsigned long *ena_tc_bitmap) { u8 tc; /* Some TC(s) may be missing after reset, adjust for replay */ ice_for_each_traffic_class(tc) if (ice_is_tc_ena(*tc_bitmap, tc) && (ice_sched_get_tc_node(pi, tc))) set_bit(tc, ena_tc_bitmap); } /** * ice_sched_replay_agg - recreate aggregator node(s) * @hw: pointer to the HW struct * * This function recreate aggregator type nodes which are not replayed earlier. * It also replay aggregator BW information. These aggregator nodes are not * associated with VSI type node yet. */ void ice_sched_replay_agg(struct ice_hw *hw) { struct ice_port_info *pi = hw->port_info; struct ice_sched_agg_info *agg_info; mutex_lock(&pi->sched_lock); list_for_each_entry(agg_info, &hw->agg_list, list_entry) /* replay aggregator (re-create aggregator node) */ if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) { DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); int status; bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, replay_bitmap); status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, ICE_AGG_TYPE_AGG, replay_bitmap); if (status) { dev_info(ice_hw_to_dev(hw), "Replay agg id[%d] failed\n", agg_info->agg_id); /* Move on to next one */ continue; } } mutex_unlock(&pi->sched_lock); } /** * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization * @hw: pointer to the HW struct * * This function initialize aggregator(s) TC bitmap to zero. A required * preinit step for replaying aggregators. */ void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw) { struct ice_port_info *pi = hw->port_info; struct ice_sched_agg_info *agg_info; mutex_lock(&pi->sched_lock); list_for_each_entry(agg_info, &hw->agg_list, list_entry) { struct ice_sched_agg_vsi_info *agg_vsi_info; agg_info->tc_bitmap[0] = 0; list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry) agg_vsi_info->tc_bitmap[0] = 0; } mutex_unlock(&pi->sched_lock); } /** * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s) * @hw: pointer to the HW struct * @vsi_handle: software VSI handle * * This function replays aggregator node, VSI to aggregator type nodes, and * their node bandwidth information. This function needs to be called with * scheduler lock held. */ static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) { DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); struct ice_sched_agg_vsi_info *agg_vsi_info; struct ice_port_info *pi = hw->port_info; struct ice_sched_agg_info *agg_info; int status; bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); if (!ice_is_vsi_valid(hw, vsi_handle)) return -EINVAL; agg_info = ice_get_vsi_agg_info(hw, vsi_handle); if (!agg_info) return 0; /* Not present in list - default Agg case */ agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle); if (!agg_vsi_info) return 0; /* Not present in list - default Agg case */ ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap, replay_bitmap); /* Replay aggregator node associated to vsi_handle */ status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id, ICE_AGG_TYPE_AGG, replay_bitmap); if (status) return status; bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS); ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap, replay_bitmap); /* Move this VSI (vsi_handle) to above aggregator */ return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle, replay_bitmap); } /** * ice_replay_vsi_agg - replay VSI to aggregator node * @hw: pointer to the HW struct * @vsi_handle: software VSI handle * * This function replays association of VSI to aggregator type nodes, and * node bandwidth information. */ int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle) { struct ice_port_info *pi = hw->port_info; int status; mutex_lock(&pi->sched_lock); status = ice_sched_replay_vsi_agg(hw, vsi_handle); mutex_unlock(&pi->sched_lock); return status; } /** * ice_sched_replay_q_bw - replay queue type node BW * @pi: port information structure * @q_ctx: queue context structure * * This function replays queue type node bandwidth. This function needs to be * called with scheduler lock held. */ int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx) { struct ice_sched_node *q_node; /* Following also checks the presence of node in tree */ q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid); if (!q_node) return -EINVAL; return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info); }