// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021, Intel Corporation. */ #include "ice.h" #include "ice_lib.h" #include "ice_trace.h" #define E810_OUT_PROP_DELAY_NS 1 #define UNKNOWN_INCVAL_E82X 0x100000000ULL static const struct ptp_pin_desc ice_pin_desc_e810t[] = { /* name idx func chan */ { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, }; /** * ice_get_sma_config_e810t * @hw: pointer to the hw struct * @ptp_pins: pointer to the ptp_pin_desc struture * * Read the configuration of the SMA control logic and put it into the * ptp_pin_desc structure */ static int ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) { u8 data, i; int status; /* Read initial pin state */ status = ice_read_sma_ctrl_e810t(hw, &data); if (status) return status; /* initialize with defaults */ for (i = 0; i < NUM_PTP_PINS_E810T; i++) { strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name, sizeof(ptp_pins[i].name)); ptp_pins[i].index = ice_pin_desc_e810t[i].index; ptp_pins[i].func = ice_pin_desc_e810t[i].func; ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; } /* Parse SMA1/UFL1 */ switch (data & ICE_SMA1_MASK_E810T) { case ICE_SMA1_MASK_E810T: default: ptp_pins[SMA1].func = PTP_PF_NONE; ptp_pins[UFL1].func = PTP_PF_NONE; break; case ICE_SMA1_DIR_EN_E810T: ptp_pins[SMA1].func = PTP_PF_PEROUT; ptp_pins[UFL1].func = PTP_PF_NONE; break; case ICE_SMA1_TX_EN_E810T: ptp_pins[SMA1].func = PTP_PF_EXTTS; ptp_pins[UFL1].func = PTP_PF_NONE; break; case 0: ptp_pins[SMA1].func = PTP_PF_EXTTS; ptp_pins[UFL1].func = PTP_PF_PEROUT; break; } /* Parse SMA2/UFL2 */ switch (data & ICE_SMA2_MASK_E810T) { case ICE_SMA2_MASK_E810T: default: ptp_pins[SMA2].func = PTP_PF_NONE; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): ptp_pins[SMA2].func = PTP_PF_EXTTS; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): ptp_pins[SMA2].func = PTP_PF_PEROUT; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): ptp_pins[SMA2].func = PTP_PF_NONE; ptp_pins[UFL2].func = PTP_PF_EXTTS; break; case ICE_SMA2_DIR_EN_E810T: ptp_pins[SMA2].func = PTP_PF_PEROUT; ptp_pins[UFL2].func = PTP_PF_EXTTS; break; } return 0; } /** * ice_ptp_set_sma_config_e810t * @hw: pointer to the hw struct * @ptp_pins: pointer to the ptp_pin_desc struture * * Set the configuration of the SMA control logic based on the configuration in * num_pins parameter */ static int ice_ptp_set_sma_config_e810t(struct ice_hw *hw, const struct ptp_pin_desc *ptp_pins) { int status; u8 data; /* SMA1 and UFL1 cannot be set to TX at the same time */ if (ptp_pins[SMA1].func == PTP_PF_PEROUT && ptp_pins[UFL1].func == PTP_PF_PEROUT) return -EINVAL; /* SMA2 and UFL2 cannot be set to RX at the same time */ if (ptp_pins[SMA2].func == PTP_PF_EXTTS && ptp_pins[UFL2].func == PTP_PF_EXTTS) return -EINVAL; /* Read initial pin state value */ status = ice_read_sma_ctrl_e810t(hw, &data); if (status) return status; /* Set the right sate based on the desired configuration */ data &= ~ICE_SMA1_MASK_E810T; if (ptp_pins[SMA1].func == PTP_PF_NONE && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); data |= ICE_SMA1_MASK_E810T; } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 RX"); data |= ICE_SMA1_TX_EN_E810T; } else if (ptp_pins[SMA1].func == PTP_PF_NONE && ptp_pins[UFL1].func == PTP_PF_PEROUT) { /* U.FL 1 TX will always enable SMA 1 RX */ dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && ptp_pins[UFL1].func == PTP_PF_PEROUT) { dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 TX"); data |= ICE_SMA1_DIR_EN_E810T; } data &= ~ICE_SMA2_MASK_E810T; if (ptp_pins[SMA2].func == PTP_PF_NONE && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); data |= ICE_SMA2_MASK_E810T; } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 RX"); data |= (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_NONE && ptp_pins[UFL2].func == PTP_PF_EXTTS) { dev_info(ice_hw_to_dev(hw), "UFL2 RX"); data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 TX"); data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && ptp_pins[UFL2].func == PTP_PF_EXTTS) { dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); data |= ICE_SMA2_DIR_EN_E810T; } return ice_write_sma_ctrl_e810t(hw, data); } /** * ice_ptp_set_sma_e810t * @info: the driver's PTP info structure * @pin: pin index in kernel structure * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) * * Set the configuration of a single SMA pin */ static int ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func) { struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; int err; if (pin < SMA1 || func > PTP_PF_PEROUT) return -EOPNOTSUPP; err = ice_get_sma_config_e810t(hw, ptp_pins); if (err) return err; /* Disable the same function on the other pin sharing the channel */ if (pin == SMA1 && ptp_pins[UFL1].func == func) ptp_pins[UFL1].func = PTP_PF_NONE; if (pin == UFL1 && ptp_pins[SMA1].func == func) ptp_pins[SMA1].func = PTP_PF_NONE; if (pin == SMA2 && ptp_pins[UFL2].func == func) ptp_pins[UFL2].func = PTP_PF_NONE; if (pin == UFL2 && ptp_pins[SMA2].func == func) ptp_pins[SMA2].func = PTP_PF_NONE; /* Set up new pin function in the temp table */ ptp_pins[pin].func = func; return ice_ptp_set_sma_config_e810t(hw, ptp_pins); } /** * ice_verify_pin_e810t * @info: the driver's PTP info structure * @pin: Pin index * @func: Assigned function * @chan: Assigned channel * * Verify if pin supports requested pin function. If the Check pins consistency. * Reconfigure the SMA logic attached to the given pin to enable its * desired functionality */ static int ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { /* Don't allow channel reassignment */ if (chan != ice_pin_desc_e810t[pin].chan) return -EOPNOTSUPP; /* Check if functions are properly assigned */ switch (func) { case PTP_PF_NONE: break; case PTP_PF_EXTTS: if (pin == UFL1) return -EOPNOTSUPP; break; case PTP_PF_PEROUT: if (pin == UFL2 || pin == GNSS) return -EOPNOTSUPP; break; case PTP_PF_PHYSYNC: return -EOPNOTSUPP; } return ice_ptp_set_sma_e810t(info, pin, func); } /** * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device * @pf: Board private structure * * Program the device to respond appropriately to the Tx timestamp interrupt * cause. */ static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; bool enable; u32 val; switch (pf->ptp.tx_interrupt_mode) { case ICE_PTP_TX_INTERRUPT_ALL: /* React to interrupts across all quads. */ wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f); enable = true; break; case ICE_PTP_TX_INTERRUPT_NONE: /* Do not react to interrupts on any quad. */ wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0); enable = false; break; case ICE_PTP_TX_INTERRUPT_SELF: default: enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON; break; } /* Configure the Tx timestamp interrupt */ val = rd32(hw, PFINT_OICR_ENA); if (enable) val |= PFINT_OICR_TSYN_TX_M; else val &= ~PFINT_OICR_TSYN_TX_M; wr32(hw, PFINT_OICR_ENA, val); } /** * ice_set_rx_tstamp - Enable or disable Rx timestamping * @pf: The PF pointer to search in * @on: bool value for whether timestamps are enabled or disabled */ static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) { struct ice_vsi *vsi; u16 i; vsi = ice_get_main_vsi(pf); if (!vsi || !vsi->rx_rings) return; /* Set the timestamp flag for all the Rx rings */ ice_for_each_rxq(vsi, i) { if (!vsi->rx_rings[i]) continue; vsi->rx_rings[i]->ptp_rx = on; } } /** * ice_ptp_disable_timestamp_mode - Disable current timestamp mode * @pf: Board private structure * * Called during preparation for reset to temporarily disable timestamping on * the device. Called during remove to disable timestamping while cleaning up * driver resources. */ static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u32 val; val = rd32(hw, PFINT_OICR_ENA); val &= ~PFINT_OICR_TSYN_TX_M; wr32(hw, PFINT_OICR_ENA, val); ice_set_rx_tstamp(pf, false); } /** * ice_ptp_restore_timestamp_mode - Restore timestamp configuration * @pf: Board private structure * * Called at the end of rebuild to restore timestamp configuration after * a device reset. */ void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; bool enable_rx; ice_ptp_cfg_tx_interrupt(pf); enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL; ice_set_rx_tstamp(pf, enable_rx); /* Trigger an immediate software interrupt to ensure that timestamps * which occurred during reset are handled now. */ wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); ice_flush(hw); } /** * ice_ptp_read_src_clk_reg - Read the source clock register * @pf: Board private structure * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. */ static u64 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) { struct ice_hw *hw = &pf->hw; u32 hi, lo, lo2; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); /* Read the system timestamp pre PHC read */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); /* Read the system timestamp post PHC read */ ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); if (lo2 < lo) { /* if TIME_L rolled over read TIME_L again and update * system timestamps */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); } return ((u64)hi << 32) | lo; } /** * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b * @cached_phc_time: recently cached copy of PHC time * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value * * Hardware captures timestamps which contain only 32 bits of nominal * nanoseconds, as opposed to the 64bit timestamps that the stack expects. * Note that the captured timestamp values may be 40 bits, but the lower * 8 bits are sub-nanoseconds and generally discarded. * * Extend the 32bit nanosecond timestamp using the following algorithm and * assumptions: * * 1) have a recently cached copy of the PHC time * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 * seconds) before or after the PHC time was captured. * 3) calculate the delta between the cached time and the timestamp * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was * captured after the PHC time. In this case, the full timestamp is just * the cached PHC time plus the delta. * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the * timestamp was captured *before* the PHC time, i.e. because the PHC * cache was updated after the timestamp was captured by hardware. In this * case, the full timestamp is the cached time minus the inverse delta. * * This algorithm works even if the PHC time was updated after a Tx timestamp * was requested, but before the Tx timestamp event was reported from * hardware. * * This calculation primarily relies on keeping the cached PHC time up to * date. If the timestamp was captured more than 2^31 nanoseconds after the * PHC time, it is possible that the lower 32bits of PHC time have * overflowed more than once, and we might generate an incorrect timestamp. * * This is prevented by (a) periodically updating the cached PHC time once * a second, and (b) discarding any Tx timestamp packet if it has waited for * a timestamp for more than one second. */ static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) { u32 delta, phc_time_lo; u64 ns; /* Extract the lower 32 bits of the PHC time */ phc_time_lo = (u32)cached_phc_time; /* Calculate the delta between the lower 32bits of the cached PHC * time and the in_tstamp value */ delta = (in_tstamp - phc_time_lo); /* Do not assume that the in_tstamp is always more recent than the * cached PHC time. If the delta is large, it indicates that the * in_tstamp was taken in the past, and should be converted * forward. */ if (delta > (U32_MAX / 2)) { /* reverse the delta calculation here */ delta = (phc_time_lo - in_tstamp); ns = cached_phc_time - delta; } else { ns = cached_phc_time + delta; } return ns; } /** * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds * @pf: Board private structure * @in_tstamp: Ingress/egress 40b timestamp value * * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. * * *--------------------------------------------------------------* * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | * *--------------------------------------------------------------* * * The low bit is an indicator of whether the timestamp is valid. The next * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, * and the remaining 32 bits are the lower 32 bits of the PHC timer. * * It is assumed that the caller verifies the timestamp is valid prior to * calling this function. * * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC * time stored in the device private PTP structure as the basis for timestamp * extension. * * See ice_ptp_extend_32b_ts for a detailed explanation of the extension * algorithm. */ static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) { const u64 mask = GENMASK_ULL(31, 0); unsigned long discard_time; /* Discard the hardware timestamp if the cached PHC time is too old */ discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); if (time_is_before_jiffies(discard_time)) { pf->ptp.tx_hwtstamp_discarded++; return 0; } return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, (in_tstamp >> 8) & mask); } /** * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps * @tx: the PTP Tx timestamp tracker to check * * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready * to accept new timestamp requests. * * Assumes the tx->lock spinlock is already held. */ static bool ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx) { lockdep_assert_held(&tx->lock); return tx->init && !tx->calibrating; } /** * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW * @tx: the PTP Tx timestamp tracker * @idx: index of the timestamp to request */ void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx) { struct ice_ptp_port *ptp_port; struct sk_buff *skb; struct ice_pf *pf; if (!tx->init) return; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); /* Drop packets which have waited for more than 2 seconds */ if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { /* Count the number of Tx timestamps that timed out */ pf->ptp.tx_hwtstamp_timeouts++; skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; clear_bit(idx, tx->in_use); dev_kfree_skb_any(skb); return; } ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); /* Write TS index to read to the PF register so the FW can read it */ wr32(&pf->hw, PF_SB_ATQBAL, TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS); tx->last_ll_ts_idx_read = idx; } /** * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port * @tx: the PTP Tx timestamp tracker */ void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) { struct skb_shared_hwtstamps shhwtstamps = {}; u8 idx = tx->last_ll_ts_idx_read; struct ice_ptp_port *ptp_port; u64 raw_tstamp, tstamp; bool drop_ts = false; struct sk_buff *skb; struct ice_pf *pf; u32 val; if (!tx->init || tx->last_ll_ts_idx_read < 0) return; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); val = rd32(&pf->hw, PF_SB_ATQBAL); /* When the bit is cleared, the TS is ready in the register */ if (val & TS_LL_READ_TS) { dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready"); return; } /* High 8 bit value of the TS is on the bits 16:23 */ raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val); raw_tstamp <<= 32; /* Read the low 32 bit value */ raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH); /* For PHYs which don't implement a proper timestamp ready bitmap, * verify that the timestamp value is different from the last cached * timestamp. If it is not, skip this for now assuming it hasn't yet * been captured by hardware. */ if (!drop_ts && tx->verify_cached && raw_tstamp == tx->tstamps[idx].cached_tstamp) return; if (tx->verify_cached && raw_tstamp) tx->tstamps[idx].cached_tstamp = raw_tstamp; clear_bit(idx, tx->in_use); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; if (test_and_clear_bit(idx, tx->stale)) drop_ts = true; if (!skb) return; if (drop_ts) { dev_kfree_skb_any(skb); return; } /* Extend the timestamp using cached PHC time */ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); if (tstamp) { shhwtstamps.hwtstamp = ns_to_ktime(tstamp); ice_trace(tx_tstamp_complete, skb, idx); } skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /** * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port * @tx: the PTP Tx timestamp tracker * * Process timestamps captured by the PHY associated with this port. To do * this, loop over each index with a waiting skb. * * If a given index has a valid timestamp, perform the following steps: * * 1) check that the timestamp request is not stale * 2) check that a timestamp is ready and available in the PHY memory bank * 3) read and copy the timestamp out of the PHY register * 4) unlock the index by clearing the associated in_use bit * 5) check if the timestamp is stale, and discard if so * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value * 7) send this 64 bit timestamp to the stack * * Note that we do not hold the tracking lock while reading the Tx timestamp. * This is because reading the timestamp requires taking a mutex that might * sleep. * * The only place where we set in_use is when a new timestamp is initiated * with a slot index. This is only called in the hard xmit routine where an * SKB has a request flag set. The only places where we clear this bit is this * function, or during teardown when the Tx timestamp tracker is being * removed. A timestamp index will never be re-used until the in_use bit for * that index is cleared. * * If a Tx thread starts a new timestamp, we might not begin processing it * right away but we will notice it at the end when we re-queue the task. * * If a Tx thread starts a new timestamp just after this function exits, the * interrupt for that timestamp should re-trigger this function once * a timestamp is ready. * * In cases where the PTP hardware clock was directly adjusted, some * timestamps may not be able to safely use the timestamp extension math. In * this case, software will set the stale bit for any outstanding Tx * timestamps when the clock is adjusted. Then this function will discard * those captured timestamps instead of sending them to the stack. * * If a Tx packet has been waiting for more than 2 seconds, it is not possible * to correctly extend the timestamp using the cached PHC time. It is * extremely unlikely that a packet will ever take this long to timestamp. If * we detect a Tx timestamp request that has waited for this long we assume * the packet will never be sent by hardware and discard it without reading * the timestamp register. */ static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx) { struct ice_ptp_port *ptp_port; unsigned long flags; struct ice_pf *pf; struct ice_hw *hw; u64 tstamp_ready; bool link_up; int err; u8 idx; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); hw = &pf->hw; /* Read the Tx ready status first */ err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); if (err) return; /* Drop packets if the link went down */ link_up = ptp_port->link_up; for_each_set_bit(idx, tx->in_use, tx->len) { struct skb_shared_hwtstamps shhwtstamps = {}; u8 phy_idx = idx + tx->offset; u64 raw_tstamp = 0, tstamp; bool drop_ts = !link_up; struct sk_buff *skb; /* Drop packets which have waited for more than 2 seconds */ if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) { drop_ts = true; /* Count the number of Tx timestamps that timed out */ pf->ptp.tx_hwtstamp_timeouts++; } /* Only read a timestamp from the PHY if its marked as ready * by the tstamp_ready register. This avoids unnecessary * reading of timestamps which are not yet valid. This is * important as we must read all timestamps which are valid * and only timestamps which are valid during each interrupt. * If we do not, the hardware logic for generating a new * interrupt can get stuck on some devices. */ if (!(tstamp_ready & BIT_ULL(phy_idx))) { if (drop_ts) goto skip_ts_read; continue; } ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp); if (err && !drop_ts) continue; ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); /* For PHYs which don't implement a proper timestamp ready * bitmap, verify that the timestamp value is different * from the last cached timestamp. If it is not, skip this for * now assuming it hasn't yet been captured by hardware. */ if (!drop_ts && tx->verify_cached && raw_tstamp == tx->tstamps[idx].cached_tstamp) continue; /* Discard any timestamp value without the valid bit set */ if (!(raw_tstamp & ICE_PTP_TS_VALID)) drop_ts = true; skip_ts_read: spin_lock_irqsave(&tx->lock, flags); if (tx->verify_cached && raw_tstamp) tx->tstamps[idx].cached_tstamp = raw_tstamp; clear_bit(idx, tx->in_use); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; if (test_and_clear_bit(idx, tx->stale)) drop_ts = true; spin_unlock_irqrestore(&tx->lock, flags); /* It is unlikely but possible that the SKB will have been * flushed at this point due to link change or teardown. */ if (!skb) continue; if (drop_ts) { dev_kfree_skb_any(skb); continue; } /* Extend the timestamp using cached PHC time */ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); if (tstamp) { shhwtstamps.hwtstamp = ns_to_ktime(tstamp); ice_trace(tx_tstamp_complete, skb, idx); } skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } } /** * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device * @pf: Board private structure */ static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf) { struct ice_ptp_port *port; unsigned int i; mutex_lock(&pf->ptp.ports_owner.lock); list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) { struct ice_ptp_tx *tx = &port->tx; if (!tx || !tx->init) continue; ice_ptp_process_tx_tstamp(tx); } mutex_unlock(&pf->ptp.ports_owner.lock); for (i = 0; i < ICE_MAX_QUAD; i++) { u64 tstamp_ready; int err; /* Read the Tx ready status first */ err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); if (err) break; else if (tstamp_ready) return ICE_TX_TSTAMP_WORK_PENDING; } return ICE_TX_TSTAMP_WORK_DONE; } /** * ice_ptp_tx_tstamp - Process Tx timestamps for this function. * @tx: Tx tracking structure to initialize * * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise. */ static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) { bool more_timestamps; unsigned long flags; if (!tx->init) return ICE_TX_TSTAMP_WORK_DONE; /* Process the Tx timestamp tracker */ ice_ptp_process_tx_tstamp(tx); /* Check if there are outstanding Tx timestamps */ spin_lock_irqsave(&tx->lock, flags); more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); spin_unlock_irqrestore(&tx->lock, flags); if (more_timestamps) return ICE_TX_TSTAMP_WORK_PENDING; return ICE_TX_TSTAMP_WORK_DONE; } /** * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps * @tx: Tx tracking structure to initialize * * Assumes that the length has already been initialized. Do not call directly, * use the ice_ptp_init_tx_* instead. */ static int ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) { unsigned long *in_use, *stale; struct ice_tx_tstamp *tstamps; tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL); in_use = bitmap_zalloc(tx->len, GFP_KERNEL); stale = bitmap_zalloc(tx->len, GFP_KERNEL); if (!tstamps || !in_use || !stale) { kfree(tstamps); bitmap_free(in_use); bitmap_free(stale); return -ENOMEM; } tx->tstamps = tstamps; tx->in_use = in_use; tx->stale = stale; tx->init = 1; tx->last_ll_ts_idx_read = -1; spin_lock_init(&tx->lock); return 0; } /** * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker * @pf: Board private structure * @tx: the tracker to flush * * Called during teardown when a Tx tracker is being removed. */ static void ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { struct ice_hw *hw = &pf->hw; unsigned long flags; u64 tstamp_ready; int err; u8 idx; err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready); if (err) { dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n", tx->block, err); /* If we fail to read the Tx timestamp ready bitmap just * skip clearing the PHY timestamps. */ tstamp_ready = 0; } for_each_set_bit(idx, tx->in_use, tx->len) { u8 phy_idx = idx + tx->offset; struct sk_buff *skb; /* In case this timestamp is ready, we need to clear it. */ if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx))) ice_clear_phy_tstamp(hw, tx->block, phy_idx); spin_lock_irqsave(&tx->lock, flags); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; clear_bit(idx, tx->in_use); clear_bit(idx, tx->stale); spin_unlock_irqrestore(&tx->lock, flags); /* Count the number of Tx timestamps flushed */ pf->ptp.tx_hwtstamp_flushed++; /* Free the SKB after we've cleared the bit */ dev_kfree_skb_any(skb); } } /** * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale * @tx: the tracker to mark * * Mark currently outstanding Tx timestamps as stale. This prevents sending * their timestamp value to the stack. This is required to prevent extending * the 40bit hardware timestamp incorrectly. * * This should be called when the PTP clock is modified such as after a set * time request. */ static void ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx) { unsigned long flags; spin_lock_irqsave(&tx->lock, flags); bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len); spin_unlock_irqrestore(&tx->lock, flags); } /** * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker * @pf: Board private structure * @tx: Tx tracking structure to release * * Free memory associated with the Tx timestamp tracker. */ static void ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { unsigned long flags; spin_lock_irqsave(&tx->lock, flags); tx->init = 0; spin_unlock_irqrestore(&tx->lock, flags); /* wait for potentially outstanding interrupt to complete */ synchronize_irq(pf->oicr_irq.virq); ice_ptp_flush_tx_tracker(pf, tx); kfree(tx->tstamps); tx->tstamps = NULL; bitmap_free(tx->in_use); tx->in_use = NULL; bitmap_free(tx->stale); tx->stale = NULL; tx->len = 0; } /** * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * @port: the port this structure tracks * * Initialize the Tx timestamp tracker for this port. For generic MAC devices, * the timestamp block is shared for all ports in the same quad. To avoid * ports using the same timestamp index, logically break the block of * registers into chunks based on the port number. */ static int ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) { tx->block = port / ICE_PORTS_PER_QUAD; tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X; tx->len = INDEX_PER_PORT_E82X; tx->verify_cached = 0; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * * Initialize the Tx timestamp tracker for this PF. For E810 devices, each * port has its own block of timestamps, independent of the other ports. */ static int ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) { tx->block = pf->hw.port_info->lport; tx->offset = 0; tx->len = INDEX_PER_PORT_E810; /* The E810 PHY does not provide a timestamp ready bitmap. Instead, * verify new timestamps against cached copy of the last read * timestamp. */ tx->verify_cached = 1; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_update_cached_phctime - Update the cached PHC time values * @pf: Board specific private structure * * This function updates the system time values which are cached in the PF * structure and the Rx rings. * * This function must be called periodically to ensure that the cached value * is never more than 2 seconds old. * * Note that the cached copy in the PF PTP structure is always updated, even * if we can't update the copy in the Rx rings. * * Return: * * 0 - OK, successfully updated * * -EAGAIN - PF was busy, need to reschedule the update */ static int ice_ptp_update_cached_phctime(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); unsigned long update_before; u64 systime; int i; update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); if (pf->ptp.cached_phc_time && time_is_before_jiffies(update_before)) { unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; dev_warn(dev, "%u msecs passed between update to cached PHC time\n", jiffies_to_msecs(time_taken)); pf->ptp.late_cached_phc_updates++; } /* Read the current PHC time */ systime = ice_ptp_read_src_clk_reg(pf, NULL); /* Update the cached PHC time stored in the PF structure */ WRITE_ONCE(pf->ptp.cached_phc_time, systime); WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) return -EAGAIN; ice_for_each_vsi(pf, i) { struct ice_vsi *vsi = pf->vsi[i]; int j; if (!vsi) continue; if (vsi->type != ICE_VSI_PF) continue; ice_for_each_rxq(vsi, j) { if (!vsi->rx_rings[j]) continue; WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); } } clear_bit(ICE_CFG_BUSY, pf->state); return 0; } /** * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update * @pf: Board specific private structure * * This function must be called when the cached PHC time is no longer valid, * such as after a time adjustment. It marks any currently outstanding Tx * timestamps as stale and updates the cached PHC time for both the PF and Rx * rings. * * If updating the PHC time cannot be done immediately, a warning message is * logged and the work item is scheduled immediately to minimize the window * with a wrong cached timestamp. */ static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); int err; /* Update the cached PHC time immediately if possible, otherwise * schedule the work item to execute soon. */ err = ice_ptp_update_cached_phctime(pf); if (err) { /* If another thread is updating the Rx rings, we won't * properly reset them here. This could lead to reporting of * invalid timestamps, but there isn't much we can do. */ dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", __func__); /* Queue the work item to update the Rx rings when possible */ kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, msecs_to_jiffies(10)); } /* Mark any outstanding timestamps as stale, since they might have * been captured in hardware before the time update. This could lead * to us extending them with the wrong cached value resulting in * incorrect timestamp values. */ ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx); } /** * ice_ptp_read_time - Read the time from the device * @pf: Board private structure * @ts: timespec structure to hold the current time value * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. * * This function reads the source clock registers and stores them in a timespec. * However, since the registers are 64 bits of nanoseconds, we must convert the * result to a timespec before we can return. */ static void ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, struct ptp_system_timestamp *sts) { u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); *ts = ns_to_timespec64(time_ns); } /** * ice_ptp_write_init - Set PHC time to provided value * @pf: Board private structure * @ts: timespec structure that holds the new time value * * Set the PHC time to the specified time provided in the timespec. */ static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) { u64 ns = timespec64_to_ns(ts); struct ice_hw *hw = &pf->hw; return ice_ptp_init_time(hw, ns); } /** * ice_ptp_write_adj - Adjust PHC clock time atomically * @pf: Board private structure * @adj: Adjustment in nanoseconds * * Perform an atomic adjustment of the PHC time by the specified number of * nanoseconds. */ static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) { struct ice_hw *hw = &pf->hw; return ice_ptp_adj_clock(hw, adj); } /** * ice_base_incval - Get base timer increment value * @pf: Board private structure * * Look up the base timer increment value for this device. The base increment * value is used to define the nominal clock tick rate. This increment value * is programmed during device initialization. It is also used as the basis * for calculating adjustments using scaled_ppm. */ static u64 ice_base_incval(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u64 incval; if (ice_is_e810(hw)) incval = ICE_PTP_NOMINAL_INCVAL_E810; else if (ice_e82x_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) incval = ice_e82x_nominal_incval(ice_e82x_time_ref(hw)); else incval = UNKNOWN_INCVAL_E82X; dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", incval); return incval; } /** * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state * @port: PTP port for which Tx FIFO is checked */ static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) { int quad = port->port_num / ICE_PORTS_PER_QUAD; int offs = port->port_num % ICE_PORTS_PER_QUAD; struct ice_pf *pf; struct ice_hw *hw; u32 val, phy_sts; int err; pf = ptp_port_to_pf(port); hw = &pf->hw; if (port->tx_fifo_busy_cnt == FIFO_OK) return 0; /* need to read FIFO state */ if (offs == 0 || offs == 1) err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS, &val); else err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS, &val); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", port->port_num, err); return err; } if (offs & 0x1) phy_sts = FIELD_GET(Q_REG_FIFO13_M, val); else phy_sts = FIELD_GET(Q_REG_FIFO02_M, val); if (phy_sts & FIFO_EMPTY) { port->tx_fifo_busy_cnt = FIFO_OK; return 0; } port->tx_fifo_busy_cnt++; dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", port->tx_fifo_busy_cnt, port->port_num); if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { dev_dbg(ice_pf_to_dev(pf), "Port %d Tx FIFO still not empty; resetting quad %d\n", port->port_num, quad); ice_ptp_reset_ts_memory_quad_e82x(hw, quad); port->tx_fifo_busy_cnt = FIFO_OK; return 0; } return -EAGAIN; } /** * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets * @work: Pointer to the kthread_work structure for this task * * Check whether hardware has completed measuring the Tx and Rx offset values * used to configure and enable vernier timestamp calibration. * * Once the offset in either direction is measured, configure the associated * registers with the calibrated offset values and enable timestamping. The Tx * and Rx directions are configured independently as soon as their associated * offsets are known. * * This function reschedules itself until both Tx and Rx calibration have * completed. */ static void ice_ptp_wait_for_offsets(struct kthread_work *work) { struct ice_ptp_port *port; struct ice_pf *pf; struct ice_hw *hw; int tx_err; int rx_err; port = container_of(work, struct ice_ptp_port, ov_work.work); pf = ptp_port_to_pf(port); hw = &pf->hw; if (ice_is_reset_in_progress(pf->state)) { /* wait for device driver to complete reset */ kthread_queue_delayed_work(pf->ptp.kworker, &port->ov_work, msecs_to_jiffies(100)); return; } tx_err = ice_ptp_check_tx_fifo(port); if (!tx_err) tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num); rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num); if (tx_err || rx_err) { /* Tx and/or Rx offset not yet configured, try again later */ kthread_queue_delayed_work(pf->ptp.kworker, &port->ov_work, msecs_to_jiffies(100)); return; } } /** * ice_ptp_port_phy_stop - Stop timestamping for a PHY port * @ptp_port: PTP port to stop */ static int ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; int err; if (ice_is_e810(hw)) return 0; mutex_lock(&ptp_port->ps_lock); kthread_cancel_delayed_work_sync(&ptp_port->ov_work); err = ice_stop_phy_timer_e82x(hw, port, true); if (err) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping * @ptp_port: PTP port for which the PHY start is set * * Start the PHY timestamping block, and initiate Vernier timestamping * calibration. If timestamping cannot be calibrated (such as if link is down) * then disable the timestamping block instead. */ static int ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; unsigned long flags; int err; if (ice_is_e810(hw)) return 0; if (!ptp_port->link_up) return ice_ptp_port_phy_stop(ptp_port); mutex_lock(&ptp_port->ps_lock); kthread_cancel_delayed_work_sync(&ptp_port->ov_work); /* temporarily disable Tx timestamps while calibrating PHY offset */ spin_lock_irqsave(&ptp_port->tx.lock, flags); ptp_port->tx.calibrating = true; spin_unlock_irqrestore(&ptp_port->tx.lock, flags); ptp_port->tx_fifo_busy_cnt = 0; /* Start the PHY timer in Vernier mode */ err = ice_start_phy_timer_e82x(hw, port); if (err) goto out_unlock; /* Enable Tx timestamps right away */ spin_lock_irqsave(&ptp_port->tx.lock, flags); ptp_port->tx.calibrating = false; spin_unlock_irqrestore(&ptp_port->tx.lock, flags); kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); out_unlock: if (err) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_link_change - Reconfigure PTP after link status change * @pf: Board private structure * @port: Port for which the PHY start is set * @linkup: Link is up or down */ void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) { struct ice_ptp_port *ptp_port; struct ice_hw *hw = &pf->hw; if (!test_bit(ICE_FLAG_PTP, pf->flags)) return; if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS)) return; ptp_port = &pf->ptp.port; if (WARN_ON_ONCE(ptp_port->port_num != port)) return; /* Update cached link status for this port immediately */ ptp_port->link_up = linkup; switch (hw->phy_model) { case ICE_PHY_E810: /* Do not reconfigure E810 PHY */ return; case ICE_PHY_E82X: ice_ptp_port_phy_restart(ptp_port); return; default: dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__); } } /** * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt * @pf: PF private structure * @ena: bool value to enable or disable interrupt * @threshold: Minimum number of packets at which intr is triggered * * Utility function to enable or disable Tx timestamp interrupt and threshold */ static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) { struct ice_hw *hw = &pf->hw; int err = 0; int quad; u32 val; ice_ptp_reset_ts_memory(hw); for (quad = 0; quad < ICE_MAX_QUAD; quad++) { err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); if (err) break; if (ena) { val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M, threshold); } else { val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; } err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); if (err) break; } if (err) dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", err); return err; } /** * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block * @pf: Board private structure */ static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) { ice_ptp_port_phy_restart(&pf->ptp.port); } /** * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping * @pf: Board private structure */ static void ice_ptp_restart_all_phy(struct ice_pf *pf) { struct list_head *entry; list_for_each(entry, &pf->ptp.ports_owner.ports) { struct ice_ptp_port *port = list_entry(entry, struct ice_ptp_port, list_member); if (port->link_up) ice_ptp_port_phy_restart(port); } } /** * ice_ptp_adjfine - Adjust clock increment rate * @info: the driver's PTP info structure * @scaled_ppm: Parts per million with 16-bit fractional field * * Adjust the frequency of the clock by the indicated scaled ppm from the * base frequency. */ static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; u64 incval; int err; incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm); err = ice_ptp_write_incval_locked(hw, incval); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", err); return -EIO; } return 0; } /** * ice_ptp_extts_event - Process PTP external clock event * @pf: Board private structure */ void ice_ptp_extts_event(struct ice_pf *pf) { struct ptp_clock_event event; struct ice_hw *hw = &pf->hw; u8 chan, tmr_idx; u32 hi, lo; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Event time is captured by one of the two matched registers * GLTSYN_EVNT_L: 32 LSB of sampled time event * GLTSYN_EVNT_H: 32 MSB of sampled time event * Event is defined in GLTSYN_EVNT_0 register */ for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { /* Check if channel is enabled */ if (pf->ptp.ext_ts_irq & (1 << chan)) { lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); event.timestamp = (((u64)hi) << 32) | lo; event.type = PTP_CLOCK_EXTTS; event.index = chan; /* Fire event */ ptp_clock_event(pf->ptp.clock, &event); pf->ptp.ext_ts_irq &= ~(1 << chan); } } } /** * ice_ptp_cfg_extts - Configure EXTTS pin and channel * @pf: Board private structure * @ena: true to enable; false to disable * @chan: GPIO channel (0-3) * @gpio_pin: GPIO pin * @extts_flags: request flags from the ptp_extts_request.flags */ static int ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, unsigned int extts_flags) { u32 func, aux_reg, gpio_reg, irq_reg; struct ice_hw *hw = &pf->hw; u8 tmr_idx; if (chan > (unsigned int)pf->ptp.info.n_ext_ts) return -EINVAL; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; irq_reg = rd32(hw, PFINT_OICR_ENA); if (ena) { /* Enable the interrupt */ irq_reg |= PFINT_OICR_TSYN_EVNT_M; aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) /* set event level to requested edge */ if (extts_flags & PTP_FALLING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; if (extts_flags & PTP_RISING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; /* Write GPIO CTL reg. * 0x1 is input sampled by EVENT register(channel) * + num_in_channels * tmr_idx */ func = 1 + chan + (tmr_idx * 3); gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func); pf->ptp.ext_ts_chan |= (1 << chan); } else { /* clear the values we set to reset defaults */ aux_reg = 0; gpio_reg = 0; pf->ptp.ext_ts_chan &= ~(1 << chan); if (!pf->ptp.ext_ts_chan) irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; } wr32(hw, PFINT_OICR_ENA, irq_reg); wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); return 0; } /** * ice_ptp_cfg_clkout - Configure clock to generate periodic wave * @pf: Board private structure * @chan: GPIO channel (0-3) * @config: desired periodic clk configuration. NULL will disable channel * @store: If set to true the values will be stored * * Configure the internal clock generator modules to generate the clock wave of * specified period. */ static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, struct ice_perout_channel *config, bool store) { u64 current_time, period, start_time, phase; struct ice_hw *hw = &pf->hw; u32 func, val, gpio_pin; u8 tmr_idx; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* 0. Reset mode & out_en in AUX_OUT */ wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); /* If we're disabling the output, clear out CLKO and TGT and keep * output level low */ if (!config || !config->ena) { wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); val = GLGEN_GPIO_CTL_PIN_DIR_M; gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); /* Store the value if requested */ if (store) memset(&pf->ptp.perout_channels[chan], 0, sizeof(struct ice_perout_channel)); return 0; } period = config->period; start_time = config->start_time; div64_u64_rem(start_time, period, &phase); gpio_pin = config->gpio_pin; /* 1. Write clkout with half of required period value */ if (period & 0x1) { dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); goto err; } period >>= 1; /* For proper operation, the GLTSYN_CLKO must be larger than clock tick */ #define MIN_PULSE 3 if (period <= MIN_PULSE || period > U32_MAX) { dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", MIN_PULSE * 2); goto err; } wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); /* Allow time for programming before start_time is hit */ current_time = ice_ptp_read_src_clk_reg(pf, NULL); /* if start time is in the past start the timer at the nearest second * maintaining phase */ if (start_time < current_time) start_time = div64_u64(current_time + NSEC_PER_SEC - 1, NSEC_PER_SEC) * NSEC_PER_SEC + phase; if (ice_is_e810(hw)) start_time -= E810_OUT_PROP_DELAY_NS; else start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw)); /* 2. Write TARGET time */ wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); /* 3. Write AUX_OUT register */ val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); /* 4. write GPIO CTL reg */ func = 8 + chan + (tmr_idx * 4); val = GLGEN_GPIO_CTL_PIN_DIR_M | FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); /* Store the value if requested */ if (store) { memcpy(&pf->ptp.perout_channels[chan], config, sizeof(struct ice_perout_channel)); pf->ptp.perout_channels[chan].start_time = phase; } return 0; err: dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); return -EFAULT; } /** * ice_ptp_disable_all_clkout - Disable all currently configured outputs * @pf: pointer to the PF structure * * Disable all currently configured clock outputs. This is necessary before * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to * re-enable the clocks again. */ static void ice_ptp_disable_all_clkout(struct ice_pf *pf) { uint i; for (i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_channels[i].ena) ice_ptp_cfg_clkout(pf, i, NULL, false); } /** * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs * @pf: pointer to the PF structure * * Enable all currently configured clock outputs. Use this after * ice_ptp_disable_all_clkout to reconfigure the output signals according to * their configuration. */ static void ice_ptp_enable_all_clkout(struct ice_pf *pf) { uint i; for (i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_channels[i].ena) ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], false); } /** * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC * @info: the driver's PTP info structure * @rq: The requested feature to change * @on: Enable/disable flag */ static int ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, struct ptp_clock_request *rq, int on) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_perout_channel clk_cfg = {0}; bool sma_pres = false; unsigned int chan; u32 gpio_pin; int err; if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) sma_pres = true; switch (rq->type) { case PTP_CLK_REQ_PEROUT: chan = rq->perout.index; if (sma_pres) { if (chan == ice_pin_desc_e810t[SMA1].chan) clk_cfg.gpio_pin = GPIO_20; else if (chan == ice_pin_desc_e810t[SMA2].chan) clk_cfg.gpio_pin = GPIO_22; else return -1; } else if (ice_is_e810t(&pf->hw)) { if (chan == 0) clk_cfg.gpio_pin = GPIO_20; else clk_cfg.gpio_pin = GPIO_22; } else if (chan == PPS_CLK_GEN_CHAN) { clk_cfg.gpio_pin = PPS_PIN_INDEX; } else { clk_cfg.gpio_pin = chan; } clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + rq->perout.period.nsec); clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + rq->perout.start.nsec); clk_cfg.ena = !!on; err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); break; case PTP_CLK_REQ_EXTTS: chan = rq->extts.index; if (sma_pres) { if (chan < ice_pin_desc_e810t[SMA2].chan) gpio_pin = GPIO_21; else gpio_pin = GPIO_23; } else if (ice_is_e810t(&pf->hw)) { if (chan == 0) gpio_pin = GPIO_21; else gpio_pin = GPIO_23; } else { gpio_pin = chan; } err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, rq->extts.flags); break; default: return -EOPNOTSUPP; } return err; } /** * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC * @info: the driver's PTP info structure * @rq: The requested feature to change * @on: Enable/disable flag */ static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info, struct ptp_clock_request *rq, int on) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_perout_channel clk_cfg = {0}; int err; switch (rq->type) { case PTP_CLK_REQ_PPS: clk_cfg.gpio_pin = PPS_PIN_INDEX; clk_cfg.period = NSEC_PER_SEC; clk_cfg.ena = !!on; err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true); break; case PTP_CLK_REQ_EXTTS: err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index, TIME_SYNC_PIN_INDEX, rq->extts.flags); break; default: return -EOPNOTSUPP; } return err; } /** * ice_ptp_gettimex64 - Get the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure to hold the current time value * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. * * Read the device clock and return the correct value on ns, after converting it * into a timespec struct. */ static int ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; if (!ice_ptp_lock(hw)) { dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); return -EBUSY; } ice_ptp_read_time(pf, ts, sts); ice_ptp_unlock(hw); return 0; } /** * ice_ptp_settime64 - Set the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure that holds the new time value * * Set the device clock to the user input value. The conversion from timespec * to ns happens in the write function. */ static int ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) { struct ice_pf *pf = ptp_info_to_pf(info); struct timespec64 ts64 = *ts; struct ice_hw *hw = &pf->hw; int err; /* For Vernier mode, we need to recalibrate after new settime * Start with disabling timestamp block */ if (pf->ptp.port.link_up) ice_ptp_port_phy_stop(&pf->ptp.port); if (!ice_ptp_lock(hw)) { err = -EBUSY; goto exit; } /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); err = ice_ptp_write_init(pf, &ts64); ice_ptp_unlock(hw); if (!err) ice_ptp_reset_cached_phctime(pf); /* Reenable periodic outputs */ ice_ptp_enable_all_clkout(pf); /* Recalibrate and re-enable timestamp blocks for E822/E823 */ if (hw->phy_model == ICE_PHY_E82X) ice_ptp_restart_all_phy(pf); exit: if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); return err; } return 0; } /** * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) { struct timespec64 now, then; int ret; then = ns_to_timespec64(delta); ret = ice_ptp_gettimex64(info, &now, NULL); if (ret) return ret; now = timespec64_add(now, then); return ice_ptp_settime64(info, (const struct timespec64 *)&now); } /** * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; struct device *dev; int err; dev = ice_pf_to_dev(pf); /* Hardware only supports atomic adjustments using signed 32-bit * integers. For any adjustment outside this range, perform * a non-atomic get->adjust->set flow. */ if (delta > S32_MAX || delta < S32_MIN) { dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); return ice_ptp_adjtime_nonatomic(info, delta); } if (!ice_ptp_lock(hw)) { dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); return -EBUSY; } /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); err = ice_ptp_write_adj(pf, delta); /* Reenable periodic outputs */ ice_ptp_enable_all_clkout(pf); ice_ptp_unlock(hw); if (err) { dev_err(dev, "PTP failed to adjust time, err %d\n", err); return err; } ice_ptp_reset_cached_phctime(pf); return 0; } #ifdef CONFIG_ICE_HWTS /** * ice_ptp_get_syncdevicetime - Get the cross time stamp info * @device: Current device time * @system: System counter value read synchronously with device time * @ctx: Context provided by timekeeping code * * Read device and system (ART) clock simultaneously and return the corrected * clock values in ns. */ static int ice_ptp_get_syncdevicetime(ktime_t *device, struct system_counterval_t *system, void *ctx) { struct ice_pf *pf = (struct ice_pf *)ctx; struct ice_hw *hw = &pf->hw; u32 hh_lock, hh_art_ctl; int i; #define MAX_HH_HW_LOCK_TRIES 5 #define MAX_HH_CTL_LOCK_TRIES 100 for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) { /* Get the HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); if (hh_lock & PFHH_SEM_BUSY_M) { usleep_range(10000, 15000); continue; } break; } if (hh_lock & PFHH_SEM_BUSY_M) { dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); return -EBUSY; } /* Program cmd to master timer */ ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME); /* Start the ART and device clock sync sequence */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; wr32(hw, GLHH_ART_CTL, hh_art_ctl); for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) { /* Wait for sync to complete */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { udelay(1); continue; } else { u32 hh_ts_lo, hh_ts_hi, tmr_idx; u64 hh_ts; tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; /* Read ART time */ hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; *system = convert_art_ns_to_tsc(hh_ts); /* Read Device source clock time */ hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; *device = ns_to_ktime(hh_ts); break; } } /* Clear the master timer */ ice_ptp_src_cmd(hw, ICE_PTP_NOP); /* Release HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); if (i == MAX_HH_CTL_LOCK_TRIES) return -ETIMEDOUT; return 0; } /** * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp * @info: the driver's PTP info structure * @cts: The memory to fill the cross timestamp info * * Capture a cross timestamp between the ART and the device PTP hardware * clock. Fill the cross timestamp information and report it back to the * caller. * * This is only valid for E822 and E823 devices which have support for * generating the cross timestamp via PCIe PTM. * * In order to correctly correlate the ART timestamp back to the TSC time, the * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. */ static int ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info, struct system_device_crosststamp *cts) { struct ice_pf *pf = ptp_info_to_pf(info); return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, pf, NULL, cts); } #endif /* CONFIG_ICE_HWTS */ /** * ice_ptp_get_ts_config - ioctl interface to read the timestamping config * @pf: Board private structure * @ifr: ioctl data * * Copy the timestamping config to user buffer */ int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config *config; if (!test_bit(ICE_FLAG_PTP, pf->flags)) return -EIO; config = &pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode * @pf: Board private structure * @config: hwtstamp settings requested or saved */ static int ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) { switch (config->tx_type) { case HWTSTAMP_TX_OFF: pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF; break; case HWTSTAMP_TX_ON: pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON; break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL; break; default: return -ERANGE; } /* Immediately update the device timestamping mode */ ice_ptp_restore_timestamp_mode(pf); return 0; } /** * ice_ptp_set_ts_config - ioctl interface to control the timestamping * @pf: Board private structure * @ifr: ioctl data * * Get the user config and store it */ int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (!test_bit(ICE_FLAG_PTP, pf->flags)) return -EAGAIN; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = ice_ptp_set_timestamp_mode(pf, &config); if (err) return err; /* Return the actual configuration set */ config = pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns * @rx_desc: Receive descriptor * @pkt_ctx: Packet context to get the cached time * * The driver receives a notification in the receive descriptor with timestamp. */ u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, const struct ice_pkt_ctx *pkt_ctx) { u64 ts_ns, cached_time; u32 ts_high; if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) return 0; cached_time = READ_ONCE(pkt_ctx->cached_phctime); /* Do not report a timestamp if we don't have a cached PHC time */ if (!cached_time) return 0; /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached * PHC value, rather than accessing the PF. This also allows us to * simply pass the upper 32bits of nanoseconds directly. Calling * ice_ptp_extend_40b_ts is unnecessary as it would just discard these * bits itself. */ ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); return ts_ns; } /** * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins * @pf: pointer to the PF structure * @info: PTP clock info structure * * Disable the OS access to the SMA pins. Called to clear out the OS * indications of pin support when we fail to setup the E810-T SMA control * register. */ static void ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) { struct device *dev = ice_pf_to_dev(pf); dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); info->enable = NULL; info->verify = NULL; info->n_pins = 0; info->n_ext_ts = 0; info->n_per_out = 0; } /** * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins * @pf: pointer to the PF structure * @info: PTP clock info structure * * Finish setting up the SMA pins by allocating pin_config, and setting it up * according to the current status of the SMA. On failure, disable all of the * extended SMA pin support. */ static void ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) { struct device *dev = ice_pf_to_dev(pf); int err; /* Allocate memory for kernel pins interface */ info->pin_config = devm_kcalloc(dev, info->n_pins, sizeof(*info->pin_config), GFP_KERNEL); if (!info->pin_config) { ice_ptp_disable_sma_pins_e810t(pf, info); return; } /* Read current SMA status */ err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); if (err) ice_ptp_disable_sma_pins_e810t(pf, info); } /** * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs * @pf: pointer to the PF instance * @info: PTP clock capabilities */ static void ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) { if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { info->n_ext_ts = N_EXT_TS_E810; info->n_per_out = N_PER_OUT_E810T; info->n_pins = NUM_PTP_PINS_E810T; info->verify = ice_verify_pin_e810t; /* Complete setup of the SMA pins */ ice_ptp_setup_sma_pins_e810t(pf, info); } else if (ice_is_e810t(&pf->hw)) { info->n_ext_ts = N_EXT_TS_NO_SMA_E810T; info->n_per_out = N_PER_OUT_NO_SMA_E810T; } else { info->n_per_out = N_PER_OUT_E810; info->n_ext_ts = N_EXT_TS_E810; } } /** * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs * @pf: pointer to the PF instance * @info: PTP clock capabilities */ static void ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info) { info->pps = 1; info->n_per_out = 0; info->n_ext_ts = 1; } /** * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E82x devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for E82x * devices. */ static void ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info) { #ifdef CONFIG_ICE_HWTS if (boot_cpu_has(X86_FEATURE_ART) && boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) info->getcrosststamp = ice_ptp_getcrosststamp_e82x; #endif /* CONFIG_ICE_HWTS */ } /** * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E810 devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for e810 * devices. */ static void ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) { info->enable = ice_ptp_gpio_enable_e810; ice_ptp_setup_pins_e810(pf, info); } /** * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E823 devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for e823 * devices. */ static void ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info) { ice_ptp_set_funcs_e82x(pf, info); info->enable = ice_ptp_gpio_enable_e823; ice_ptp_setup_pins_e823(pf, info); } /** * ice_ptp_set_caps - Set PTP capabilities * @pf: Board private structure */ static void ice_ptp_set_caps(struct ice_pf *pf) { struct ptp_clock_info *info = &pf->ptp.info; struct device *dev = ice_pf_to_dev(pf); snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", dev_driver_string(dev), dev_name(dev)); info->owner = THIS_MODULE; info->max_adj = 100000000; info->adjtime = ice_ptp_adjtime; info->adjfine = ice_ptp_adjfine; info->gettimex64 = ice_ptp_gettimex64; info->settime64 = ice_ptp_settime64; if (ice_is_e810(&pf->hw)) ice_ptp_set_funcs_e810(pf, info); else if (ice_is_e823(&pf->hw)) ice_ptp_set_funcs_e823(pf, info); else ice_ptp_set_funcs_e82x(pf, info); } /** * ice_ptp_create_clock - Create PTP clock device for userspace * @pf: Board private structure * * This function creates a new PTP clock device. It only creates one if we * don't already have one. Will return error if it can't create one, but success * if we already have a device. Should be used by ice_ptp_init to create clock * initially, and prevent global resets from creating new clock devices. */ static long ice_ptp_create_clock(struct ice_pf *pf) { struct ptp_clock_info *info; struct device *dev; /* No need to create a clock device if we already have one */ if (pf->ptp.clock) return 0; ice_ptp_set_caps(pf); info = &pf->ptp.info; dev = ice_pf_to_dev(pf); /* Attempt to register the clock before enabling the hardware. */ pf->ptp.clock = ptp_clock_register(info, dev); if (IS_ERR(pf->ptp.clock)) { dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device"); return PTR_ERR(pf->ptp.clock); } return 0; } /** * ice_ptp_request_ts - Request an available Tx timestamp index * @tx: the PTP Tx timestamp tracker to request from * @skb: the SKB to associate with this timestamp request */ s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) { unsigned long flags; u8 idx; spin_lock_irqsave(&tx->lock, flags); /* Check that this tracker is accepting new timestamp requests */ if (!ice_ptp_is_tx_tracker_up(tx)) { spin_unlock_irqrestore(&tx->lock, flags); return -1; } /* Find and set the first available index */ idx = find_next_zero_bit(tx->in_use, tx->len, tx->last_ll_ts_idx_read + 1); if (idx == tx->len) idx = find_first_zero_bit(tx->in_use, tx->len); if (idx < tx->len) { /* We got a valid index that no other thread could have set. Store * a reference to the skb and the start time to allow discarding old * requests. */ set_bit(idx, tx->in_use); clear_bit(idx, tx->stale); tx->tstamps[idx].start = jiffies; tx->tstamps[idx].skb = skb_get(skb); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; ice_trace(tx_tstamp_request, skb, idx); } spin_unlock_irqrestore(&tx->lock, flags); /* return the appropriate PHY timestamp register index, -1 if no * indexes were available. */ if (idx >= tx->len) return -1; else return idx + tx->offset; } /** * ice_ptp_process_ts - Process the PTP Tx timestamps * @pf: Board private structure * * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise. */ enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf) { switch (pf->ptp.tx_interrupt_mode) { case ICE_PTP_TX_INTERRUPT_NONE: /* This device has the clock owner handle timestamps for it */ return ICE_TX_TSTAMP_WORK_DONE; case ICE_PTP_TX_INTERRUPT_SELF: /* This device handles its own timestamps */ return ice_ptp_tx_tstamp(&pf->ptp.port.tx); case ICE_PTP_TX_INTERRUPT_ALL: /* This device handles timestamps for all ports */ return ice_ptp_tx_tstamp_owner(pf); default: WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n", pf->ptp.tx_interrupt_mode); return ICE_TX_TSTAMP_WORK_DONE; } } /** * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt * @pf: Board private structure * * The device PHY issues Tx timestamp interrupts to the driver for processing * timestamp data from the PHY. It will not interrupt again until all * current timestamp data is read. In rare circumstances, it is possible that * the driver fails to read all outstanding data. * * To avoid getting permanently stuck, periodically check if the PHY has * outstanding timestamp data. If so, trigger an interrupt from software to * process this data. */ static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; bool trigger_oicr = false; unsigned int i; if (ice_is_e810(hw)) return; if (!ice_pf_src_tmr_owned(pf)) return; for (i = 0; i < ICE_MAX_QUAD; i++) { u64 tstamp_ready; int err; err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready); if (!err && tstamp_ready) { trigger_oicr = true; break; } } if (trigger_oicr) { /* Trigger a software interrupt, to ensure this data * gets processed. */ dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n"); wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); ice_flush(hw); } } static void ice_ptp_periodic_work(struct kthread_work *work) { struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); int err; if (!test_bit(ICE_FLAG_PTP, pf->flags)) return; err = ice_ptp_update_cached_phctime(pf); ice_ptp_maybe_trigger_tx_interrupt(pf); /* Run twice a second or reschedule if phc update failed */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, msecs_to_jiffies(err ? 10 : 500)); } /** * ice_ptp_reset - Initialize PTP hardware clock support after reset * @pf: Board private structure */ void ice_ptp_reset(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; struct timespec64 ts; int err, itr = 1; u64 time_diff; if (test_bit(ICE_PFR_REQ, pf->state) || !ice_pf_src_tmr_owned(pf)) goto pfr; err = ice_ptp_init_phc(hw); if (err) goto err; /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; goto err; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) { ice_ptp_unlock(hw); goto err; } /* Write the initial Time value to PHY and LAN using the cached PHC * time before the reset and time difference between stopping and * starting the clock. */ if (ptp->cached_phc_time) { time_diff = ktime_get_real_ns() - ptp->reset_time; ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); } else { ts = ktime_to_timespec64(ktime_get_real()); } err = ice_ptp_write_init(pf, &ts); if (err) { ice_ptp_unlock(hw); goto err; } /* Release the global hardware lock */ ice_ptp_unlock(hw); if (!ice_is_e810(hw)) { /* Enable quad interrupts */ err = ice_ptp_tx_ena_intr(pf, true, itr); if (err) goto err; } pfr: /* Init Tx structures */ if (ice_is_e810(&pf->hw)) { err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); } else { kthread_init_delayed_work(&ptp->port.ov_work, ice_ptp_wait_for_offsets); err = ice_ptp_init_tx_e82x(pf, &ptp->port.tx, ptp->port.port_num); } if (err) goto err; set_bit(ICE_FLAG_PTP, pf->flags); /* Restart the PHY timestamping block */ if (!test_bit(ICE_PFR_REQ, pf->state) && ice_pf_src_tmr_owned(pf)) ice_ptp_restart_all_phy(pf); /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); return; err: dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); } /** * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device * @aux_dev: auxiliary device to get the auxiliary PF for */ static struct ice_pf * ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev) { struct ice_ptp_port *aux_port; struct ice_ptp *aux_ptp; aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev); aux_ptp = container_of(aux_port, struct ice_ptp, port); return container_of(aux_ptp, struct ice_pf, ptp); } /** * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device * @aux_dev: auxiliary device to get the PF for */ static struct ice_pf * ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev) { struct ice_ptp_port_owner *ports_owner; struct auxiliary_driver *aux_drv; struct ice_ptp *owner_ptp; if (!aux_dev->dev.driver) return NULL; aux_drv = to_auxiliary_drv(aux_dev->dev.driver); ports_owner = container_of(aux_drv, struct ice_ptp_port_owner, aux_driver); owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner); return container_of(owner_ptp, struct ice_pf, ptp); } /** * ice_ptp_auxbus_probe - Probe auxiliary devices * @aux_dev: PF's auxiliary device * @id: Auxiliary device ID */ static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev, const struct auxiliary_device_id *id) { struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev); if (WARN_ON(!owner_pf)) return -ENODEV; INIT_LIST_HEAD(&aux_pf->ptp.port.list_member); mutex_lock(&owner_pf->ptp.ports_owner.lock); list_add(&aux_pf->ptp.port.list_member, &owner_pf->ptp.ports_owner.ports); mutex_unlock(&owner_pf->ptp.ports_owner.lock); return 0; } /** * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus * @aux_dev: PF's auxiliary device */ static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev) { struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev); mutex_lock(&owner_pf->ptp.ports_owner.lock); list_del(&aux_pf->ptp.port.list_member); mutex_unlock(&owner_pf->ptp.ports_owner.lock); } /** * ice_ptp_auxbus_shutdown * @aux_dev: PF's auxiliary device */ static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev) { /* Doing nothing here, but handle to auxbus driver must be satisfied */ } /** * ice_ptp_auxbus_suspend * @aux_dev: PF's auxiliary device * @state: power management state indicator */ static int ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state) { /* Doing nothing here, but handle to auxbus driver must be satisfied */ return 0; } /** * ice_ptp_auxbus_resume * @aux_dev: PF's auxiliary device */ static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev) { /* Doing nothing here, but handle to auxbus driver must be satisfied */ return 0; } /** * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table * @pf: Board private structure * @name: auxiliary bus driver name */ static struct auxiliary_device_id * ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name) { struct auxiliary_device_id *ids; /* Second id left empty to terminate the array */ ids = devm_kcalloc(ice_pf_to_dev(pf), 2, sizeof(struct auxiliary_device_id), GFP_KERNEL); if (!ids) return NULL; snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name); return ids; } /** * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver * @pf: Board private structure */ static int ice_ptp_register_auxbus_driver(struct ice_pf *pf) { struct auxiliary_driver *aux_driver; struct ice_ptp *ptp; struct device *dev; char *name; int err; ptp = &pf->ptp; dev = ice_pf_to_dev(pf); aux_driver = &ptp->ports_owner.aux_driver; INIT_LIST_HEAD(&ptp->ports_owner.ports); mutex_init(&ptp->ports_owner.lock); name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u", pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn), ice_get_ptp_src_clock_index(&pf->hw)); aux_driver->name = name; aux_driver->shutdown = ice_ptp_auxbus_shutdown; aux_driver->suspend = ice_ptp_auxbus_suspend; aux_driver->remove = ice_ptp_auxbus_remove; aux_driver->resume = ice_ptp_auxbus_resume; aux_driver->probe = ice_ptp_auxbus_probe; aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name); if (!aux_driver->id_table) return -ENOMEM; err = auxiliary_driver_register(aux_driver); if (err) { devm_kfree(dev, aux_driver->id_table); dev_err(dev, "Failed registering aux_driver, name <%s>\n", name); } return err; } /** * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver * @pf: Board private structure */ static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf) { struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver; auxiliary_driver_unregister(aux_driver); devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table); mutex_destroy(&pf->ptp.ports_owner.lock); } /** * ice_ptp_clock_index - Get the PTP clock index for this device * @pf: Board private structure * * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock * is associated. */ int ice_ptp_clock_index(struct ice_pf *pf) { struct auxiliary_device *aux_dev; struct ice_pf *owner_pf; struct ptp_clock *clock; aux_dev = &pf->ptp.port.aux_dev; owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev); if (!owner_pf) return -1; clock = owner_pf->ptp.clock; return clock ? ptp_clock_index(clock) : -1; } /** * ice_ptp_prepare_for_reset - Prepare PTP for reset * @pf: Board private structure */ void ice_ptp_prepare_for_reset(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; u8 src_tmr; clear_bit(ICE_FLAG_PTP, pf->flags); /* Disable timestamping for both Tx and Rx */ ice_ptp_disable_timestamp_mode(pf); kthread_cancel_delayed_work_sync(&ptp->work); if (test_bit(ICE_PFR_REQ, pf->state)) return; ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); src_tmr = ice_get_ptp_src_clock_index(&pf->hw); /* Disable source clock */ wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); /* Acquire PHC and system timer to restore after reset */ ptp->reset_time = ktime_get_real_ns(); } /** * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device * @pf: Board private structure * * Setup and initialize a PTP clock device that represents the device hardware * clock. Save the clock index for other functions connected to the same * hardware resource. */ static int ice_ptp_init_owner(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; struct timespec64 ts; int err, itr = 1; err = ice_ptp_init_phc(hw); if (err) { dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", err); return err; } /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; goto err_exit; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) { ice_ptp_unlock(hw); goto err_exit; } ts = ktime_to_timespec64(ktime_get_real()); /* Write the initial Time value to PHY and LAN */ err = ice_ptp_write_init(pf, &ts); if (err) { ice_ptp_unlock(hw); goto err_exit; } /* Release the global hardware lock */ ice_ptp_unlock(hw); if (!ice_is_e810(hw)) { /* Enable quad interrupts */ err = ice_ptp_tx_ena_intr(pf, true, itr); if (err) goto err_exit; } /* Ensure we have a clock device */ err = ice_ptp_create_clock(pf); if (err) goto err_clk; err = ice_ptp_register_auxbus_driver(pf); if (err) { dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver"); goto err_aux; } return 0; err_aux: ptp_clock_unregister(pf->ptp.clock); err_clk: pf->ptp.clock = NULL; err_exit: return err; } /** * ice_ptp_init_work - Initialize PTP work threads * @pf: Board private structure * @ptp: PF PTP structure */ static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) { struct kthread_worker *kworker; /* Initialize work functions */ kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); /* Allocate a kworker for handling work required for the ports * connected to the PTP hardware clock. */ kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(ice_pf_to_dev(pf))); if (IS_ERR(kworker)) return PTR_ERR(kworker); ptp->kworker = kworker; /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); return 0; } /** * ice_ptp_init_port - Initialize PTP port structure * @pf: Board private structure * @ptp_port: PTP port structure */ static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) { struct ice_hw *hw = &pf->hw; mutex_init(&ptp_port->ps_lock); switch (hw->phy_model) { case ICE_PHY_E810: return ice_ptp_init_tx_e810(pf, &ptp_port->tx); case ICE_PHY_E82X: kthread_init_delayed_work(&ptp_port->ov_work, ice_ptp_wait_for_offsets); return ice_ptp_init_tx_e82x(pf, &ptp_port->tx, ptp_port->port_num); default: return -ENODEV; } } /** * ice_ptp_release_auxbus_device * @dev: device that utilizes the auxbus */ static void ice_ptp_release_auxbus_device(struct device *dev) { /* Doing nothing here, but handle to auxbux device must be satisfied */ } /** * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device * @pf: Board private structure */ static int ice_ptp_create_auxbus_device(struct ice_pf *pf) { struct auxiliary_device *aux_dev; struct ice_ptp *ptp; struct device *dev; char *name; int err; u32 id; ptp = &pf->ptp; id = ptp->port.port_num; dev = ice_pf_to_dev(pf); aux_dev = &ptp->port.aux_dev; name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u", pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn), ice_get_ptp_src_clock_index(&pf->hw)); aux_dev->name = name; aux_dev->id = id; aux_dev->dev.release = ice_ptp_release_auxbus_device; aux_dev->dev.parent = dev; err = auxiliary_device_init(aux_dev); if (err) goto aux_err; err = auxiliary_device_add(aux_dev); if (err) { auxiliary_device_uninit(aux_dev); goto aux_err; } return 0; aux_err: dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name); devm_kfree(dev, name); return err; } /** * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device * @pf: Board private structure */ static void ice_ptp_remove_auxbus_device(struct ice_pf *pf) { struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev; auxiliary_device_delete(aux_dev); auxiliary_device_uninit(aux_dev); memset(aux_dev, 0, sizeof(*aux_dev)); } /** * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode * @pf: Board private structure * * Initialize the Tx timestamp interrupt mode for this device. For most device * types, each PF processes the interrupt and manages its own timestamps. For * E822-based devices, only the clock owner processes the timestamps. Other * PFs disable the interrupt and do not process their own timestamps. */ static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf) { switch (pf->hw.phy_model) { case ICE_PHY_E82X: /* E822 based PHY has the clock owner process the interrupt * for all ports. */ if (ice_pf_src_tmr_owned(pf)) pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL; else pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE; break; default: /* other PHY types handle their own Tx interrupt */ pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF; } } /** * ice_ptp_init - Initialize PTP hardware clock support * @pf: Board private structure * * Set up the device for interacting with the PTP hardware clock for all * functions, both the function that owns the clock hardware, and the * functions connected to the clock hardware. * * The clock owner will allocate and register a ptp_clock with the * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work * items used for asynchronous work such as Tx timestamps and periodic work. */ void ice_ptp_init(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; int err; ice_ptp_init_phy_model(hw); ice_ptp_init_tx_interrupt_mode(pf); /* If this function owns the clock hardware, it must allocate and * configure the PTP clock device to represent it. */ if (ice_pf_src_tmr_owned(pf)) { err = ice_ptp_init_owner(pf); if (err) goto err; } ptp->port.port_num = hw->pf_id; err = ice_ptp_init_port(pf, &ptp->port); if (err) goto err; /* Start the PHY timestamping block */ ice_ptp_reset_phy_timestamping(pf); /* Configure initial Tx interrupt settings */ ice_ptp_cfg_tx_interrupt(pf); set_bit(ICE_FLAG_PTP, pf->flags); err = ice_ptp_init_work(pf, ptp); if (err) goto err; err = ice_ptp_create_auxbus_device(pf); if (err) goto err; dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); return; err: /* If we registered a PTP clock, release it */ if (pf->ptp.clock) { ptp_clock_unregister(ptp->clock); pf->ptp.clock = NULL; } clear_bit(ICE_FLAG_PTP, pf->flags); dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); } /** * ice_ptp_release - Disable the driver/HW support and unregister the clock * @pf: Board private structure * * This function handles the cleanup work required from the initialization by * clearing out the important information and unregistering the clock */ void ice_ptp_release(struct ice_pf *pf) { if (!test_bit(ICE_FLAG_PTP, pf->flags)) return; /* Disable timestamping for both Tx and Rx */ ice_ptp_disable_timestamp_mode(pf); ice_ptp_remove_auxbus_device(pf); ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); clear_bit(ICE_FLAG_PTP, pf->flags); kthread_cancel_delayed_work_sync(&pf->ptp.work); ice_ptp_port_phy_stop(&pf->ptp.port); mutex_destroy(&pf->ptp.port.ps_lock); if (pf->ptp.kworker) { kthread_destroy_worker(pf->ptp.kworker); pf->ptp.kworker = NULL; } if (!pf->ptp.clock) return; /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); ptp_clock_unregister(pf->ptp.clock); pf->ptp.clock = NULL; ice_ptp_unregister_auxbus_driver(pf); dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); }