/* * Broadcom GENET MDIO routines * * Copyright (c) 2014 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcmgenet.h" /* read a value from the MII */ static int bcmgenet_mii_read(struct mii_bus *bus, int phy_id, int location) { int ret; struct net_device *dev = bus->priv; struct bcmgenet_priv *priv = netdev_priv(dev); u32 reg; bcmgenet_umac_writel(priv, (MDIO_RD | (phy_id << MDIO_PMD_SHIFT) | (location << MDIO_REG_SHIFT)), UMAC_MDIO_CMD); /* Start MDIO transaction*/ reg = bcmgenet_umac_readl(priv, UMAC_MDIO_CMD); reg |= MDIO_START_BUSY; bcmgenet_umac_writel(priv, reg, UMAC_MDIO_CMD); wait_event_timeout(priv->wq, !(bcmgenet_umac_readl(priv, UMAC_MDIO_CMD) & MDIO_START_BUSY), HZ / 100); ret = bcmgenet_umac_readl(priv, UMAC_MDIO_CMD); /* Some broken devices are known not to release the line during * turn-around, e.g: Broadcom BCM53125 external switches, so check for * that condition here and ignore the MDIO controller read failure * indication. */ if (!(bus->phy_ignore_ta_mask & 1 << phy_id) && (ret & MDIO_READ_FAIL)) return -EIO; return ret & 0xffff; } /* write a value to the MII */ static int bcmgenet_mii_write(struct mii_bus *bus, int phy_id, int location, u16 val) { struct net_device *dev = bus->priv; struct bcmgenet_priv *priv = netdev_priv(dev); u32 reg; bcmgenet_umac_writel(priv, (MDIO_WR | (phy_id << MDIO_PMD_SHIFT) | (location << MDIO_REG_SHIFT) | (0xffff & val)), UMAC_MDIO_CMD); reg = bcmgenet_umac_readl(priv, UMAC_MDIO_CMD); reg |= MDIO_START_BUSY; bcmgenet_umac_writel(priv, reg, UMAC_MDIO_CMD); wait_event_timeout(priv->wq, !(bcmgenet_umac_readl(priv, UMAC_MDIO_CMD) & MDIO_START_BUSY), HZ / 100); return 0; } /* setup netdev link state when PHY link status change and * update UMAC and RGMII block when link up */ void bcmgenet_mii_setup(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); struct phy_device *phydev = priv->phydev; u32 reg, cmd_bits = 0; bool status_changed = false; if (priv->old_link != phydev->link) { status_changed = true; priv->old_link = phydev->link; } if (phydev->link) { /* check speed/duplex/pause changes */ if (priv->old_speed != phydev->speed) { status_changed = true; priv->old_speed = phydev->speed; } if (priv->old_duplex != phydev->duplex) { status_changed = true; priv->old_duplex = phydev->duplex; } if (priv->old_pause != phydev->pause) { status_changed = true; priv->old_pause = phydev->pause; } /* done if nothing has changed */ if (!status_changed) return; /* speed */ if (phydev->speed == SPEED_1000) cmd_bits = UMAC_SPEED_1000; else if (phydev->speed == SPEED_100) cmd_bits = UMAC_SPEED_100; else cmd_bits = UMAC_SPEED_10; cmd_bits <<= CMD_SPEED_SHIFT; /* duplex */ if (phydev->duplex != DUPLEX_FULL) cmd_bits |= CMD_HD_EN; /* pause capability */ if (!phydev->pause) cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE; /* * Program UMAC and RGMII block based on established * link speed, duplex, and pause. The speed set in * umac->cmd tell RGMII block which clock to use for * transmit -- 25MHz(100Mbps) or 125MHz(1Gbps). * Receive clock is provided by the PHY. */ reg = bcmgenet_ext_readl(priv, EXT_RGMII_OOB_CTRL); reg &= ~OOB_DISABLE; reg |= RGMII_LINK; bcmgenet_ext_writel(priv, reg, EXT_RGMII_OOB_CTRL); reg = bcmgenet_umac_readl(priv, UMAC_CMD); reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) | CMD_HD_EN | CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE); reg |= cmd_bits; bcmgenet_umac_writel(priv, reg, UMAC_CMD); } else { /* done if nothing has changed */ if (!status_changed) return; /* needed for MoCA fixed PHY to reflect correct link status */ netif_carrier_off(dev); } phy_print_status(phydev); } void bcmgenet_phy_power_set(struct net_device *dev, bool enable) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 reg = 0; /* EXT_GPHY_CTRL is only valid for GENETv4 and onward */ if (!GENET_IS_V4(priv)) return; reg = bcmgenet_ext_readl(priv, EXT_GPHY_CTRL); if (enable) { reg &= ~EXT_CK25_DIS; bcmgenet_ext_writel(priv, reg, EXT_GPHY_CTRL); mdelay(1); reg &= ~(EXT_CFG_IDDQ_BIAS | EXT_CFG_PWR_DOWN); reg |= EXT_GPHY_RESET; bcmgenet_ext_writel(priv, reg, EXT_GPHY_CTRL); mdelay(1); reg &= ~EXT_GPHY_RESET; } else { reg |= EXT_CFG_IDDQ_BIAS | EXT_CFG_PWR_DOWN | EXT_GPHY_RESET; bcmgenet_ext_writel(priv, reg, EXT_GPHY_CTRL); mdelay(1); reg |= EXT_CK25_DIS; } bcmgenet_ext_writel(priv, reg, EXT_GPHY_CTRL); udelay(60); } static void bcmgenet_internal_phy_setup(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 reg; /* Power up PHY */ bcmgenet_phy_power_set(dev, true); /* enable APD */ reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); reg |= EXT_PWR_DN_EN_LD; bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); } static void bcmgenet_moca_phy_setup(struct bcmgenet_priv *priv) { u32 reg; /* Speed settings are set in bcmgenet_mii_setup() */ reg = bcmgenet_sys_readl(priv, SYS_PORT_CTRL); reg |= LED_ACT_SOURCE_MAC; bcmgenet_sys_writel(priv, reg, SYS_PORT_CTRL); } int bcmgenet_mii_config(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); struct phy_device *phydev = priv->phydev; struct device *kdev = &priv->pdev->dev; const char *phy_name = NULL; u32 id_mode_dis = 0; u32 port_ctrl; u32 reg; priv->ext_phy = !priv->internal_phy && (priv->phy_interface != PHY_INTERFACE_MODE_MOCA); if (priv->internal_phy) priv->phy_interface = PHY_INTERFACE_MODE_NA; switch (priv->phy_interface) { case PHY_INTERFACE_MODE_NA: case PHY_INTERFACE_MODE_MOCA: /* Irrespective of the actually configured PHY speed (100 or * 1000) GENETv4 only has an internal GPHY so we will just end * up masking the Gigabit features from what we support, not * switching to the EPHY */ if (GENET_IS_V4(priv)) port_ctrl = PORT_MODE_INT_GPHY; else port_ctrl = PORT_MODE_INT_EPHY; bcmgenet_sys_writel(priv, port_ctrl, SYS_PORT_CTRL); if (priv->internal_phy) { phy_name = "internal PHY"; bcmgenet_internal_phy_setup(dev); } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { phy_name = "MoCA"; bcmgenet_moca_phy_setup(priv); } break; case PHY_INTERFACE_MODE_MII: phy_name = "external MII"; phydev->supported &= PHY_BASIC_FEATURES; bcmgenet_sys_writel(priv, PORT_MODE_EXT_EPHY, SYS_PORT_CTRL); break; case PHY_INTERFACE_MODE_REVMII: phy_name = "external RvMII"; /* of_mdiobus_register took care of reading the 'max-speed' * PHY property for us, effectively limiting the PHY supported * capabilities, use that knowledge to also configure the * Reverse MII interface correctly. */ if ((priv->phydev->supported & PHY_BASIC_FEATURES) == PHY_BASIC_FEATURES) port_ctrl = PORT_MODE_EXT_RVMII_25; else port_ctrl = PORT_MODE_EXT_RVMII_50; bcmgenet_sys_writel(priv, port_ctrl, SYS_PORT_CTRL); break; case PHY_INTERFACE_MODE_RGMII: /* RGMII_NO_ID: TXC transitions at the same time as TXD * (requires PCB or receiver-side delay) * RGMII: Add 2ns delay on TXC (90 degree shift) * * ID is implicitly disabled for 100Mbps (RG)MII operation. */ id_mode_dis = BIT(16); /* fall through */ case PHY_INTERFACE_MODE_RGMII_TXID: if (id_mode_dis) phy_name = "external RGMII (no delay)"; else phy_name = "external RGMII (TX delay)"; bcmgenet_sys_writel(priv, PORT_MODE_EXT_GPHY, SYS_PORT_CTRL); break; default: dev_err(kdev, "unknown phy mode: %d\n", priv->phy_interface); return -EINVAL; } /* This is an external PHY (xMII), so we need to enable the RGMII * block for the interface to work */ if (priv->ext_phy) { reg = bcmgenet_ext_readl(priv, EXT_RGMII_OOB_CTRL); reg |= RGMII_MODE_EN | id_mode_dis; bcmgenet_ext_writel(priv, reg, EXT_RGMII_OOB_CTRL); } dev_info_once(kdev, "configuring instance for %s\n", phy_name); return 0; } int bcmgenet_mii_probe(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); struct device_node *dn = priv->pdev->dev.of_node; struct phy_device *phydev; u32 phy_flags; int ret; /* Communicate the integrated PHY revision */ phy_flags = priv->gphy_rev; /* Initialize link state variables that bcmgenet_mii_setup() uses */ priv->old_link = -1; priv->old_speed = -1; priv->old_duplex = -1; priv->old_pause = -1; if (dn) { phydev = of_phy_connect(dev, priv->phy_dn, bcmgenet_mii_setup, phy_flags, priv->phy_interface); if (!phydev) { pr_err("could not attach to PHY\n"); return -ENODEV; } } else { phydev = priv->phydev; phydev->dev_flags = phy_flags; ret = phy_connect_direct(dev, phydev, bcmgenet_mii_setup, priv->phy_interface); if (ret) { pr_err("could not attach to PHY\n"); return -ENODEV; } } priv->phydev = phydev; /* Configure port multiplexer based on what the probed PHY device since * reading the 'max-speed' property determines the maximum supported * PHY speed which is needed for bcmgenet_mii_config() to configure * things appropriately. */ ret = bcmgenet_mii_config(dev); if (ret) { phy_disconnect(priv->phydev); return ret; } phydev->advertising = phydev->supported; /* The internal PHY has its link interrupts routed to the * Ethernet MAC ISRs */ if (priv->internal_phy) priv->mii_bus->irq[phydev->addr] = PHY_IGNORE_INTERRUPT; else priv->mii_bus->irq[phydev->addr] = PHY_POLL; return 0; } /* Workaround for integrated BCM7xxx Gigabit PHYs which have a problem with * their internal MDIO management controller making them fail to successfully * be read from or written to for the first transaction. We insert a dummy * BMSR read here to make sure that phy_get_device() and get_phy_id() can * correctly read the PHY MII_PHYSID1/2 registers and successfully register a * PHY device for this peripheral. * * Once the PHY driver is registered, we can workaround subsequent reads from * there (e.g: during system-wide power management). * * bus->reset is invoked before mdiobus_scan during mdiobus_register and is * therefore the right location to stick that workaround. Since we do not want * to read from non-existing PHYs, we either use bus->phy_mask or do a manual * Device Tree scan to limit the search area. */ static int bcmgenet_mii_bus_reset(struct mii_bus *bus) { struct net_device *dev = bus->priv; struct bcmgenet_priv *priv = netdev_priv(dev); struct device_node *np = priv->mdio_dn; struct device_node *child = NULL; u32 read_mask = 0; int addr = 0; if (!np) { read_mask = 1 << priv->phy_addr; } else { for_each_available_child_of_node(np, child) { addr = of_mdio_parse_addr(&dev->dev, child); if (addr < 0) continue; read_mask |= 1 << addr; } } for (addr = 0; addr < PHY_MAX_ADDR; addr++) { if (read_mask & 1 << addr) { dev_dbg(&dev->dev, "Workaround for PHY @ %d\n", addr); mdiobus_read(bus, addr, MII_BMSR); } } return 0; } static int bcmgenet_mii_alloc(struct bcmgenet_priv *priv) { struct mii_bus *bus; if (priv->mii_bus) return 0; priv->mii_bus = mdiobus_alloc(); if (!priv->mii_bus) { pr_err("failed to allocate\n"); return -ENOMEM; } bus = priv->mii_bus; bus->priv = priv->dev; bus->name = "bcmgenet MII bus"; bus->parent = &priv->pdev->dev; bus->read = bcmgenet_mii_read; bus->write = bcmgenet_mii_write; bus->reset = bcmgenet_mii_bus_reset; snprintf(bus->id, MII_BUS_ID_SIZE, "%s-%d", priv->pdev->name, priv->pdev->id); bus->irq = kcalloc(PHY_MAX_ADDR, sizeof(int), GFP_KERNEL); if (!bus->irq) { mdiobus_free(priv->mii_bus); return -ENOMEM; } return 0; } static int bcmgenet_mii_of_init(struct bcmgenet_priv *priv) { struct device_node *dn = priv->pdev->dev.of_node; struct device *kdev = &priv->pdev->dev; const char *phy_mode_str = NULL; char *compat; int phy_mode; int ret; compat = kasprintf(GFP_KERNEL, "brcm,genet-mdio-v%d", priv->version); if (!compat) return -ENOMEM; priv->mdio_dn = of_find_compatible_node(dn, NULL, compat); kfree(compat); if (!priv->mdio_dn) { dev_err(kdev, "unable to find MDIO bus node\n"); return -ENODEV; } ret = of_mdiobus_register(priv->mii_bus, priv->mdio_dn); if (ret) { dev_err(kdev, "failed to register MDIO bus\n"); return ret; } /* Fetch the PHY phandle */ priv->phy_dn = of_parse_phandle(dn, "phy-handle", 0); /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ if (!priv->phy_dn && of_phy_is_fixed_link(dn)) { ret = of_phy_register_fixed_link(dn); if (ret) return ret; priv->phy_dn = of_node_get(dn); } /* Get the link mode */ phy_mode = of_get_phy_mode(dn); priv->phy_interface = phy_mode; /* We need to specifically look up whether this PHY interface is internal * or not *before* we even try to probe the PHY driver over MDIO as we * may have shut down the internal PHY for power saving purposes. */ if (phy_mode < 0) { ret = of_property_read_string(dn, "phy-mode", &phy_mode_str); if (ret < 0) { dev_err(kdev, "invalid PHY mode property\n"); return ret; } priv->phy_interface = PHY_INTERFACE_MODE_NA; if (!strcasecmp(phy_mode_str, "internal")) priv->internal_phy = true; } return 0; } static int bcmgenet_fixed_phy_link_update(struct net_device *dev, struct fixed_phy_status *status) { if (dev && dev->phydev && status) status->link = dev->phydev->link; return 0; } static int bcmgenet_mii_pd_init(struct bcmgenet_priv *priv) { struct device *kdev = &priv->pdev->dev; struct bcmgenet_platform_data *pd = kdev->platform_data; struct mii_bus *mdio = priv->mii_bus; struct phy_device *phydev; int ret; if (pd->phy_interface != PHY_INTERFACE_MODE_MOCA && pd->mdio_enabled) { /* * Internal or external PHY with MDIO access */ if (pd->phy_address >= 0 && pd->phy_address < PHY_MAX_ADDR) mdio->phy_mask = ~(1 << pd->phy_address); else mdio->phy_mask = 0; ret = mdiobus_register(mdio); if (ret) { dev_err(kdev, "failed to register MDIO bus\n"); return ret; } if (pd->phy_address >= 0 && pd->phy_address < PHY_MAX_ADDR) phydev = mdio->phy_map[pd->phy_address]; else phydev = phy_find_first(mdio); if (!phydev) { dev_err(kdev, "failed to register PHY device\n"); mdiobus_unregister(mdio); return -ENODEV; } } else { /* * MoCA port or no MDIO access. * Use fixed PHY to represent the link layer. */ struct fixed_phy_status fphy_status = { .link = 1, .speed = pd->phy_speed, .duplex = pd->phy_duplex, .pause = 0, .asym_pause = 0, }; phydev = fixed_phy_register(PHY_POLL, &fphy_status, NULL); if (!phydev || IS_ERR(phydev)) { dev_err(kdev, "failed to register fixed PHY device\n"); return -ENODEV; } if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) { ret = fixed_phy_set_link_update( phydev, bcmgenet_fixed_phy_link_update); if (!ret) phydev->link = 0; } } priv->phydev = phydev; priv->phy_interface = pd->phy_interface; return 0; } static int bcmgenet_mii_bus_init(struct bcmgenet_priv *priv) { struct device_node *dn = priv->pdev->dev.of_node; if (dn) return bcmgenet_mii_of_init(priv); else return bcmgenet_mii_pd_init(priv); } int bcmgenet_mii_init(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); int ret; ret = bcmgenet_mii_alloc(priv); if (ret) return ret; ret = bcmgenet_mii_bus_init(priv); if (ret) goto out; return 0; out: of_node_put(priv->phy_dn); mdiobus_unregister(priv->mii_bus); kfree(priv->mii_bus->irq); mdiobus_free(priv->mii_bus); return ret; } void bcmgenet_mii_exit(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); of_node_put(priv->phy_dn); mdiobus_unregister(priv->mii_bus); kfree(priv->mii_bus->irq); mdiobus_free(priv->mii_bus); }