/***************************************************************************** * * * File: sge.c * * $Revision: 1.26 $ * * $Date: 2005/06/21 18:29:48 $ * * Description: * * DMA engine. * * part of the Chelsio 10Gb Ethernet Driver. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License, version 2, as * * published by the Free Software Foundation. * * * * You should have received a copy of the GNU General Public License along * * with this program; if not, write to the Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * * * http://www.chelsio.com * * * * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * * All rights reserved. * * * * Maintainers: maintainers@chelsio.com * * * * Authors: Dimitrios Michailidis <dm@chelsio.com> * * Tina Yang <tainay@chelsio.com> * * Felix Marti <felix@chelsio.com> * * Scott Bardone <sbardone@chelsio.com> * * Kurt Ottaway <kottaway@chelsio.com> * * Frank DiMambro <frank@chelsio.com> * * * * History: * * * ****************************************************************************/ #include "common.h" #include <linux/types.h> #include <linux/errno.h> #include <linux/pci.h> #include <linux/ktime.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/tcp.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/if_arp.h> #include "cpl5_cmd.h" #include "sge.h" #include "regs.h" #include "espi.h" /* This belongs in if_ether.h */ #define ETH_P_CPL5 0xf #define SGE_CMDQ_N 2 #define SGE_FREELQ_N 2 #define SGE_CMDQ0_E_N 1024 #define SGE_CMDQ1_E_N 128 #define SGE_FREEL_SIZE 4096 #define SGE_JUMBO_FREEL_SIZE 512 #define SGE_FREEL_REFILL_THRESH 16 #define SGE_RESPQ_E_N 1024 #define SGE_INTRTIMER_NRES 1000 #define SGE_RX_SM_BUF_SIZE 1536 #define SGE_TX_DESC_MAX_PLEN 16384 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4) /* * Period of the TX buffer reclaim timer. This timer does not need to run * frequently as TX buffers are usually reclaimed by new TX packets. */ #define TX_RECLAIM_PERIOD (HZ / 4) #define M_CMD_LEN 0x7fffffff #define V_CMD_LEN(v) (v) #define G_CMD_LEN(v) ((v) & M_CMD_LEN) #define V_CMD_GEN1(v) ((v) << 31) #define V_CMD_GEN2(v) (v) #define F_CMD_DATAVALID (1 << 1) #define F_CMD_SOP (1 << 2) #define V_CMD_EOP(v) ((v) << 3) /* * Command queue, receive buffer list, and response queue descriptors. */ #if defined(__BIG_ENDIAN_BITFIELD) struct cmdQ_e { u32 addr_lo; u32 len_gen; u32 flags; u32 addr_hi; }; struct freelQ_e { u32 addr_lo; u32 len_gen; u32 gen2; u32 addr_hi; }; struct respQ_e { u32 Qsleeping : 4; u32 Cmdq1CreditReturn : 5; u32 Cmdq1DmaComplete : 5; u32 Cmdq0CreditReturn : 5; u32 Cmdq0DmaComplete : 5; u32 FreelistQid : 2; u32 CreditValid : 1; u32 DataValid : 1; u32 Offload : 1; u32 Eop : 1; u32 Sop : 1; u32 GenerationBit : 1; u32 BufferLength; }; #elif defined(__LITTLE_ENDIAN_BITFIELD) struct cmdQ_e { u32 len_gen; u32 addr_lo; u32 addr_hi; u32 flags; }; struct freelQ_e { u32 len_gen; u32 addr_lo; u32 addr_hi; u32 gen2; }; struct respQ_e { u32 BufferLength; u32 GenerationBit : 1; u32 Sop : 1; u32 Eop : 1; u32 Offload : 1; u32 DataValid : 1; u32 CreditValid : 1; u32 FreelistQid : 2; u32 Cmdq0DmaComplete : 5; u32 Cmdq0CreditReturn : 5; u32 Cmdq1DmaComplete : 5; u32 Cmdq1CreditReturn : 5; u32 Qsleeping : 4; } ; #endif /* * SW Context Command and Freelist Queue Descriptors */ struct cmdQ_ce { struct sk_buff *skb; DECLARE_PCI_UNMAP_ADDR(dma_addr); DECLARE_PCI_UNMAP_LEN(dma_len); }; struct freelQ_ce { struct sk_buff *skb; DECLARE_PCI_UNMAP_ADDR(dma_addr); DECLARE_PCI_UNMAP_LEN(dma_len); }; /* * SW command, freelist and response rings */ struct cmdQ { unsigned long status; /* HW DMA fetch status */ unsigned int in_use; /* # of in-use command descriptors */ unsigned int size; /* # of descriptors */ unsigned int processed; /* total # of descs HW has processed */ unsigned int cleaned; /* total # of descs SW has reclaimed */ unsigned int stop_thres; /* SW TX queue suspend threshold */ u16 pidx; /* producer index (SW) */ u16 cidx; /* consumer index (HW) */ u8 genbit; /* current generation (=valid) bit */ u8 sop; /* is next entry start of packet? */ struct cmdQ_e *entries; /* HW command descriptor Q */ struct cmdQ_ce *centries; /* SW command context descriptor Q */ dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */ spinlock_t lock; /* Lock to protect cmdQ enqueuing */ }; struct freelQ { unsigned int credits; /* # of available RX buffers */ unsigned int size; /* free list capacity */ u16 pidx; /* producer index (SW) */ u16 cidx; /* consumer index (HW) */ u16 rx_buffer_size; /* Buffer size on this free list */ u16 dma_offset; /* DMA offset to align IP headers */ u16 recycleq_idx; /* skb recycle q to use */ u8 genbit; /* current generation (=valid) bit */ struct freelQ_e *entries; /* HW freelist descriptor Q */ struct freelQ_ce *centries; /* SW freelist context descriptor Q */ dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */ }; struct respQ { unsigned int credits; /* credits to be returned to SGE */ unsigned int size; /* # of response Q descriptors */ u16 cidx; /* consumer index (SW) */ u8 genbit; /* current generation(=valid) bit */ struct respQ_e *entries; /* HW response descriptor Q */ dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */ }; /* Bit flags for cmdQ.status */ enum { CMDQ_STAT_RUNNING = 1, /* fetch engine is running */ CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */ }; /* T204 TX SW scheduler */ /* Per T204 TX port */ struct sched_port { unsigned int avail; /* available bits - quota */ unsigned int drain_bits_per_1024ns; /* drain rate */ unsigned int speed; /* drain rate, mbps */ unsigned int mtu; /* mtu size */ struct sk_buff_head skbq; /* pending skbs */ }; /* Per T204 device */ struct sched { ktime_t last_updated; /* last time quotas were computed */ unsigned int max_avail; /* max bits to be sent to any port */ unsigned int port; /* port index (round robin ports) */ unsigned int num; /* num skbs in per port queues */ struct sched_port p[MAX_NPORTS]; struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */ }; static void restart_sched(unsigned long); /* * Main SGE data structure * * Interrupts are handled by a single CPU and it is likely that on a MP system * the application is migrated to another CPU. In that scenario, we try to * seperate the RX(in irq context) and TX state in order to decrease memory * contention. */ struct sge { struct adapter *adapter; /* adapter backpointer */ struct net_device *netdev; /* netdevice backpointer */ struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */ struct respQ respQ; /* response Q */ unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */ unsigned int rx_pkt_pad; /* RX padding for L2 packets */ unsigned int jumbo_fl; /* jumbo freelist Q index */ unsigned int intrtimer_nres; /* no-resource interrupt timer */ unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */ struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ struct timer_list espibug_timer; unsigned long espibug_timeout; struct sk_buff *espibug_skb[MAX_NPORTS]; u32 sge_control; /* shadow value of sge control reg */ struct sge_intr_counts stats; struct sge_port_stats *port_stats[MAX_NPORTS]; struct sched *tx_sched; struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp; }; /* * stop tasklet and free all pending skb's */ static void tx_sched_stop(struct sge *sge) { struct sched *s = sge->tx_sched; int i; tasklet_kill(&s->sched_tsk); for (i = 0; i < MAX_NPORTS; i++) __skb_queue_purge(&s->p[s->port].skbq); } /* * t1_sched_update_parms() is called when the MTU or link speed changes. It * re-computes scheduler parameters to scope with the change. */ unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port, unsigned int mtu, unsigned int speed) { struct sched *s = sge->tx_sched; struct sched_port *p = &s->p[port]; unsigned int max_avail_segs; pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed); if (speed) p->speed = speed; if (mtu) p->mtu = mtu; if (speed || mtu) { unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40); do_div(drain, (p->mtu + 50) * 1000); p->drain_bits_per_1024ns = (unsigned int) drain; if (p->speed < 1000) p->drain_bits_per_1024ns = 90 * p->drain_bits_per_1024ns / 100; } if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) { p->drain_bits_per_1024ns -= 16; s->max_avail = max(4096U, p->mtu + 16 + 14 + 4); max_avail_segs = max(1U, 4096 / (p->mtu - 40)); } else { s->max_avail = 16384; max_avail_segs = max(1U, 9000 / (p->mtu - 40)); } pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u " "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu, p->speed, s->max_avail, max_avail_segs, p->drain_bits_per_1024ns); return max_avail_segs * (p->mtu - 40); } /* * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of * data that can be pushed per port. */ void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val) { struct sched *s = sge->tx_sched; unsigned int i; s->max_avail = val; for (i = 0; i < MAX_NPORTS; i++) t1_sched_update_parms(sge, i, 0, 0); } /* * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port * is draining. */ void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port, unsigned int val) { struct sched *s = sge->tx_sched; struct sched_port *p = &s->p[port]; p->drain_bits_per_1024ns = val * 1024 / 1000; t1_sched_update_parms(sge, port, 0, 0); } /* * get_clock() implements a ns clock (see ktime_get) */ static inline ktime_t get_clock(void) { struct timespec ts; ktime_get_ts(&ts); return timespec_to_ktime(ts); } /* * tx_sched_init() allocates resources and does basic initialization. */ static int tx_sched_init(struct sge *sge) { struct sched *s; int i; s = kzalloc(sizeof (struct sched), GFP_KERNEL); if (!s) return -ENOMEM; pr_debug("tx_sched_init\n"); tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge); sge->tx_sched = s; for (i = 0; i < MAX_NPORTS; i++) { skb_queue_head_init(&s->p[i].skbq); t1_sched_update_parms(sge, i, 1500, 1000); } return 0; } /* * sched_update_avail() computes the delta since the last time it was called * and updates the per port quota (number of bits that can be sent to the any * port). */ static inline int sched_update_avail(struct sge *sge) { struct sched *s = sge->tx_sched; ktime_t now = get_clock(); unsigned int i; long long delta_time_ns; delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated)); pr_debug("sched_update_avail delta=%lld\n", delta_time_ns); if (delta_time_ns < 15000) return 0; for (i = 0; i < MAX_NPORTS; i++) { struct sched_port *p = &s->p[i]; unsigned int delta_avail; delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13; p->avail = min(p->avail + delta_avail, s->max_avail); } s->last_updated = now; return 1; } /* * sched_skb() is called from two different places. In the tx path, any * packet generating load on an output port will call sched_skb() * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq * context (skb == NULL). * The scheduler only returns a skb (which will then be sent) if the * length of the skb is <= the current quota of the output port. */ static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb, unsigned int credits) { struct sched *s = sge->tx_sched; struct sk_buff_head *skbq; unsigned int i, len, update = 1; pr_debug("sched_skb %p\n", skb); if (!skb) { if (!s->num) return NULL; } else { skbq = &s->p[skb->dev->if_port].skbq; __skb_queue_tail(skbq, skb); s->num++; skb = NULL; } if (credits < MAX_SKB_FRAGS + 1) goto out; again: for (i = 0; i < MAX_NPORTS; i++) { s->port = ++s->port & (MAX_NPORTS - 1); skbq = &s->p[s->port].skbq; skb = skb_peek(skbq); if (!skb) continue; len = skb->len; if (len <= s->p[s->port].avail) { s->p[s->port].avail -= len; s->num--; __skb_unlink(skb, skbq); goto out; } skb = NULL; } if (update-- && sched_update_avail(sge)) goto again; out: /* If there are more pending skbs, we use the hardware to schedule us * again. */ if (s->num && !skb) { struct cmdQ *q = &sge->cmdQ[0]; clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); } } pr_debug("sched_skb ret %p\n", skb); return skb; } /* * PIO to indicate that memory mapped Q contains valid descriptor(s). */ static inline void doorbell_pio(struct adapter *adapter, u32 val) { wmb(); writel(val, adapter->regs + A_SG_DOORBELL); } /* * Frees all RX buffers on the freelist Q. The caller must make sure that * the SGE is turned off before calling this function. */ static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q) { unsigned int cidx = q->cidx; while (q->credits--) { struct freelQ_ce *ce = &q->centries[cidx]; pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); dev_kfree_skb(ce->skb); ce->skb = NULL; if (++cidx == q->size) cidx = 0; } } /* * Free RX free list and response queue resources. */ static void free_rx_resources(struct sge *sge) { struct pci_dev *pdev = sge->adapter->pdev; unsigned int size, i; if (sge->respQ.entries) { size = sizeof(struct respQ_e) * sge->respQ.size; pci_free_consistent(pdev, size, sge->respQ.entries, sge->respQ.dma_addr); } for (i = 0; i < SGE_FREELQ_N; i++) { struct freelQ *q = &sge->freelQ[i]; if (q->centries) { free_freelQ_buffers(pdev, q); kfree(q->centries); } if (q->entries) { size = sizeof(struct freelQ_e) * q->size; pci_free_consistent(pdev, size, q->entries, q->dma_addr); } } } /* * Allocates basic RX resources, consisting of memory mapped freelist Qs and a * response queue. */ static int alloc_rx_resources(struct sge *sge, struct sge_params *p) { struct pci_dev *pdev = sge->adapter->pdev; unsigned int size, i; for (i = 0; i < SGE_FREELQ_N; i++) { struct freelQ *q = &sge->freelQ[i]; q->genbit = 1; q->size = p->freelQ_size[i]; q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN; size = sizeof(struct freelQ_e) * q->size; q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); if (!q->entries) goto err_no_mem; size = sizeof(struct freelQ_ce) * q->size; q->centries = kzalloc(size, GFP_KERNEL); if (!q->centries) goto err_no_mem; } /* * Calculate the buffer sizes for the two free lists. FL0 accommodates * regular sized Ethernet frames, FL1 is sized not to exceed 16K, * including all the sk_buff overhead. * * Note: For T2 FL0 and FL1 are reversed. */ sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data) + sge->freelQ[!sge->jumbo_fl].dma_offset; size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); sge->freelQ[sge->jumbo_fl].rx_buffer_size = size; /* * Setup which skb recycle Q should be used when recycling buffers from * each free list. */ sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0; sge->freelQ[sge->jumbo_fl].recycleq_idx = 1; sge->respQ.genbit = 1; sge->respQ.size = SGE_RESPQ_E_N; sge->respQ.credits = 0; size = sizeof(struct respQ_e) * sge->respQ.size; sge->respQ.entries = pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr); if (!sge->respQ.entries) goto err_no_mem; return 0; err_no_mem: free_rx_resources(sge); return -ENOMEM; } /* * Reclaims n TX descriptors and frees the buffers associated with them. */ static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n) { struct cmdQ_ce *ce; struct pci_dev *pdev = sge->adapter->pdev; unsigned int cidx = q->cidx; q->in_use -= n; ce = &q->centries[cidx]; while (n--) { if (likely(pci_unmap_len(ce, dma_len))) { pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), pci_unmap_len(ce, dma_len), PCI_DMA_TODEVICE); if (q->sop) q->sop = 0; } if (ce->skb) { dev_kfree_skb_any(ce->skb); q->sop = 1; } ce++; if (++cidx == q->size) { cidx = 0; ce = q->centries; } } q->cidx = cidx; } /* * Free TX resources. * * Assumes that SGE is stopped and all interrupts are disabled. */ static void free_tx_resources(struct sge *sge) { struct pci_dev *pdev = sge->adapter->pdev; unsigned int size, i; for (i = 0; i < SGE_CMDQ_N; i++) { struct cmdQ *q = &sge->cmdQ[i]; if (q->centries) { if (q->in_use) free_cmdQ_buffers(sge, q, q->in_use); kfree(q->centries); } if (q->entries) { size = sizeof(struct cmdQ_e) * q->size; pci_free_consistent(pdev, size, q->entries, q->dma_addr); } } } /* * Allocates basic TX resources, consisting of memory mapped command Qs. */ static int alloc_tx_resources(struct sge *sge, struct sge_params *p) { struct pci_dev *pdev = sge->adapter->pdev; unsigned int size, i; for (i = 0; i < SGE_CMDQ_N; i++) { struct cmdQ *q = &sge->cmdQ[i]; q->genbit = 1; q->sop = 1; q->size = p->cmdQ_size[i]; q->in_use = 0; q->status = 0; q->processed = q->cleaned = 0; q->stop_thres = 0; spin_lock_init(&q->lock); size = sizeof(struct cmdQ_e) * q->size; q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); if (!q->entries) goto err_no_mem; size = sizeof(struct cmdQ_ce) * q->size; q->centries = kzalloc(size, GFP_KERNEL); if (!q->centries) goto err_no_mem; } /* * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE * only. For queue 0 set the stop threshold so we can handle one more * packet from each port, plus reserve an additional 24 entries for * Ethernet packets only. Queue 1 never suspends nor do we reserve * space for Ethernet packets. */ sge->cmdQ[0].stop_thres = sge->adapter->params.nports * (MAX_SKB_FRAGS + 1); return 0; err_no_mem: free_tx_resources(sge); return -ENOMEM; } static inline void setup_ring_params(struct adapter *adapter, u64 addr, u32 size, int base_reg_lo, int base_reg_hi, int size_reg) { writel((u32)addr, adapter->regs + base_reg_lo); writel(addr >> 32, adapter->regs + base_reg_hi); writel(size, adapter->regs + size_reg); } /* * Enable/disable VLAN acceleration. */ void t1_set_vlan_accel(struct adapter *adapter, int on_off) { struct sge *sge = adapter->sge; sge->sge_control &= ~F_VLAN_XTRACT; if (on_off) sge->sge_control |= F_VLAN_XTRACT; if (adapter->open_device_map) { writel(sge->sge_control, adapter->regs + A_SG_CONTROL); readl(adapter->regs + A_SG_CONTROL); /* flush */ } } /* * Programs the various SGE registers. However, the engine is not yet enabled, * but sge->sge_control is setup and ready to go. */ static void configure_sge(struct sge *sge, struct sge_params *p) { struct adapter *ap = sge->adapter; writel(0, ap->regs + A_SG_CONTROL); setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); setup_ring_params(ap, sge->freelQ[0].dma_addr, sge->freelQ[0].size, A_SG_FL0BASELWR, A_SG_FL0BASEUPR, A_SG_FL0SIZE); setup_ring_params(ap, sge->freelQ[1].dma_addr, sge->freelQ[1].size, A_SG_FL1BASELWR, A_SG_FL1BASEUPR, A_SG_FL1SIZE); /* The threshold comparison uses <. */ writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD); setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT); sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | V_RX_PKT_OFFSET(sge->rx_pkt_pad); #if defined(__BIG_ENDIAN_BITFIELD) sge->sge_control |= F_ENABLE_BIG_ENDIAN; #endif /* Initialize no-resource timer */ sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap); t1_sge_set_coalesce_params(sge, p); } /* * Return the payload capacity of the jumbo free-list buffers. */ static inline unsigned int jumbo_payload_capacity(const struct sge *sge) { return sge->freelQ[sge->jumbo_fl].rx_buffer_size - sge->freelQ[sge->jumbo_fl].dma_offset - sizeof(struct cpl_rx_data); } /* * Frees all SGE related resources and the sge structure itself */ void t1_sge_destroy(struct sge *sge) { int i; for_each_port(sge->adapter, i) free_percpu(sge->port_stats[i]); kfree(sge->tx_sched); free_tx_resources(sge); free_rx_resources(sge); kfree(sge); } /* * Allocates new RX buffers on the freelist Q (and tracks them on the freelist * context Q) until the Q is full or alloc_skb fails. * * It is possible that the generation bits already match, indicating that the * buffer is already valid and nothing needs to be done. This happens when we * copied a received buffer into a new sk_buff during the interrupt processing. * * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad), * we specify a RX_OFFSET in order to make sure that the IP header is 4B * aligned. */ static void refill_free_list(struct sge *sge, struct freelQ *q) { struct pci_dev *pdev = sge->adapter->pdev; struct freelQ_ce *ce = &q->centries[q->pidx]; struct freelQ_e *e = &q->entries[q->pidx]; unsigned int dma_len = q->rx_buffer_size - q->dma_offset; while (q->credits < q->size) { struct sk_buff *skb; dma_addr_t mapping; skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC); if (!skb) break; skb_reserve(skb, q->dma_offset); mapping = pci_map_single(pdev, skb->data, dma_len, PCI_DMA_FROMDEVICE); skb_reserve(skb, sge->rx_pkt_pad); ce->skb = skb; pci_unmap_addr_set(ce, dma_addr, mapping); pci_unmap_len_set(ce, dma_len, dma_len); e->addr_lo = (u32)mapping; e->addr_hi = (u64)mapping >> 32; e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit); wmb(); e->gen2 = V_CMD_GEN2(q->genbit); e++; ce++; if (++q->pidx == q->size) { q->pidx = 0; q->genbit ^= 1; ce = q->centries; e = q->entries; } q->credits++; } } /* * Calls refill_free_list for both free lists. If we cannot fill at least 1/4 * of both rings, we go into 'few interrupt mode' in order to give the system * time to free up resources. */ static void freelQs_empty(struct sge *sge) { struct adapter *adapter = sge->adapter; u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE); u32 irqholdoff_reg; refill_free_list(sge, &sge->freelQ[0]); refill_free_list(sge, &sge->freelQ[1]); if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) && sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) { irq_reg |= F_FL_EXHAUSTED; irqholdoff_reg = sge->fixed_intrtimer; } else { /* Clear the F_FL_EXHAUSTED interrupts for now */ irq_reg &= ~F_FL_EXHAUSTED; irqholdoff_reg = sge->intrtimer_nres; } writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER); writel(irq_reg, adapter->regs + A_SG_INT_ENABLE); /* We reenable the Qs to force a freelist GTS interrupt later */ doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE); } #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \ F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) /* * Disable SGE Interrupts */ void t1_sge_intr_disable(struct sge *sge) { u32 val = readl(sge->adapter->regs + A_PL_ENABLE); writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); writel(0, sge->adapter->regs + A_SG_INT_ENABLE); } /* * Enable SGE interrupts. */ void t1_sge_intr_enable(struct sge *sge) { u32 en = SGE_INT_ENABLE; u32 val = readl(sge->adapter->regs + A_PL_ENABLE); if (sge->adapter->flags & TSO_CAPABLE) en &= ~F_PACKET_TOO_BIG; writel(en, sge->adapter->regs + A_SG_INT_ENABLE); writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); } /* * Clear SGE interrupts. */ void t1_sge_intr_clear(struct sge *sge) { writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE); writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE); } /* * SGE 'Error' interrupt handler */ int t1_sge_intr_error_handler(struct sge *sge) { struct adapter *adapter = sge->adapter; u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); if (adapter->flags & TSO_CAPABLE) cause &= ~F_PACKET_TOO_BIG; if (cause & F_RESPQ_EXHAUSTED) sge->stats.respQ_empty++; if (cause & F_RESPQ_OVERFLOW) { sge->stats.respQ_overflow++; CH_ALERT("%s: SGE response queue overflow\n", adapter->name); } if (cause & F_FL_EXHAUSTED) { sge->stats.freelistQ_empty++; freelQs_empty(sge); } if (cause & F_PACKET_TOO_BIG) { sge->stats.pkt_too_big++; CH_ALERT("%s: SGE max packet size exceeded\n", adapter->name); } if (cause & F_PACKET_MISMATCH) { sge->stats.pkt_mismatch++; CH_ALERT("%s: SGE packet mismatch\n", adapter->name); } if (cause & SGE_INT_FATAL) t1_fatal_err(adapter); writel(cause, adapter->regs + A_SG_INT_CAUSE); return 0; } const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge) { return &sge->stats; } void t1_sge_get_port_stats(const struct sge *sge, int port, struct sge_port_stats *ss) { int cpu; memset(ss, 0, sizeof(*ss)); for_each_possible_cpu(cpu) { struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu); ss->rx_packets += st->rx_packets; ss->rx_cso_good += st->rx_cso_good; ss->tx_packets += st->tx_packets; ss->tx_cso += st->tx_cso; ss->tx_tso += st->tx_tso; ss->vlan_xtract += st->vlan_xtract; ss->vlan_insert += st->vlan_insert; } } /** * recycle_fl_buf - recycle a free list buffer * @fl: the free list * @idx: index of buffer to recycle * * Recycles the specified buffer on the given free list by adding it at * the next available slot on the list. */ static void recycle_fl_buf(struct freelQ *fl, int idx) { struct freelQ_e *from = &fl->entries[idx]; struct freelQ_e *to = &fl->entries[fl->pidx]; fl->centries[fl->pidx] = fl->centries[idx]; to->addr_lo = from->addr_lo; to->addr_hi = from->addr_hi; to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit); wmb(); to->gen2 = V_CMD_GEN2(fl->genbit); fl->credits++; if (++fl->pidx == fl->size) { fl->pidx = 0; fl->genbit ^= 1; } } static int copybreak __read_mostly = 256; module_param(copybreak, int, 0); MODULE_PARM_DESC(copybreak, "Receive copy threshold"); /** * get_packet - return the next ingress packet buffer * @pdev: the PCI device that received the packet * @fl: the SGE free list holding the packet * @len: the actual packet length, excluding any SGE padding * @dma_pad: padding at beginning of buffer left by SGE DMA * @skb_pad: padding to be used if the packet is copied * @copy_thres: length threshold under which a packet should be copied * @drop_thres: # of remaining buffers before we start dropping packets * * Get the next packet from a free list and complete setup of the * sk_buff. If the packet is small we make a copy and recycle the * original buffer, otherwise we use the original buffer itself. If a * positive drop threshold is supplied packets are dropped and their * buffers recycled if (a) the number of remaining buffers is under the * threshold and the packet is too big to copy, or (b) the packet should * be copied but there is no memory for the copy. */ static inline struct sk_buff *get_packet(struct pci_dev *pdev, struct freelQ *fl, unsigned int len) { struct sk_buff *skb; const struct freelQ_ce *ce = &fl->centries[fl->cidx]; if (len < copybreak) { skb = alloc_skb(len + 2, GFP_ATOMIC); if (!skb) goto use_orig_buf; skb_reserve(skb, 2); /* align IP header */ skb_put(skb, len); pci_dma_sync_single_for_cpu(pdev, pci_unmap_addr(ce, dma_addr), pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); skb_copy_from_linear_data(ce->skb, skb->data, len); pci_dma_sync_single_for_device(pdev, pci_unmap_addr(ce, dma_addr), pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); recycle_fl_buf(fl, fl->cidx); return skb; } use_orig_buf: if (fl->credits < 2) { recycle_fl_buf(fl, fl->cidx); return NULL; } pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); skb = ce->skb; prefetch(skb->data); skb_put(skb, len); return skb; } /** * unexpected_offload - handle an unexpected offload packet * @adapter: the adapter * @fl: the free list that received the packet * * Called when we receive an unexpected offload packet (e.g., the TOE * function is disabled or the card is a NIC). Prints a message and * recycles the buffer. */ static void unexpected_offload(struct adapter *adapter, struct freelQ *fl) { struct freelQ_ce *ce = &fl->centries[fl->cidx]; struct sk_buff *skb = ce->skb; pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr), pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); CH_ERR("%s: unexpected offload packet, cmd %u\n", adapter->name, *skb->data); recycle_fl_buf(fl, fl->cidx); } /* * T1/T2 SGE limits the maximum DMA size per TX descriptor to * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner. * Note that the *_large_page_tx_descs stuff will be optimized out when * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN. * * compute_large_page_descs() computes how many additional descriptors are * required to break down the stack's request. */ static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb) { unsigned int count = 0; if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { unsigned int nfrags = skb_shinfo(skb)->nr_frags; unsigned int i, len = skb->len - skb->data_len; while (len > SGE_TX_DESC_MAX_PLEN) { count++; len -= SGE_TX_DESC_MAX_PLEN; } for (i = 0; nfrags--; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; len = frag->size; while (len > SGE_TX_DESC_MAX_PLEN) { count++; len -= SGE_TX_DESC_MAX_PLEN; } } } return count; } /* * Write a cmdQ entry. * * Since this function writes the 'flags' field, it must not be used to * write the first cmdQ entry. */ static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping, unsigned int len, unsigned int gen, unsigned int eop) { if (unlikely(len > SGE_TX_DESC_MAX_PLEN)) BUG(); e->addr_lo = (u32)mapping; e->addr_hi = (u64)mapping >> 32; e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen); e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen); } /* * See comment for previous function. * * write_tx_descs_large_page() writes additional SGE tx descriptors if * *desc_len exceeds HW's capability. */ static inline unsigned int write_large_page_tx_descs(unsigned int pidx, struct cmdQ_e **e, struct cmdQ_ce **ce, unsigned int *gen, dma_addr_t *desc_mapping, unsigned int *desc_len, unsigned int nfrags, struct cmdQ *q) { if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { struct cmdQ_e *e1 = *e; struct cmdQ_ce *ce1 = *ce; while (*desc_len > SGE_TX_DESC_MAX_PLEN) { *desc_len -= SGE_TX_DESC_MAX_PLEN; write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN, *gen, nfrags == 0 && *desc_len == 0); ce1->skb = NULL; pci_unmap_len_set(ce1, dma_len, 0); *desc_mapping += SGE_TX_DESC_MAX_PLEN; if (*desc_len) { ce1++; e1++; if (++pidx == q->size) { pidx = 0; *gen ^= 1; ce1 = q->centries; e1 = q->entries; } } } *e = e1; *ce = ce1; } return pidx; } /* * Write the command descriptors to transmit the given skb starting at * descriptor pidx with the given generation. */ static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb, unsigned int pidx, unsigned int gen, struct cmdQ *q) { dma_addr_t mapping, desc_mapping; struct cmdQ_e *e, *e1; struct cmdQ_ce *ce; unsigned int i, flags, first_desc_len, desc_len, nfrags = skb_shinfo(skb)->nr_frags; e = e1 = &q->entries[pidx]; ce = &q->centries[pidx]; mapping = pci_map_single(adapter->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE); desc_mapping = mapping; desc_len = skb->len - skb->data_len; flags = F_CMD_DATAVALID | F_CMD_SOP | V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) | V_CMD_GEN2(gen); first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ? desc_len : SGE_TX_DESC_MAX_PLEN; e->addr_lo = (u32)desc_mapping; e->addr_hi = (u64)desc_mapping >> 32; e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen); ce->skb = NULL; pci_unmap_len_set(ce, dma_len, 0); if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN && desc_len > SGE_TX_DESC_MAX_PLEN) { desc_mapping += first_desc_len; desc_len -= first_desc_len; e1++; ce++; if (++pidx == q->size) { pidx = 0; gen ^= 1; e1 = q->entries; ce = q->centries; } pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, &desc_mapping, &desc_len, nfrags, q); if (likely(desc_len)) write_tx_desc(e1, desc_mapping, desc_len, gen, nfrags == 0); } ce->skb = NULL; pci_unmap_addr_set(ce, dma_addr, mapping); pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len); for (i = 0; nfrags--; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; e1++; ce++; if (++pidx == q->size) { pidx = 0; gen ^= 1; e1 = q->entries; ce = q->centries; } mapping = pci_map_page(adapter->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); desc_mapping = mapping; desc_len = frag->size; pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, &desc_mapping, &desc_len, nfrags, q); if (likely(desc_len)) write_tx_desc(e1, desc_mapping, desc_len, gen, nfrags == 0); ce->skb = NULL; pci_unmap_addr_set(ce, dma_addr, mapping); pci_unmap_len_set(ce, dma_len, frag->size); } ce->skb = skb; wmb(); e->flags = flags; } /* * Clean up completed Tx buffers. */ static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q) { unsigned int reclaim = q->processed - q->cleaned; if (reclaim) { pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n", q->processed, q->cleaned); free_cmdQ_buffers(sge, q, reclaim); q->cleaned += reclaim; } } /* * Called from tasklet. Checks the scheduler for any * pending skbs that can be sent. */ static void restart_sched(unsigned long arg) { struct sge *sge = (struct sge *) arg; struct adapter *adapter = sge->adapter; struct cmdQ *q = &sge->cmdQ[0]; struct sk_buff *skb; unsigned int credits, queued_skb = 0; spin_lock(&q->lock); reclaim_completed_tx(sge, q); credits = q->size - q->in_use; pr_debug("restart_sched credits=%d\n", credits); while ((skb = sched_skb(sge, NULL, credits)) != NULL) { unsigned int genbit, pidx, count; count = 1 + skb_shinfo(skb)->nr_frags; count += compute_large_page_tx_descs(skb); q->in_use += count; genbit = q->genbit; pidx = q->pidx; q->pidx += count; if (q->pidx >= q->size) { q->pidx -= q->size; q->genbit ^= 1; } write_tx_descs(adapter, skb, pidx, genbit, q); credits = q->size - q->in_use; queued_skb = 1; } if (queued_skb) { clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); } } spin_unlock(&q->lock); } /** * sge_rx - process an ingress ethernet packet * @sge: the sge structure * @fl: the free list that contains the packet buffer * @len: the packet length * * Process an ingress ethernet pakcet and deliver it to the stack. */ static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len) { struct sk_buff *skb; const struct cpl_rx_pkt *p; struct adapter *adapter = sge->adapter; struct sge_port_stats *st; skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad); if (unlikely(!skb)) { sge->stats.rx_drops++; return; } p = (const struct cpl_rx_pkt *) skb->data; if (p->iff >= adapter->params.nports) { kfree_skb(skb); return; } __skb_pull(skb, sizeof(*p)); skb->dev->last_rx = jiffies; st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id()); st->rx_packets++; skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev); if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff && skb->protocol == htons(ETH_P_IP) && (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) { ++st->rx_cso_good; skb->ip_summed = CHECKSUM_UNNECESSARY; } else skb->ip_summed = CHECKSUM_NONE; if (unlikely(adapter->vlan_grp && p->vlan_valid)) { st->vlan_xtract++; #ifdef CONFIG_CHELSIO_T1_NAPI vlan_hwaccel_receive_skb(skb, adapter->vlan_grp, ntohs(p->vlan)); #else vlan_hwaccel_rx(skb, adapter->vlan_grp, ntohs(p->vlan)); #endif } else { #ifdef CONFIG_CHELSIO_T1_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif } } /* * Returns true if a command queue has enough available descriptors that * we can resume Tx operation after temporarily disabling its packet queue. */ static inline int enough_free_Tx_descs(const struct cmdQ *q) { unsigned int r = q->processed - q->cleaned; return q->in_use - r < (q->size >> 1); } /* * Called when sufficient space has become available in the SGE command queues * after the Tx packet schedulers have been suspended to restart the Tx path. */ static void restart_tx_queues(struct sge *sge) { struct adapter *adap = sge->adapter; int i; if (!enough_free_Tx_descs(&sge->cmdQ[0])) return; for_each_port(adap, i) { struct net_device *nd = adap->port[i].dev; if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) && netif_running(nd)) { sge->stats.cmdQ_restarted[2]++; netif_wake_queue(nd); } } } /* * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 * information. */ static unsigned int update_tx_info(struct adapter *adapter, unsigned int flags, unsigned int pr0) { struct sge *sge = adapter->sge; struct cmdQ *cmdq = &sge->cmdQ[0]; cmdq->processed += pr0; if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) { freelQs_empty(sge); flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE); } if (flags & F_CMDQ0_ENABLE) { clear_bit(CMDQ_STAT_RUNNING, &cmdq->status); if (cmdq->cleaned + cmdq->in_use != cmdq->processed && !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) { set_bit(CMDQ_STAT_RUNNING, &cmdq->status); writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); } if (sge->tx_sched) tasklet_hi_schedule(&sge->tx_sched->sched_tsk); flags &= ~F_CMDQ0_ENABLE; } if (unlikely(sge->stopped_tx_queues != 0)) restart_tx_queues(sge); return flags; } /* * Process SGE responses, up to the supplied budget. Returns the number of * responses processed. A negative budget is effectively unlimited. */ static int process_responses(struct adapter *adapter, int budget) { struct sge *sge = adapter->sge; struct respQ *q = &sge->respQ; struct respQ_e *e = &q->entries[q->cidx]; int done = 0; unsigned int flags = 0; unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; while (done < budget && e->GenerationBit == q->genbit) { flags |= e->Qsleeping; cmdq_processed[0] += e->Cmdq0CreditReturn; cmdq_processed[1] += e->Cmdq1CreditReturn; /* We batch updates to the TX side to avoid cacheline * ping-pong of TX state information on MP where the sender * might run on a different CPU than this function... */ if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) { flags = update_tx_info(adapter, flags, cmdq_processed[0]); cmdq_processed[0] = 0; } if (unlikely(cmdq_processed[1] > 16)) { sge->cmdQ[1].processed += cmdq_processed[1]; cmdq_processed[1] = 0; } if (likely(e->DataValid)) { struct freelQ *fl = &sge->freelQ[e->FreelistQid]; BUG_ON(!e->Sop || !e->Eop); if (unlikely(e->Offload)) unexpected_offload(adapter, fl); else sge_rx(sge, fl, e->BufferLength); ++done; /* * Note: this depends on each packet consuming a * single free-list buffer; cf. the BUG above. */ if (++fl->cidx == fl->size) fl->cidx = 0; prefetch(fl->centries[fl->cidx].skb); if (unlikely(--fl->credits < fl->size - SGE_FREEL_REFILL_THRESH)) refill_free_list(sge, fl); } else sge->stats.pure_rsps++; e++; if (unlikely(++q->cidx == q->size)) { q->cidx = 0; q->genbit ^= 1; e = q->entries; } prefetch(e); if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); q->credits = 0; } } flags = update_tx_info(adapter, flags, cmdq_processed[0]); sge->cmdQ[1].processed += cmdq_processed[1]; return done; } static inline int responses_pending(const struct adapter *adapter) { const struct respQ *Q = &adapter->sge->respQ; const struct respQ_e *e = &Q->entries[Q->cidx]; return (e->GenerationBit == Q->genbit); } #ifdef CONFIG_CHELSIO_T1_NAPI /* * A simpler version of process_responses() that handles only pure (i.e., * non data-carrying) responses. Such respones are too light-weight to justify * calling a softirq when using NAPI, so we handle them specially in hard * interrupt context. The function is called with a pointer to a response, * which the caller must ensure is a valid pure response. Returns 1 if it * encounters a valid data-carrying response, 0 otherwise. */ static int process_pure_responses(struct adapter *adapter) { struct sge *sge = adapter->sge; struct respQ *q = &sge->respQ; struct respQ_e *e = &q->entries[q->cidx]; const struct freelQ *fl = &sge->freelQ[e->FreelistQid]; unsigned int flags = 0; unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; prefetch(fl->centries[fl->cidx].skb); if (e->DataValid) return 1; do { flags |= e->Qsleeping; cmdq_processed[0] += e->Cmdq0CreditReturn; cmdq_processed[1] += e->Cmdq1CreditReturn; e++; if (unlikely(++q->cidx == q->size)) { q->cidx = 0; q->genbit ^= 1; e = q->entries; } prefetch(e); if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); q->credits = 0; } sge->stats.pure_rsps++; } while (e->GenerationBit == q->genbit && !e->DataValid); flags = update_tx_info(adapter, flags, cmdq_processed[0]); sge->cmdQ[1].processed += cmdq_processed[1]; return e->GenerationBit == q->genbit; } /* * Handler for new data events when using NAPI. This does not need any locking * or protection from interrupts as data interrupts are off at this point and * other adapter interrupts do not interfere. */ int t1_poll(struct napi_struct *napi, int budget) { struct adapter *adapter = container_of(napi, struct adapter, napi); struct net_device *dev = adapter->port[0].dev; int work_done; work_done = process_responses(adapter, budget); if (likely(!responses_pending(adapter))) { netif_rx_complete(dev, napi); writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); } return work_done; } /* * NAPI version of the main interrupt handler. */ irqreturn_t t1_interrupt(int irq, void *data) { struct adapter *adapter = data; struct sge *sge = adapter->sge; int handled; if (likely(responses_pending(adapter))) { struct net_device *dev = sge->netdev; writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); if (napi_schedule_prep(&adapter->napi)) { if (process_pure_responses(adapter)) __netif_rx_schedule(dev, &adapter->napi); else { /* no data, no NAPI needed */ writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); napi_enable(&adapter->napi); /* undo schedule_prep */ } } return IRQ_HANDLED; } spin_lock(&adapter->async_lock); handled = t1_slow_intr_handler(adapter); spin_unlock(&adapter->async_lock); if (!handled) sge->stats.unhandled_irqs++; return IRQ_RETVAL(handled != 0); } #else /* * Main interrupt handler, optimized assuming that we took a 'DATA' * interrupt. * * 1. Clear the interrupt * 2. Loop while we find valid descriptors and process them; accumulate * information that can be processed after the loop * 3. Tell the SGE at which index we stopped processing descriptors * 4. Bookkeeping; free TX buffers, ring doorbell if there are any * outstanding TX buffers waiting, replenish RX buffers, potentially * reenable upper layers if they were turned off due to lack of TX * resources which are available again. * 5. If we took an interrupt, but no valid respQ descriptors was found we * let the slow_intr_handler run and do error handling. */ irqreturn_t t1_interrupt(int irq, void *cookie) { int work_done; struct adapter *adapter = cookie; struct respQ *Q = &adapter->sge->respQ; spin_lock(&adapter->async_lock); writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); if (likely(responses_pending(adapter))) work_done = process_responses(adapter, -1); else work_done = t1_slow_intr_handler(adapter); /* * The unconditional clearing of the PL_CAUSE above may have raced * with DMA completion and the corresponding generation of a response * to cause us to miss the resulting data interrupt. The next write * is also unconditional to recover the missed interrupt and render * this race harmless. */ writel(Q->cidx, adapter->regs + A_SG_SLEEPING); if (!work_done) adapter->sge->stats.unhandled_irqs++; spin_unlock(&adapter->async_lock); return IRQ_RETVAL(work_done != 0); } #endif /* * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. * * The code figures out how many entries the sk_buff will require in the * cmdQ and updates the cmdQ data structure with the state once the enqueue * has complete. Then, it doesn't access the global structure anymore, but * uses the corresponding fields on the stack. In conjuction with a spinlock * around that code, we can make the function reentrant without holding the * lock when we actually enqueue (which might be expensive, especially on * architectures with IO MMUs). * * This runs with softirqs disabled. */ static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, unsigned int qid, struct net_device *dev) { struct sge *sge = adapter->sge; struct cmdQ *q = &sge->cmdQ[qid]; unsigned int credits, pidx, genbit, count, use_sched_skb = 0; if (!spin_trylock(&q->lock)) return NETDEV_TX_LOCKED; reclaim_completed_tx(sge, q); pidx = q->pidx; credits = q->size - q->in_use; count = 1 + skb_shinfo(skb)->nr_frags; count += compute_large_page_tx_descs(skb); /* Ethernet packet */ if (unlikely(credits < count)) { if (!netif_queue_stopped(dev)) { netif_stop_queue(dev); set_bit(dev->if_port, &sge->stopped_tx_queues); sge->stats.cmdQ_full[2]++; CH_ERR("%s: Tx ring full while queue awake!\n", adapter->name); } spin_unlock(&q->lock); return NETDEV_TX_BUSY; } if (unlikely(credits - count < q->stop_thres)) { netif_stop_queue(dev); set_bit(dev->if_port, &sge->stopped_tx_queues); sge->stats.cmdQ_full[2]++; } /* T204 cmdQ0 skbs that are destined for a certain port have to go * through the scheduler. */ if (sge->tx_sched && !qid && skb->dev) { use_sched: use_sched_skb = 1; /* Note that the scheduler might return a different skb than * the one passed in. */ skb = sched_skb(sge, skb, credits); if (!skb) { spin_unlock(&q->lock); return NETDEV_TX_OK; } pidx = q->pidx; count = 1 + skb_shinfo(skb)->nr_frags; count += compute_large_page_tx_descs(skb); } q->in_use += count; genbit = q->genbit; pidx = q->pidx; q->pidx += count; if (q->pidx >= q->size) { q->pidx -= q->size; q->genbit ^= 1; } spin_unlock(&q->lock); write_tx_descs(adapter, skb, pidx, genbit, q); /* * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring * the doorbell if the Q is asleep. There is a natural race, where * the hardware is going to sleep just after we checked, however, * then the interrupt handler will detect the outstanding TX packet * and ring the doorbell for us. */ if (qid) doorbell_pio(adapter, F_CMDQ1_ENABLE); else { clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); } } if (use_sched_skb) { if (spin_trylock(&q->lock)) { credits = q->size - q->in_use; skb = NULL; goto use_sched; } } return NETDEV_TX_OK; } #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) /* * eth_hdr_len - return the length of an Ethernet header * @data: pointer to the start of the Ethernet header * * Returns the length of an Ethernet header, including optional VLAN tag. */ static inline int eth_hdr_len(const void *data) { const struct ethhdr *e = data; return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN; } /* * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. */ int t1_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct adapter *adapter = dev->priv; struct sge *sge = adapter->sge; struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id()); struct cpl_tx_pkt *cpl; struct sk_buff *orig_skb = skb; int ret; if (skb->protocol == htons(ETH_P_CPL5)) goto send; if (skb_shinfo(skb)->gso_size) { int eth_type; struct cpl_tx_pkt_lso *hdr; ++st->tx_tso; eth_type = skb_network_offset(skb) == ETH_HLEN ? CPL_ETH_II : CPL_ETH_II_VLAN; hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr)); hdr->opcode = CPL_TX_PKT_LSO; hdr->ip_csum_dis = hdr->l4_csum_dis = 0; hdr->ip_hdr_words = ip_hdr(skb)->ihl; hdr->tcp_hdr_words = tcp_hdr(skb)->doff; hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type, skb_shinfo(skb)->gso_size)); hdr->len = htonl(skb->len - sizeof(*hdr)); cpl = (struct cpl_tx_pkt *)hdr; } else { /* * Packets shorter than ETH_HLEN can break the MAC, drop them * early. Also, we may get oversized packets because some * parts of the kernel don't handle our unusual hard_header_len * right, drop those too. */ if (unlikely(skb->len < ETH_HLEN || skb->len > dev->mtu + eth_hdr_len(skb->data))) { pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name, skb->len, eth_hdr_len(skb->data), dev->mtu); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* * We are using a non-standard hard_header_len and some kernel * components, such as pktgen, do not handle it right. * Complain when this happens but try to fix things up. */ if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) { pr_debug("%s: headroom %d header_len %d\n", dev->name, skb_headroom(skb), dev->hard_header_len); if (net_ratelimit()) printk(KERN_ERR "%s: inadequate headroom in " "Tx packet\n", dev->name); skb = skb_realloc_headroom(skb, sizeof(*cpl)); dev_kfree_skb_any(orig_skb); if (!skb) return NETDEV_TX_OK; } if (!(adapter->flags & UDP_CSUM_CAPABLE) && skb->ip_summed == CHECKSUM_PARTIAL && ip_hdr(skb)->protocol == IPPROTO_UDP) { if (unlikely(skb_checksum_help(skb))) { pr_debug("%s: unable to do udp checksum\n", dev->name); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } } /* Hmmm, assuming to catch the gratious arp... and we'll use * it to flush out stuck espi packets... */ if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) { if (skb->protocol == htons(ETH_P_ARP) && arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) { adapter->sge->espibug_skb[dev->if_port] = skb; /* We want to re-use this skb later. We * simply bump the reference count and it * will not be freed... */ skb = skb_get(skb); } } cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl)); cpl->opcode = CPL_TX_PKT; cpl->ip_csum_dis = 1; /* SW calculates IP csum */ cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1; /* the length field isn't used so don't bother setting it */ st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL); } cpl->iff = dev->if_port; #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) if (adapter->vlan_grp && vlan_tx_tag_present(skb)) { cpl->vlan_valid = 1; cpl->vlan = htons(vlan_tx_tag_get(skb)); st->vlan_insert++; } else #endif cpl->vlan_valid = 0; send: st->tx_packets++; dev->trans_start = jiffies; ret = t1_sge_tx(skb, adapter, 0, dev); /* If transmit busy, and we reallocated skb's due to headroom limit, * then silently discard to avoid leak. */ if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) { dev_kfree_skb_any(skb); ret = NETDEV_TX_OK; } return ret; } /* * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled. */ static void sge_tx_reclaim_cb(unsigned long data) { int i; struct sge *sge = (struct sge *)data; for (i = 0; i < SGE_CMDQ_N; ++i) { struct cmdQ *q = &sge->cmdQ[i]; if (!spin_trylock(&q->lock)) continue; reclaim_completed_tx(sge, q); if (i == 0 && q->in_use) { /* flush pending credits */ writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); } spin_unlock(&q->lock); } mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); } /* * Propagate changes of the SGE coalescing parameters to the HW. */ int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) { sge->fixed_intrtimer = p->rx_coalesce_usecs * core_ticks_per_usec(sge->adapter); writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER); return 0; } /* * Allocates both RX and TX resources and configures the SGE. However, * the hardware is not enabled yet. */ int t1_sge_configure(struct sge *sge, struct sge_params *p) { if (alloc_rx_resources(sge, p)) return -ENOMEM; if (alloc_tx_resources(sge, p)) { free_rx_resources(sge); return -ENOMEM; } configure_sge(sge, p); /* * Now that we have sized the free lists calculate the payload * capacity of the large buffers. Other parts of the driver use * this to set the max offload coalescing size so that RX packets * do not overflow our large buffers. */ p->large_buf_capacity = jumbo_payload_capacity(sge); return 0; } /* * Disables the DMA engine. */ void t1_sge_stop(struct sge *sge) { int i; writel(0, sge->adapter->regs + A_SG_CONTROL); readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ if (is_T2(sge->adapter)) del_timer_sync(&sge->espibug_timer); del_timer_sync(&sge->tx_reclaim_timer); if (sge->tx_sched) tx_sched_stop(sge); for (i = 0; i < MAX_NPORTS; i++) if (sge->espibug_skb[i]) kfree_skb(sge->espibug_skb[i]); } /* * Enables the DMA engine. */ void t1_sge_start(struct sge *sge) { refill_free_list(sge, &sge->freelQ[0]); refill_free_list(sge, &sge->freelQ[1]); writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL); doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE); readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); if (is_T2(sge->adapter)) mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); } /* * Callback for the T2 ESPI 'stuck packet feature' workaorund */ static void espibug_workaround_t204(unsigned long data) { struct adapter *adapter = (struct adapter *)data; struct sge *sge = adapter->sge; unsigned int nports = adapter->params.nports; u32 seop[MAX_NPORTS]; if (adapter->open_device_map & PORT_MASK) { int i; if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0) return; for (i = 0; i < nports; i++) { struct sk_buff *skb = sge->espibug_skb[i]; if (!netif_running(adapter->port[i].dev) || netif_queue_stopped(adapter->port[i].dev) || !seop[i] || ((seop[i] & 0xfff) != 0) || !skb) continue; if (!skb->cb[0]) { u8 ch_mac_addr[ETH_ALEN] = { 0x0, 0x7, 0x43, 0x0, 0x0, 0x0 }; skb_copy_to_linear_data_offset(skb, sizeof(struct cpl_tx_pkt), ch_mac_addr, ETH_ALEN); skb_copy_to_linear_data_offset(skb, skb->len - 10, ch_mac_addr, ETH_ALEN); skb->cb[0] = 0xff; } /* bump the reference count to avoid freeing of * the skb once the DMA has completed. */ skb = skb_get(skb); t1_sge_tx(skb, adapter, 0, adapter->port[i].dev); } } mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); } static void espibug_workaround(unsigned long data) { struct adapter *adapter = (struct adapter *)data; struct sge *sge = adapter->sge; if (netif_running(adapter->port[0].dev)) { struct sk_buff *skb = sge->espibug_skb[0]; u32 seop = t1_espi_get_mon(adapter, 0x930, 0); if ((seop & 0xfff0fff) == 0xfff && skb) { if (!skb->cb[0]) { u8 ch_mac_addr[ETH_ALEN] = {0x0, 0x7, 0x43, 0x0, 0x0, 0x0}; skb_copy_to_linear_data_offset(skb, sizeof(struct cpl_tx_pkt), ch_mac_addr, ETH_ALEN); skb_copy_to_linear_data_offset(skb, skb->len - 10, ch_mac_addr, ETH_ALEN); skb->cb[0] = 0xff; } /* bump the reference count to avoid freeing of the * skb once the DMA has completed. */ skb = skb_get(skb); t1_sge_tx(skb, adapter, 0, adapter->port[0].dev); } } mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); } /* * Creates a t1_sge structure and returns suggested resource parameters. */ struct sge * __devinit t1_sge_create(struct adapter *adapter, struct sge_params *p) { struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL); int i; if (!sge) return NULL; sge->adapter = adapter; sge->netdev = adapter->port[0].dev; sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2; sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; for_each_port(adapter, i) { sge->port_stats[i] = alloc_percpu(struct sge_port_stats); if (!sge->port_stats[i]) goto nomem_port; } init_timer(&sge->tx_reclaim_timer); sge->tx_reclaim_timer.data = (unsigned long)sge; sge->tx_reclaim_timer.function = sge_tx_reclaim_cb; if (is_T2(sge->adapter)) { init_timer(&sge->espibug_timer); if (adapter->params.nports > 1) { tx_sched_init(sge); sge->espibug_timer.function = espibug_workaround_t204; } else sge->espibug_timer.function = espibug_workaround; sge->espibug_timer.data = (unsigned long)sge->adapter; sge->espibug_timeout = 1; /* for T204, every 10ms */ if (adapter->params.nports > 1) sge->espibug_timeout = HZ/100; } p->cmdQ_size[0] = SGE_CMDQ0_E_N; p->cmdQ_size[1] = SGE_CMDQ1_E_N; p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; if (sge->tx_sched) { if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) p->rx_coalesce_usecs = 15; else p->rx_coalesce_usecs = 50; } else p->rx_coalesce_usecs = 50; p->coalesce_enable = 0; p->sample_interval_usecs = 0; return sge; nomem_port: while (i >= 0) { free_percpu(sge->port_stats[i]); --i; } kfree(sge); return NULL; }