/* * Copyright (C) 2005 - 2010 ServerEngines * All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. The full GNU General * Public License is included in this distribution in the file called COPYING. * * Contact Information: * linux-drivers@serverengines.com * * ServerEngines * 209 N. Fair Oaks Ave * Sunnyvale, CA 94085 */ #include "be.h" #include "be_cmds.h" #include MODULE_VERSION(DRV_VER); MODULE_DEVICE_TABLE(pci, be_dev_ids); MODULE_DESCRIPTION(DRV_DESC " " DRV_VER); MODULE_AUTHOR("ServerEngines Corporation"); MODULE_LICENSE("GPL"); static unsigned int rx_frag_size = 2048; static unsigned int num_vfs; module_param(rx_frag_size, uint, S_IRUGO); module_param(num_vfs, uint, S_IRUGO); MODULE_PARM_DESC(rx_frag_size, "Size of a fragment that holds rcvd data."); MODULE_PARM_DESC(num_vfs, "Number of PCI VFs to initialize"); static DEFINE_PCI_DEVICE_TABLE(be_dev_ids) = { { PCI_DEVICE(BE_VENDOR_ID, BE_DEVICE_ID1) }, { PCI_DEVICE(BE_VENDOR_ID, BE_DEVICE_ID2) }, { PCI_DEVICE(BE_VENDOR_ID, OC_DEVICE_ID1) }, { PCI_DEVICE(BE_VENDOR_ID, OC_DEVICE_ID2) }, { 0 } }; MODULE_DEVICE_TABLE(pci, be_dev_ids); static void be_queue_free(struct be_adapter *adapter, struct be_queue_info *q) { struct be_dma_mem *mem = &q->dma_mem; if (mem->va) pci_free_consistent(adapter->pdev, mem->size, mem->va, mem->dma); } static int be_queue_alloc(struct be_adapter *adapter, struct be_queue_info *q, u16 len, u16 entry_size) { struct be_dma_mem *mem = &q->dma_mem; memset(q, 0, sizeof(*q)); q->len = len; q->entry_size = entry_size; mem->size = len * entry_size; mem->va = pci_alloc_consistent(adapter->pdev, mem->size, &mem->dma); if (!mem->va) return -1; memset(mem->va, 0, mem->size); return 0; } static void be_intr_set(struct be_adapter *adapter, bool enable) { u8 __iomem *addr = adapter->pcicfg + PCICFG_MEMBAR_CTRL_INT_CTRL_OFFSET; u32 reg = ioread32(addr); u32 enabled = reg & MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK; if (adapter->eeh_err) return; if (!enabled && enable) reg |= MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK; else if (enabled && !enable) reg &= ~MEMBAR_CTRL_INT_CTRL_HOSTINTR_MASK; else return; iowrite32(reg, addr); } static void be_rxq_notify(struct be_adapter *adapter, u16 qid, u16 posted) { u32 val = 0; val |= qid & DB_RQ_RING_ID_MASK; val |= posted << DB_RQ_NUM_POSTED_SHIFT; wmb(); iowrite32(val, adapter->db + DB_RQ_OFFSET); } static void be_txq_notify(struct be_adapter *adapter, u16 qid, u16 posted) { u32 val = 0; val |= qid & DB_TXULP_RING_ID_MASK; val |= (posted & DB_TXULP_NUM_POSTED_MASK) << DB_TXULP_NUM_POSTED_SHIFT; wmb(); iowrite32(val, adapter->db + DB_TXULP1_OFFSET); } static void be_eq_notify(struct be_adapter *adapter, u16 qid, bool arm, bool clear_int, u16 num_popped) { u32 val = 0; val |= qid & DB_EQ_RING_ID_MASK; if (adapter->eeh_err) return; if (arm) val |= 1 << DB_EQ_REARM_SHIFT; if (clear_int) val |= 1 << DB_EQ_CLR_SHIFT; val |= 1 << DB_EQ_EVNT_SHIFT; val |= num_popped << DB_EQ_NUM_POPPED_SHIFT; iowrite32(val, adapter->db + DB_EQ_OFFSET); } void be_cq_notify(struct be_adapter *adapter, u16 qid, bool arm, u16 num_popped) { u32 val = 0; val |= qid & DB_CQ_RING_ID_MASK; if (adapter->eeh_err) return; if (arm) val |= 1 << DB_CQ_REARM_SHIFT; val |= num_popped << DB_CQ_NUM_POPPED_SHIFT; iowrite32(val, adapter->db + DB_CQ_OFFSET); } static int be_mac_addr_set(struct net_device *netdev, void *p) { struct be_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; int status = 0; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; /* MAC addr configuration will be done in hardware for VFs * by their corresponding PFs. Just copy to netdev addr here */ if (!be_physfn(adapter)) goto netdev_addr; status = be_cmd_pmac_del(adapter, adapter->if_handle, adapter->pmac_id); if (status) return status; status = be_cmd_pmac_add(adapter, (u8 *)addr->sa_data, adapter->if_handle, &adapter->pmac_id); netdev_addr: if (!status) memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); return status; } void netdev_stats_update(struct be_adapter *adapter) { struct be_hw_stats *hw_stats = hw_stats_from_cmd(adapter->stats.cmd.va); struct be_rxf_stats *rxf_stats = &hw_stats->rxf; struct be_port_rxf_stats *port_stats = &rxf_stats->port[adapter->port_num]; struct net_device_stats *dev_stats = &adapter->netdev->stats; struct be_erx_stats *erx_stats = &hw_stats->erx; dev_stats->rx_packets = drvr_stats(adapter)->be_rx_pkts; dev_stats->tx_packets = drvr_stats(adapter)->be_tx_pkts; dev_stats->rx_bytes = drvr_stats(adapter)->be_rx_bytes; dev_stats->tx_bytes = drvr_stats(adapter)->be_tx_bytes; /* bad pkts received */ dev_stats->rx_errors = port_stats->rx_crc_errors + port_stats->rx_alignment_symbol_errors + port_stats->rx_in_range_errors + port_stats->rx_out_range_errors + port_stats->rx_frame_too_long + port_stats->rx_dropped_too_small + port_stats->rx_dropped_too_short + port_stats->rx_dropped_header_too_small + port_stats->rx_dropped_tcp_length + port_stats->rx_dropped_runt + port_stats->rx_tcp_checksum_errs + port_stats->rx_ip_checksum_errs + port_stats->rx_udp_checksum_errs; /* no space in linux buffers: best possible approximation */ dev_stats->rx_dropped = erx_stats->rx_drops_no_fragments[adapter->rx_obj.q.id]; /* detailed rx errors */ dev_stats->rx_length_errors = port_stats->rx_in_range_errors + port_stats->rx_out_range_errors + port_stats->rx_frame_too_long; /* receive ring buffer overflow */ dev_stats->rx_over_errors = 0; dev_stats->rx_crc_errors = port_stats->rx_crc_errors; /* frame alignment errors */ dev_stats->rx_frame_errors = port_stats->rx_alignment_symbol_errors; /* receiver fifo overrun */ /* drops_no_pbuf is no per i/f, it's per BE card */ dev_stats->rx_fifo_errors = port_stats->rx_fifo_overflow + port_stats->rx_input_fifo_overflow + rxf_stats->rx_drops_no_pbuf; /* receiver missed packetd */ dev_stats->rx_missed_errors = 0; /* packet transmit problems */ dev_stats->tx_errors = 0; /* no space available in linux */ dev_stats->tx_dropped = 0; dev_stats->multicast = port_stats->rx_multicast_frames; dev_stats->collisions = 0; /* detailed tx_errors */ dev_stats->tx_aborted_errors = 0; dev_stats->tx_carrier_errors = 0; dev_stats->tx_fifo_errors = 0; dev_stats->tx_heartbeat_errors = 0; dev_stats->tx_window_errors = 0; } void be_link_status_update(struct be_adapter *adapter, bool link_up) { struct net_device *netdev = adapter->netdev; /* If link came up or went down */ if (adapter->link_up != link_up) { adapter->link_speed = -1; if (link_up) { netif_start_queue(netdev); netif_carrier_on(netdev); printk(KERN_INFO "%s: Link up\n", netdev->name); } else { netif_stop_queue(netdev); netif_carrier_off(netdev); printk(KERN_INFO "%s: Link down\n", netdev->name); } adapter->link_up = link_up; } } /* Update the EQ delay n BE based on the RX frags consumed / sec */ static void be_rx_eqd_update(struct be_adapter *adapter) { struct be_eq_obj *rx_eq = &adapter->rx_eq; struct be_drvr_stats *stats = &adapter->stats.drvr_stats; ulong now = jiffies; u32 eqd; if (!rx_eq->enable_aic) return; /* Wrapped around */ if (time_before(now, stats->rx_fps_jiffies)) { stats->rx_fps_jiffies = now; return; } /* Update once a second */ if ((now - stats->rx_fps_jiffies) < HZ) return; stats->be_rx_fps = (stats->be_rx_frags - stats->be_prev_rx_frags) / ((now - stats->rx_fps_jiffies) / HZ); stats->rx_fps_jiffies = now; stats->be_prev_rx_frags = stats->be_rx_frags; eqd = stats->be_rx_fps / 110000; eqd = eqd << 3; if (eqd > rx_eq->max_eqd) eqd = rx_eq->max_eqd; if (eqd < rx_eq->min_eqd) eqd = rx_eq->min_eqd; if (eqd < 10) eqd = 0; if (eqd != rx_eq->cur_eqd) be_cmd_modify_eqd(adapter, rx_eq->q.id, eqd); rx_eq->cur_eqd = eqd; } static struct net_device_stats *be_get_stats(struct net_device *dev) { return &dev->stats; } static u32 be_calc_rate(u64 bytes, unsigned long ticks) { u64 rate = bytes; do_div(rate, ticks / HZ); rate <<= 3; /* bytes/sec -> bits/sec */ do_div(rate, 1000000ul); /* MB/Sec */ return rate; } static void be_tx_rate_update(struct be_adapter *adapter) { struct be_drvr_stats *stats = drvr_stats(adapter); ulong now = jiffies; /* Wrapped around? */ if (time_before(now, stats->be_tx_jiffies)) { stats->be_tx_jiffies = now; return; } /* Update tx rate once in two seconds */ if ((now - stats->be_tx_jiffies) > 2 * HZ) { stats->be_tx_rate = be_calc_rate(stats->be_tx_bytes - stats->be_tx_bytes_prev, now - stats->be_tx_jiffies); stats->be_tx_jiffies = now; stats->be_tx_bytes_prev = stats->be_tx_bytes; } } static void be_tx_stats_update(struct be_adapter *adapter, u32 wrb_cnt, u32 copied, u32 gso_segs, bool stopped) { struct be_drvr_stats *stats = drvr_stats(adapter); stats->be_tx_reqs++; stats->be_tx_wrbs += wrb_cnt; stats->be_tx_bytes += copied; stats->be_tx_pkts += (gso_segs ? gso_segs : 1); if (stopped) stats->be_tx_stops++; } /* Determine number of WRB entries needed to xmit data in an skb */ static u32 wrb_cnt_for_skb(struct sk_buff *skb, bool *dummy) { int cnt = (skb->len > skb->data_len); cnt += skb_shinfo(skb)->nr_frags; /* to account for hdr wrb */ cnt++; if (cnt & 1) { /* add a dummy to make it an even num */ cnt++; *dummy = true; } else *dummy = false; BUG_ON(cnt > BE_MAX_TX_FRAG_COUNT); return cnt; } static inline void wrb_fill(struct be_eth_wrb *wrb, u64 addr, int len) { wrb->frag_pa_hi = upper_32_bits(addr); wrb->frag_pa_lo = addr & 0xFFFFFFFF; wrb->frag_len = len & ETH_WRB_FRAG_LEN_MASK; } static void wrb_fill_hdr(struct be_eth_hdr_wrb *hdr, struct sk_buff *skb, bool vlan, u32 wrb_cnt, u32 len) { memset(hdr, 0, sizeof(*hdr)); AMAP_SET_BITS(struct amap_eth_hdr_wrb, crc, hdr, 1); if (skb_is_gso(skb)) { AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso, hdr, 1); AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso_mss, hdr, skb_shinfo(skb)->gso_size); if (skb_is_gso_v6(skb)) AMAP_SET_BITS(struct amap_eth_hdr_wrb, lso6, hdr, 1); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { if (is_tcp_pkt(skb)) AMAP_SET_BITS(struct amap_eth_hdr_wrb, tcpcs, hdr, 1); else if (is_udp_pkt(skb)) AMAP_SET_BITS(struct amap_eth_hdr_wrb, udpcs, hdr, 1); } if (vlan && vlan_tx_tag_present(skb)) { AMAP_SET_BITS(struct amap_eth_hdr_wrb, vlan, hdr, 1); AMAP_SET_BITS(struct amap_eth_hdr_wrb, vlan_tag, hdr, vlan_tx_tag_get(skb)); } AMAP_SET_BITS(struct amap_eth_hdr_wrb, event, hdr, 1); AMAP_SET_BITS(struct amap_eth_hdr_wrb, complete, hdr, 1); AMAP_SET_BITS(struct amap_eth_hdr_wrb, num_wrb, hdr, wrb_cnt); AMAP_SET_BITS(struct amap_eth_hdr_wrb, len, hdr, len); } static void unmap_tx_frag(struct pci_dev *pdev, struct be_eth_wrb *wrb, bool unmap_single) { dma_addr_t dma; be_dws_le_to_cpu(wrb, sizeof(*wrb)); dma = (u64)wrb->frag_pa_hi << 32 | (u64)wrb->frag_pa_lo; if (wrb->frag_len) { if (unmap_single) pci_unmap_single(pdev, dma, wrb->frag_len, PCI_DMA_TODEVICE); else pci_unmap_page(pdev, dma, wrb->frag_len, PCI_DMA_TODEVICE); } } static int make_tx_wrbs(struct be_adapter *adapter, struct sk_buff *skb, u32 wrb_cnt, bool dummy_wrb) { dma_addr_t busaddr; int i, copied = 0; struct pci_dev *pdev = adapter->pdev; struct sk_buff *first_skb = skb; struct be_queue_info *txq = &adapter->tx_obj.q; struct be_eth_wrb *wrb; struct be_eth_hdr_wrb *hdr; bool map_single = false; u16 map_head; hdr = queue_head_node(txq); queue_head_inc(txq); map_head = txq->head; if (skb->len > skb->data_len) { int len = skb_headlen(skb); busaddr = pci_map_single(pdev, skb->data, len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(pdev, busaddr)) goto dma_err; map_single = true; wrb = queue_head_node(txq); wrb_fill(wrb, busaddr, len); be_dws_cpu_to_le(wrb, sizeof(*wrb)); queue_head_inc(txq); copied += len; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i]; busaddr = pci_map_page(pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(pdev, busaddr)) goto dma_err; wrb = queue_head_node(txq); wrb_fill(wrb, busaddr, frag->size); be_dws_cpu_to_le(wrb, sizeof(*wrb)); queue_head_inc(txq); copied += frag->size; } if (dummy_wrb) { wrb = queue_head_node(txq); wrb_fill(wrb, 0, 0); be_dws_cpu_to_le(wrb, sizeof(*wrb)); queue_head_inc(txq); } wrb_fill_hdr(hdr, first_skb, adapter->vlan_grp ? true : false, wrb_cnt, copied); be_dws_cpu_to_le(hdr, sizeof(*hdr)); return copied; dma_err: txq->head = map_head; while (copied) { wrb = queue_head_node(txq); unmap_tx_frag(pdev, wrb, map_single); map_single = false; copied -= wrb->frag_len; queue_head_inc(txq); } return 0; } static netdev_tx_t be_xmit(struct sk_buff *skb, struct net_device *netdev) { struct be_adapter *adapter = netdev_priv(netdev); struct be_tx_obj *tx_obj = &adapter->tx_obj; struct be_queue_info *txq = &tx_obj->q; u32 wrb_cnt = 0, copied = 0; u32 start = txq->head; bool dummy_wrb, stopped = false; wrb_cnt = wrb_cnt_for_skb(skb, &dummy_wrb); copied = make_tx_wrbs(adapter, skb, wrb_cnt, dummy_wrb); if (copied) { /* record the sent skb in the sent_skb table */ BUG_ON(tx_obj->sent_skb_list[start]); tx_obj->sent_skb_list[start] = skb; /* Ensure txq has space for the next skb; Else stop the queue * *BEFORE* ringing the tx doorbell, so that we serialze the * tx compls of the current transmit which'll wake up the queue */ atomic_add(wrb_cnt, &txq->used); if ((BE_MAX_TX_FRAG_COUNT + atomic_read(&txq->used)) >= txq->len) { netif_stop_queue(netdev); stopped = true; } be_txq_notify(adapter, txq->id, wrb_cnt); be_tx_stats_update(adapter, wrb_cnt, copied, skb_shinfo(skb)->gso_segs, stopped); } else { txq->head = start; dev_kfree_skb_any(skb); } return NETDEV_TX_OK; } static int be_change_mtu(struct net_device *netdev, int new_mtu) { struct be_adapter *adapter = netdev_priv(netdev); if (new_mtu < BE_MIN_MTU || new_mtu > (BE_MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN))) { dev_info(&adapter->pdev->dev, "MTU must be between %d and %d bytes\n", BE_MIN_MTU, (BE_MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN))); return -EINVAL; } dev_info(&adapter->pdev->dev, "MTU changed from %d to %d bytes\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; return 0; } /* * A max of 64 (BE_NUM_VLANS_SUPPORTED) vlans can be configured in BE. * If the user configures more, place BE in vlan promiscuous mode. */ static int be_vid_config(struct be_adapter *adapter) { u16 vtag[BE_NUM_VLANS_SUPPORTED]; u16 ntags = 0, i; int status = 0; if (adapter->vlans_added <= adapter->max_vlans) { /* Construct VLAN Table to give to HW */ for (i = 0; i < VLAN_GROUP_ARRAY_LEN; i++) { if (adapter->vlan_tag[i]) { vtag[ntags] = cpu_to_le16(i); ntags++; } } status = be_cmd_vlan_config(adapter, adapter->if_handle, vtag, ntags, 1, 0); } else { status = be_cmd_vlan_config(adapter, adapter->if_handle, NULL, 0, 1, 1); } return status; } static void be_vlan_register(struct net_device *netdev, struct vlan_group *grp) { struct be_adapter *adapter = netdev_priv(netdev); struct be_eq_obj *rx_eq = &adapter->rx_eq; struct be_eq_obj *tx_eq = &adapter->tx_eq; be_eq_notify(adapter, rx_eq->q.id, false, false, 0); be_eq_notify(adapter, tx_eq->q.id, false, false, 0); adapter->vlan_grp = grp; be_eq_notify(adapter, rx_eq->q.id, true, false, 0); be_eq_notify(adapter, tx_eq->q.id, true, false, 0); } static void be_vlan_add_vid(struct net_device *netdev, u16 vid) { struct be_adapter *adapter = netdev_priv(netdev); if (!be_physfn(adapter)) return; adapter->vlan_tag[vid] = 1; adapter->vlans_added++; if (adapter->vlans_added <= (adapter->max_vlans + 1)) be_vid_config(adapter); } static void be_vlan_rem_vid(struct net_device *netdev, u16 vid) { struct be_adapter *adapter = netdev_priv(netdev); if (!be_physfn(adapter)) return; adapter->vlan_tag[vid] = 0; vlan_group_set_device(adapter->vlan_grp, vid, NULL); adapter->vlans_added--; if (adapter->vlans_added <= adapter->max_vlans) be_vid_config(adapter); } static void be_set_multicast_list(struct net_device *netdev) { struct be_adapter *adapter = netdev_priv(netdev); if (netdev->flags & IFF_PROMISC) { be_cmd_promiscuous_config(adapter, adapter->port_num, 1); adapter->promiscuous = true; goto done; } /* BE was previously in promiscous mode; disable it */ if (adapter->promiscuous) { adapter->promiscuous = false; be_cmd_promiscuous_config(adapter, adapter->port_num, 0); } /* Enable multicast promisc if num configured exceeds what we support */ if (netdev->flags & IFF_ALLMULTI || netdev_mc_count(netdev) > BE_MAX_MC) { be_cmd_multicast_set(adapter, adapter->if_handle, NULL, &adapter->mc_cmd_mem); goto done; } be_cmd_multicast_set(adapter, adapter->if_handle, netdev, &adapter->mc_cmd_mem); done: return; } static int be_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) { struct be_adapter *adapter = netdev_priv(netdev); int status; if (!adapter->sriov_enabled) return -EPERM; if (!is_valid_ether_addr(mac) || (vf >= num_vfs)) return -EINVAL; status = be_cmd_pmac_del(adapter, adapter->vf_if_handle[vf], adapter->vf_pmac_id[vf]); status = be_cmd_pmac_add(adapter, mac, adapter->vf_if_handle[vf], &adapter->vf_pmac_id[vf]); if (!status) dev_err(&adapter->pdev->dev, "MAC %pM set on VF %d Failed\n", mac, vf); return status; } static void be_rx_rate_update(struct be_adapter *adapter) { struct be_drvr_stats *stats = drvr_stats(adapter); ulong now = jiffies; /* Wrapped around */ if (time_before(now, stats->be_rx_jiffies)) { stats->be_rx_jiffies = now; return; } /* Update the rate once in two seconds */ if ((now - stats->be_rx_jiffies) < 2 * HZ) return; stats->be_rx_rate = be_calc_rate(stats->be_rx_bytes - stats->be_rx_bytes_prev, now - stats->be_rx_jiffies); stats->be_rx_jiffies = now; stats->be_rx_bytes_prev = stats->be_rx_bytes; } static void be_rx_stats_update(struct be_adapter *adapter, u32 pktsize, u16 numfrags) { struct be_drvr_stats *stats = drvr_stats(adapter); stats->be_rx_compl++; stats->be_rx_frags += numfrags; stats->be_rx_bytes += pktsize; stats->be_rx_pkts++; } static inline bool do_pkt_csum(struct be_eth_rx_compl *rxcp, bool cso) { u8 l4_cksm, ip_version, ipcksm, tcpf = 0, udpf = 0, ipv6_chk; l4_cksm = AMAP_GET_BITS(struct amap_eth_rx_compl, l4_cksm, rxcp); ipcksm = AMAP_GET_BITS(struct amap_eth_rx_compl, ipcksm, rxcp); ip_version = AMAP_GET_BITS(struct amap_eth_rx_compl, ip_version, rxcp); if (ip_version) { tcpf = AMAP_GET_BITS(struct amap_eth_rx_compl, tcpf, rxcp); udpf = AMAP_GET_BITS(struct amap_eth_rx_compl, udpf, rxcp); } ipv6_chk = (ip_version && (tcpf || udpf)); return ((l4_cksm && ipv6_chk && ipcksm) && cso) ? false : true; } static struct be_rx_page_info * get_rx_page_info(struct be_adapter *adapter, u16 frag_idx) { struct be_rx_page_info *rx_page_info; struct be_queue_info *rxq = &adapter->rx_obj.q; rx_page_info = &adapter->rx_obj.page_info_tbl[frag_idx]; BUG_ON(!rx_page_info->page); if (rx_page_info->last_page_user) { pci_unmap_page(adapter->pdev, dma_unmap_addr(rx_page_info, bus), adapter->big_page_size, PCI_DMA_FROMDEVICE); rx_page_info->last_page_user = false; } atomic_dec(&rxq->used); return rx_page_info; } /* Throwaway the data in the Rx completion */ static void be_rx_compl_discard(struct be_adapter *adapter, struct be_eth_rx_compl *rxcp) { struct be_queue_info *rxq = &adapter->rx_obj.q; struct be_rx_page_info *page_info; u16 rxq_idx, i, num_rcvd; rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp); num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp); for (i = 0; i < num_rcvd; i++) { page_info = get_rx_page_info(adapter, rxq_idx); put_page(page_info->page); memset(page_info, 0, sizeof(*page_info)); index_inc(&rxq_idx, rxq->len); } } /* * skb_fill_rx_data forms a complete skb for an ether frame * indicated by rxcp. */ static void skb_fill_rx_data(struct be_adapter *adapter, struct sk_buff *skb, struct be_eth_rx_compl *rxcp, u16 num_rcvd) { struct be_queue_info *rxq = &adapter->rx_obj.q; struct be_rx_page_info *page_info; u16 rxq_idx, i, j; u32 pktsize, hdr_len, curr_frag_len, size; u8 *start; rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp); pktsize = AMAP_GET_BITS(struct amap_eth_rx_compl, pktsize, rxcp); page_info = get_rx_page_info(adapter, rxq_idx); start = page_address(page_info->page) + page_info->page_offset; prefetch(start); /* Copy data in the first descriptor of this completion */ curr_frag_len = min(pktsize, rx_frag_size); /* Copy the header portion into skb_data */ hdr_len = min((u32)BE_HDR_LEN, curr_frag_len); memcpy(skb->data, start, hdr_len); skb->len = curr_frag_len; if (curr_frag_len <= BE_HDR_LEN) { /* tiny packet */ /* Complete packet has now been moved to data */ put_page(page_info->page); skb->data_len = 0; skb->tail += curr_frag_len; } else { skb_shinfo(skb)->nr_frags = 1; skb_shinfo(skb)->frags[0].page = page_info->page; skb_shinfo(skb)->frags[0].page_offset = page_info->page_offset + hdr_len; skb_shinfo(skb)->frags[0].size = curr_frag_len - hdr_len; skb->data_len = curr_frag_len - hdr_len; skb->tail += hdr_len; } page_info->page = NULL; if (pktsize <= rx_frag_size) { BUG_ON(num_rcvd != 1); goto done; } /* More frags present for this completion */ size = pktsize; for (i = 1, j = 0; i < num_rcvd; i++) { size -= curr_frag_len; index_inc(&rxq_idx, rxq->len); page_info = get_rx_page_info(adapter, rxq_idx); curr_frag_len = min(size, rx_frag_size); /* Coalesce all frags from the same physical page in one slot */ if (page_info->page_offset == 0) { /* Fresh page */ j++; skb_shinfo(skb)->frags[j].page = page_info->page; skb_shinfo(skb)->frags[j].page_offset = page_info->page_offset; skb_shinfo(skb)->frags[j].size = 0; skb_shinfo(skb)->nr_frags++; } else { put_page(page_info->page); } skb_shinfo(skb)->frags[j].size += curr_frag_len; skb->len += curr_frag_len; skb->data_len += curr_frag_len; page_info->page = NULL; } BUG_ON(j > MAX_SKB_FRAGS); done: be_rx_stats_update(adapter, pktsize, num_rcvd); } /* Process the RX completion indicated by rxcp when GRO is disabled */ static void be_rx_compl_process(struct be_adapter *adapter, struct be_eth_rx_compl *rxcp) { struct sk_buff *skb; u32 vlanf, vid; u16 num_rcvd; u8 vtm; num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp); /* Is it a flush compl that has no data */ if (unlikely(num_rcvd == 0)) return; skb = netdev_alloc_skb_ip_align(adapter->netdev, BE_HDR_LEN); if (unlikely(!skb)) { if (net_ratelimit()) dev_warn(&adapter->pdev->dev, "skb alloc failed\n"); be_rx_compl_discard(adapter, rxcp); return; } skb_fill_rx_data(adapter, skb, rxcp, num_rcvd); if (do_pkt_csum(rxcp, adapter->rx_csum)) skb->ip_summed = CHECKSUM_NONE; else skb->ip_summed = CHECKSUM_UNNECESSARY; skb->truesize = skb->len + sizeof(struct sk_buff); skb->protocol = eth_type_trans(skb, adapter->netdev); vlanf = AMAP_GET_BITS(struct amap_eth_rx_compl, vtp, rxcp); vtm = AMAP_GET_BITS(struct amap_eth_rx_compl, vtm, rxcp); /* vlanf could be wrongly set in some cards. * ignore if vtm is not set */ if ((adapter->cap & 0x400) && !vtm) vlanf = 0; if (unlikely(vlanf)) { if (!adapter->vlan_grp || adapter->vlans_added == 0) { kfree_skb(skb); return; } vid = AMAP_GET_BITS(struct amap_eth_rx_compl, vlan_tag, rxcp); vid = swab16(vid); vlan_hwaccel_receive_skb(skb, adapter->vlan_grp, vid); } else { netif_receive_skb(skb); } } /* Process the RX completion indicated by rxcp when GRO is enabled */ static void be_rx_compl_process_gro(struct be_adapter *adapter, struct be_eth_rx_compl *rxcp) { struct be_rx_page_info *page_info; struct sk_buff *skb = NULL; struct be_queue_info *rxq = &adapter->rx_obj.q; struct be_eq_obj *eq_obj = &adapter->rx_eq; u32 num_rcvd, pkt_size, remaining, vlanf, curr_frag_len; u16 i, rxq_idx = 0, vid, j; u8 vtm; num_rcvd = AMAP_GET_BITS(struct amap_eth_rx_compl, numfrags, rxcp); /* Is it a flush compl that has no data */ if (unlikely(num_rcvd == 0)) return; pkt_size = AMAP_GET_BITS(struct amap_eth_rx_compl, pktsize, rxcp); vlanf = AMAP_GET_BITS(struct amap_eth_rx_compl, vtp, rxcp); rxq_idx = AMAP_GET_BITS(struct amap_eth_rx_compl, fragndx, rxcp); vtm = AMAP_GET_BITS(struct amap_eth_rx_compl, vtm, rxcp); /* vlanf could be wrongly set in some cards. * ignore if vtm is not set */ if ((adapter->cap & 0x400) && !vtm) vlanf = 0; skb = napi_get_frags(&eq_obj->napi); if (!skb) { be_rx_compl_discard(adapter, rxcp); return; } remaining = pkt_size; for (i = 0, j = -1; i < num_rcvd; i++) { page_info = get_rx_page_info(adapter, rxq_idx); curr_frag_len = min(remaining, rx_frag_size); /* Coalesce all frags from the same physical page in one slot */ if (i == 0 || page_info->page_offset == 0) { /* First frag or Fresh page */ j++; skb_shinfo(skb)->frags[j].page = page_info->page; skb_shinfo(skb)->frags[j].page_offset = page_info->page_offset; skb_shinfo(skb)->frags[j].size = 0; } else { put_page(page_info->page); } skb_shinfo(skb)->frags[j].size += curr_frag_len; remaining -= curr_frag_len; index_inc(&rxq_idx, rxq->len); memset(page_info, 0, sizeof(*page_info)); } BUG_ON(j > MAX_SKB_FRAGS); skb_shinfo(skb)->nr_frags = j + 1; skb->len = pkt_size; skb->data_len = pkt_size; skb->truesize += pkt_size; skb->ip_summed = CHECKSUM_UNNECESSARY; if (likely(!vlanf)) { napi_gro_frags(&eq_obj->napi); } else { vid = AMAP_GET_BITS(struct amap_eth_rx_compl, vlan_tag, rxcp); vid = swab16(vid); if (!adapter->vlan_grp || adapter->vlans_added == 0) return; vlan_gro_frags(&eq_obj->napi, adapter->vlan_grp, vid); } be_rx_stats_update(adapter, pkt_size, num_rcvd); } static struct be_eth_rx_compl *be_rx_compl_get(struct be_adapter *adapter) { struct be_eth_rx_compl *rxcp = queue_tail_node(&adapter->rx_obj.cq); if (rxcp->dw[offsetof(struct amap_eth_rx_compl, valid) / 32] == 0) return NULL; rmb(); be_dws_le_to_cpu(rxcp, sizeof(*rxcp)); queue_tail_inc(&adapter->rx_obj.cq); return rxcp; } /* To reset the valid bit, we need to reset the whole word as * when walking the queue the valid entries are little-endian * and invalid entries are host endian */ static inline void be_rx_compl_reset(struct be_eth_rx_compl *rxcp) { rxcp->dw[offsetof(struct amap_eth_rx_compl, valid) / 32] = 0; } static inline struct page *be_alloc_pages(u32 size) { gfp_t alloc_flags = GFP_ATOMIC; u32 order = get_order(size); if (order > 0) alloc_flags |= __GFP_COMP; return alloc_pages(alloc_flags, order); } /* * Allocate a page, split it to fragments of size rx_frag_size and post as * receive buffers to BE */ static void be_post_rx_frags(struct be_adapter *adapter) { struct be_rx_page_info *page_info_tbl = adapter->rx_obj.page_info_tbl; struct be_rx_page_info *page_info = NULL, *prev_page_info = NULL; struct be_queue_info *rxq = &adapter->rx_obj.q; struct page *pagep = NULL; struct be_eth_rx_d *rxd; u64 page_dmaaddr = 0, frag_dmaaddr; u32 posted, page_offset = 0; page_info = &page_info_tbl[rxq->head]; for (posted = 0; posted < MAX_RX_POST && !page_info->page; posted++) { if (!pagep) { pagep = be_alloc_pages(adapter->big_page_size); if (unlikely(!pagep)) { drvr_stats(adapter)->be_ethrx_post_fail++; break; } page_dmaaddr = pci_map_page(adapter->pdev, pagep, 0, adapter->big_page_size, PCI_DMA_FROMDEVICE); page_info->page_offset = 0; } else { get_page(pagep); page_info->page_offset = page_offset + rx_frag_size; } page_offset = page_info->page_offset; page_info->page = pagep; dma_unmap_addr_set(page_info, bus, page_dmaaddr); frag_dmaaddr = page_dmaaddr + page_info->page_offset; rxd = queue_head_node(rxq); rxd->fragpa_lo = cpu_to_le32(frag_dmaaddr & 0xFFFFFFFF); rxd->fragpa_hi = cpu_to_le32(upper_32_bits(frag_dmaaddr)); /* Any space left in the current big page for another frag? */ if ((page_offset + rx_frag_size + rx_frag_size) > adapter->big_page_size) { pagep = NULL; page_info->last_page_user = true; } prev_page_info = page_info; queue_head_inc(rxq); page_info = &page_info_tbl[rxq->head]; } if (pagep) prev_page_info->last_page_user = true; if (posted) { atomic_add(posted, &rxq->used); be_rxq_notify(adapter, rxq->id, posted); } else if (atomic_read(&rxq->used) == 0) { /* Let be_worker replenish when memory is available */ adapter->rx_post_starved = true; } } static struct be_eth_tx_compl *be_tx_compl_get(struct be_queue_info *tx_cq) { struct be_eth_tx_compl *txcp = queue_tail_node(tx_cq); if (txcp->dw[offsetof(struct amap_eth_tx_compl, valid) / 32] == 0) return NULL; rmb(); be_dws_le_to_cpu(txcp, sizeof(*txcp)); txcp->dw[offsetof(struct amap_eth_tx_compl, valid) / 32] = 0; queue_tail_inc(tx_cq); return txcp; } static void be_tx_compl_process(struct be_adapter *adapter, u16 last_index) { struct be_queue_info *txq = &adapter->tx_obj.q; struct be_eth_wrb *wrb; struct sk_buff **sent_skbs = adapter->tx_obj.sent_skb_list; struct sk_buff *sent_skb; u16 cur_index, num_wrbs = 1; /* account for hdr wrb */ bool unmap_skb_hdr = true; sent_skb = sent_skbs[txq->tail]; BUG_ON(!sent_skb); sent_skbs[txq->tail] = NULL; /* skip header wrb */ queue_tail_inc(txq); do { cur_index = txq->tail; wrb = queue_tail_node(txq); unmap_tx_frag(adapter->pdev, wrb, (unmap_skb_hdr && skb_headlen(sent_skb))); unmap_skb_hdr = false; num_wrbs++; queue_tail_inc(txq); } while (cur_index != last_index); atomic_sub(num_wrbs, &txq->used); kfree_skb(sent_skb); } static inline struct be_eq_entry *event_get(struct be_eq_obj *eq_obj) { struct be_eq_entry *eqe = queue_tail_node(&eq_obj->q); if (!eqe->evt) return NULL; rmb(); eqe->evt = le32_to_cpu(eqe->evt); queue_tail_inc(&eq_obj->q); return eqe; } static int event_handle(struct be_adapter *adapter, struct be_eq_obj *eq_obj) { struct be_eq_entry *eqe; u16 num = 0; while ((eqe = event_get(eq_obj)) != NULL) { eqe->evt = 0; num++; } /* Deal with any spurious interrupts that come * without events */ be_eq_notify(adapter, eq_obj->q.id, true, true, num); if (num) napi_schedule(&eq_obj->napi); return num; } /* Just read and notify events without processing them. * Used at the time of destroying event queues */ static void be_eq_clean(struct be_adapter *adapter, struct be_eq_obj *eq_obj) { struct be_eq_entry *eqe; u16 num = 0; while ((eqe = event_get(eq_obj)) != NULL) { eqe->evt = 0; num++; } if (num) be_eq_notify(adapter, eq_obj->q.id, false, true, num); } static void be_rx_q_clean(struct be_adapter *adapter) { struct be_rx_page_info *page_info; struct be_queue_info *rxq = &adapter->rx_obj.q; struct be_queue_info *rx_cq = &adapter->rx_obj.cq; struct be_eth_rx_compl *rxcp; u16 tail; /* First cleanup pending rx completions */ while ((rxcp = be_rx_compl_get(adapter)) != NULL) { be_rx_compl_discard(adapter, rxcp); be_rx_compl_reset(rxcp); be_cq_notify(adapter, rx_cq->id, true, 1); } /* Then free posted rx buffer that were not used */ tail = (rxq->head + rxq->len - atomic_read(&rxq->used)) % rxq->len; for (; atomic_read(&rxq->used) > 0; index_inc(&tail, rxq->len)) { page_info = get_rx_page_info(adapter, tail); put_page(page_info->page); memset(page_info, 0, sizeof(*page_info)); } BUG_ON(atomic_read(&rxq->used)); } static void be_tx_compl_clean(struct be_adapter *adapter) { struct be_queue_info *tx_cq = &adapter->tx_obj.cq; struct be_queue_info *txq = &adapter->tx_obj.q; struct be_eth_tx_compl *txcp; u16 end_idx, cmpl = 0, timeo = 0; struct sk_buff **sent_skbs = adapter->tx_obj.sent_skb_list; struct sk_buff *sent_skb; bool dummy_wrb; /* Wait for a max of 200ms for all the tx-completions to arrive. */ do { while ((txcp = be_tx_compl_get(tx_cq))) { end_idx = AMAP_GET_BITS(struct amap_eth_tx_compl, wrb_index, txcp); be_tx_compl_process(adapter, end_idx); cmpl++; } if (cmpl) { be_cq_notify(adapter, tx_cq->id, false, cmpl); cmpl = 0; } if (atomic_read(&txq->used) == 0 || ++timeo > 200) break; mdelay(1); } while (true); if (atomic_read(&txq->used)) dev_err(&adapter->pdev->dev, "%d pending tx-completions\n", atomic_read(&txq->used)); /* free posted tx for which compls will never arrive */ while (atomic_read(&txq->used)) { sent_skb = sent_skbs[txq->tail]; end_idx = txq->tail; index_adv(&end_idx, wrb_cnt_for_skb(sent_skb, &dummy_wrb) - 1, txq->len); be_tx_compl_process(adapter, end_idx); } } static void be_mcc_queues_destroy(struct be_adapter *adapter) { struct be_queue_info *q; q = &adapter->mcc_obj.q; if (q->created) be_cmd_q_destroy(adapter, q, QTYPE_MCCQ); be_queue_free(adapter, q); q = &adapter->mcc_obj.cq; if (q->created) be_cmd_q_destroy(adapter, q, QTYPE_CQ); be_queue_free(adapter, q); } /* Must be called only after TX qs are created as MCC shares TX EQ */ static int be_mcc_queues_create(struct be_adapter *adapter) { struct be_queue_info *q, *cq; /* Alloc MCC compl queue */ cq = &adapter->mcc_obj.cq; if (be_queue_alloc(adapter, cq, MCC_CQ_LEN, sizeof(struct be_mcc_compl))) goto err; /* Ask BE to create MCC compl queue; share TX's eq */ if (be_cmd_cq_create(adapter, cq, &adapter->tx_eq.q, false, true, 0)) goto mcc_cq_free; /* Alloc MCC queue */ q = &adapter->mcc_obj.q; if (be_queue_alloc(adapter, q, MCC_Q_LEN, sizeof(struct be_mcc_wrb))) goto mcc_cq_destroy; /* Ask BE to create MCC queue */ if (be_cmd_mccq_create(adapter, q, cq)) goto mcc_q_free; return 0; mcc_q_free: be_queue_free(adapter, q); mcc_cq_destroy: be_cmd_q_destroy(adapter, cq, QTYPE_CQ); mcc_cq_free: be_queue_free(adapter, cq); err: return -1; } static void be_tx_queues_destroy(struct be_adapter *adapter) { struct be_queue_info *q; q = &adapter->tx_obj.q; if (q->created) be_cmd_q_destroy(adapter, q, QTYPE_TXQ); be_queue_free(adapter, q); q = &adapter->tx_obj.cq; if (q->created) be_cmd_q_destroy(adapter, q, QTYPE_CQ); be_queue_free(adapter, q); /* Clear any residual events */ be_eq_clean(adapter, &adapter->tx_eq); q = &adapter->tx_eq.q; if (q->created) be_cmd_q_destroy(adapter, q, QTYPE_EQ); be_queue_free(adapter, q); } static int be_tx_queues_create(struct be_adapter *adapter) { struct be_queue_info *eq, *q, *cq; adapter->tx_eq.max_eqd = 0; adapter->tx_eq.min_eqd = 0; adapter->tx_eq.cur_eqd = 96; adapter->tx_eq.enable_aic = false; /* Alloc Tx Event queue */ eq = &adapter->tx_eq.q; if (be_queue_alloc(adapter, eq, EVNT_Q_LEN, sizeof(struct be_eq_entry))) return -1; /* Ask BE to create Tx Event queue */ if (be_cmd_eq_create(adapter, eq, adapter->tx_eq.cur_eqd)) goto tx_eq_free; adapter->base_eq_id = adapter->tx_eq.q.id; /* Alloc TX eth compl queue */ cq = &adapter->tx_obj.cq; if (be_queue_alloc(adapter, cq, TX_CQ_LEN, sizeof(struct be_eth_tx_compl))) goto tx_eq_destroy; /* Ask BE to create Tx eth compl queue */ if (be_cmd_cq_create(adapter, cq, eq, false, false, 3)) goto tx_cq_free; /* Alloc TX eth queue */ q = &adapter->tx_obj.q; if (be_queue_alloc(adapter, q, TX_Q_LEN, sizeof(struct be_eth_wrb))) goto tx_cq_destroy; /* Ask BE to create Tx eth queue */ if (be_cmd_txq_create(adapter, q, cq)) goto tx_q_free; return 0; tx_q_free: be_queue_free(adapter, q); tx_cq_destroy: be_cmd_q_destroy(adapter, cq, QTYPE_CQ); tx_cq_free: be_queue_free(adapter, cq); tx_eq_destroy: be_cmd_q_destroy(adapter, eq, QTYPE_EQ); tx_eq_free: be_queue_free(adapter, eq); return -1; } static void be_rx_queues_destroy(struct be_adapter *adapter) { struct be_queue_info *q; q = &adapter->rx_obj.q; if (q->created) { be_cmd_q_destroy(adapter, q, QTYPE_RXQ); /* After the rxq is invalidated, wait for a grace time * of 1ms for all dma to end and the flush compl to arrive */ mdelay(1); be_rx_q_clean(adapter); } be_queue_free(adapter, q); q = &adapter->rx_obj.cq; if (q->created) be_cmd_q_destroy(adapter, q, QTYPE_CQ); be_queue_free(adapter, q); /* Clear any residual events */ be_eq_clean(adapter, &adapter->rx_eq); q = &adapter->rx_eq.q; if (q->created) be_cmd_q_destroy(adapter, q, QTYPE_EQ); be_queue_free(adapter, q); } static int be_rx_queues_create(struct be_adapter *adapter) { struct be_queue_info *eq, *q, *cq; int rc; adapter->big_page_size = (1 << get_order(rx_frag_size)) * PAGE_SIZE; adapter->rx_eq.max_eqd = BE_MAX_EQD; adapter->rx_eq.min_eqd = 0; adapter->rx_eq.cur_eqd = 0; adapter->rx_eq.enable_aic = true; /* Alloc Rx Event queue */ eq = &adapter->rx_eq.q; rc = be_queue_alloc(adapter, eq, EVNT_Q_LEN, sizeof(struct be_eq_entry)); if (rc) return rc; /* Ask BE to create Rx Event queue */ rc = be_cmd_eq_create(adapter, eq, adapter->rx_eq.cur_eqd); if (rc) goto rx_eq_free; /* Alloc RX eth compl queue */ cq = &adapter->rx_obj.cq; rc = be_queue_alloc(adapter, cq, RX_CQ_LEN, sizeof(struct be_eth_rx_compl)); if (rc) goto rx_eq_destroy; /* Ask BE to create Rx eth compl queue */ rc = be_cmd_cq_create(adapter, cq, eq, false, false, 3); if (rc) goto rx_cq_free; /* Alloc RX eth queue */ q = &adapter->rx_obj.q; rc = be_queue_alloc(adapter, q, RX_Q_LEN, sizeof(struct be_eth_rx_d)); if (rc) goto rx_cq_destroy; /* Ask BE to create Rx eth queue */ rc = be_cmd_rxq_create(adapter, q, cq->id, rx_frag_size, BE_MAX_JUMBO_FRAME_SIZE, adapter->if_handle, false); if (rc) goto rx_q_free; return 0; rx_q_free: be_queue_free(adapter, q); rx_cq_destroy: be_cmd_q_destroy(adapter, cq, QTYPE_CQ); rx_cq_free: be_queue_free(adapter, cq); rx_eq_destroy: be_cmd_q_destroy(adapter, eq, QTYPE_EQ); rx_eq_free: be_queue_free(adapter, eq); return rc; } /* There are 8 evt ids per func. Retruns the evt id's bit number */ static inline int be_evt_bit_get(struct be_adapter *adapter, u32 eq_id) { return eq_id - adapter->base_eq_id; } static irqreturn_t be_intx(int irq, void *dev) { struct be_adapter *adapter = dev; int isr; isr = ioread32(adapter->csr + CEV_ISR0_OFFSET + (adapter->tx_eq.q.id/ 8) * CEV_ISR_SIZE); if (!isr) return IRQ_NONE; event_handle(adapter, &adapter->tx_eq); event_handle(adapter, &adapter->rx_eq); return IRQ_HANDLED; } static irqreturn_t be_msix_rx(int irq, void *dev) { struct be_adapter *adapter = dev; event_handle(adapter, &adapter->rx_eq); return IRQ_HANDLED; } static irqreturn_t be_msix_tx_mcc(int irq, void *dev) { struct be_adapter *adapter = dev; event_handle(adapter, &adapter->tx_eq); return IRQ_HANDLED; } static inline bool do_gro(struct be_adapter *adapter, struct be_eth_rx_compl *rxcp) { int err = AMAP_GET_BITS(struct amap_eth_rx_compl, err, rxcp); int tcp_frame = AMAP_GET_BITS(struct amap_eth_rx_compl, tcpf, rxcp); if (err) drvr_stats(adapter)->be_rxcp_err++; return (tcp_frame && !err) ? true : false; } int be_poll_rx(struct napi_struct *napi, int budget) { struct be_eq_obj *rx_eq = container_of(napi, struct be_eq_obj, napi); struct be_adapter *adapter = container_of(rx_eq, struct be_adapter, rx_eq); struct be_queue_info *rx_cq = &adapter->rx_obj.cq; struct be_eth_rx_compl *rxcp; u32 work_done; adapter->stats.drvr_stats.be_rx_polls++; for (work_done = 0; work_done < budget; work_done++) { rxcp = be_rx_compl_get(adapter); if (!rxcp) break; if (do_gro(adapter, rxcp)) be_rx_compl_process_gro(adapter, rxcp); else be_rx_compl_process(adapter, rxcp); be_rx_compl_reset(rxcp); } /* Refill the queue */ if (atomic_read(&adapter->rx_obj.q.used) < RX_FRAGS_REFILL_WM) be_post_rx_frags(adapter); /* All consumed */ if (work_done < budget) { napi_complete(napi); be_cq_notify(adapter, rx_cq->id, true, work_done); } else { /* More to be consumed; continue with interrupts disabled */ be_cq_notify(adapter, rx_cq->id, false, work_done); } return work_done; } /* As TX and MCC share the same EQ check for both TX and MCC completions. * For TX/MCC we don't honour budget; consume everything */ static int be_poll_tx_mcc(struct napi_struct *napi, int budget) { struct be_eq_obj *tx_eq = container_of(napi, struct be_eq_obj, napi); struct be_adapter *adapter = container_of(tx_eq, struct be_adapter, tx_eq); struct be_queue_info *txq = &adapter->tx_obj.q; struct be_queue_info *tx_cq = &adapter->tx_obj.cq; struct be_eth_tx_compl *txcp; int tx_compl = 0, mcc_compl, status = 0; u16 end_idx; while ((txcp = be_tx_compl_get(tx_cq))) { end_idx = AMAP_GET_BITS(struct amap_eth_tx_compl, wrb_index, txcp); be_tx_compl_process(adapter, end_idx); tx_compl++; } mcc_compl = be_process_mcc(adapter, &status); napi_complete(napi); if (mcc_compl) { struct be_mcc_obj *mcc_obj = &adapter->mcc_obj; be_cq_notify(adapter, mcc_obj->cq.id, true, mcc_compl); } if (tx_compl) { be_cq_notify(adapter, adapter->tx_obj.cq.id, true, tx_compl); /* As Tx wrbs have been freed up, wake up netdev queue if * it was stopped due to lack of tx wrbs. */ if (netif_queue_stopped(adapter->netdev) && atomic_read(&txq->used) < txq->len / 2) { netif_wake_queue(adapter->netdev); } drvr_stats(adapter)->be_tx_events++; drvr_stats(adapter)->be_tx_compl += tx_compl; } return 1; } static void be_worker(struct work_struct *work) { struct be_adapter *adapter = container_of(work, struct be_adapter, work.work); be_cmd_get_stats(adapter, &adapter->stats.cmd); /* Set EQ delay */ be_rx_eqd_update(adapter); be_tx_rate_update(adapter); be_rx_rate_update(adapter); if (adapter->rx_post_starved) { adapter->rx_post_starved = false; be_post_rx_frags(adapter); } schedule_delayed_work(&adapter->work, msecs_to_jiffies(1000)); } static void be_msix_disable(struct be_adapter *adapter) { if (adapter->msix_enabled) { pci_disable_msix(adapter->pdev); adapter->msix_enabled = false; } } static void be_msix_enable(struct be_adapter *adapter) { int i, status; for (i = 0; i < BE_NUM_MSIX_VECTORS; i++) adapter->msix_entries[i].entry = i; status = pci_enable_msix(adapter->pdev, adapter->msix_entries, BE_NUM_MSIX_VECTORS); if (status == 0) adapter->msix_enabled = true; } static void be_sriov_enable(struct be_adapter *adapter) { #ifdef CONFIG_PCI_IOV int status; if (be_physfn(adapter) && num_vfs) { status = pci_enable_sriov(adapter->pdev, num_vfs); adapter->sriov_enabled = status ? false : true; } #endif } static void be_sriov_disable(struct be_adapter *adapter) { #ifdef CONFIG_PCI_IOV if (adapter->sriov_enabled) { pci_disable_sriov(adapter->pdev); adapter->sriov_enabled = false; } #endif } static inline int be_msix_vec_get(struct be_adapter *adapter, u32 eq_id) { return adapter->msix_entries[ be_evt_bit_get(adapter, eq_id)].vector; } static int be_request_irq(struct be_adapter *adapter, struct be_eq_obj *eq_obj, void *handler, char *desc) { struct net_device *netdev = adapter->netdev; int vec; sprintf(eq_obj->desc, "%s-%s", netdev->name, desc); vec = be_msix_vec_get(adapter, eq_obj->q.id); return request_irq(vec, handler, 0, eq_obj->desc, adapter); } static void be_free_irq(struct be_adapter *adapter, struct be_eq_obj *eq_obj) { int vec = be_msix_vec_get(adapter, eq_obj->q.id); free_irq(vec, adapter); } static int be_msix_register(struct be_adapter *adapter) { int status; status = be_request_irq(adapter, &adapter->tx_eq, be_msix_tx_mcc, "tx"); if (status) goto err; status = be_request_irq(adapter, &adapter->rx_eq, be_msix_rx, "rx"); if (status) goto free_tx_irq; return 0; free_tx_irq: be_free_irq(adapter, &adapter->tx_eq); err: dev_warn(&adapter->pdev->dev, "MSIX Request IRQ failed - err %d\n", status); pci_disable_msix(adapter->pdev); adapter->msix_enabled = false; return status; } static int be_irq_register(struct be_adapter *adapter) { struct net_device *netdev = adapter->netdev; int status; if (adapter->msix_enabled) { status = be_msix_register(adapter); if (status == 0) goto done; /* INTx is not supported for VF */ if (!be_physfn(adapter)) return status; } /* INTx */ netdev->irq = adapter->pdev->irq; status = request_irq(netdev->irq, be_intx, IRQF_SHARED, netdev->name, adapter); if (status) { dev_err(&adapter->pdev->dev, "INTx request IRQ failed - err %d\n", status); return status; } done: adapter->isr_registered = true; return 0; } static void be_irq_unregister(struct be_adapter *adapter) { struct net_device *netdev = adapter->netdev; if (!adapter->isr_registered) return; /* INTx */ if (!adapter->msix_enabled) { free_irq(netdev->irq, adapter); goto done; } /* MSIx */ be_free_irq(adapter, &adapter->tx_eq); be_free_irq(adapter, &adapter->rx_eq); done: adapter->isr_registered = false; } static int be_close(struct net_device *netdev) { struct be_adapter *adapter = netdev_priv(netdev); struct be_eq_obj *rx_eq = &adapter->rx_eq; struct be_eq_obj *tx_eq = &adapter->tx_eq; int vec; cancel_delayed_work_sync(&adapter->work); be_async_mcc_disable(adapter); netif_stop_queue(netdev); netif_carrier_off(netdev); adapter->link_up = false; be_intr_set(adapter, false); if (adapter->msix_enabled) { vec = be_msix_vec_get(adapter, tx_eq->q.id); synchronize_irq(vec); vec = be_msix_vec_get(adapter, rx_eq->q.id); synchronize_irq(vec); } else { synchronize_irq(netdev->irq); } be_irq_unregister(adapter); napi_disable(&rx_eq->napi); napi_disable(&tx_eq->napi); /* Wait for all pending tx completions to arrive so that * all tx skbs are freed. */ be_tx_compl_clean(adapter); return 0; } static int be_open(struct net_device *netdev) { struct be_adapter *adapter = netdev_priv(netdev); struct be_eq_obj *rx_eq = &adapter->rx_eq; struct be_eq_obj *tx_eq = &adapter->tx_eq; bool link_up; int status; u8 mac_speed; u16 link_speed; /* First time posting */ be_post_rx_frags(adapter); napi_enable(&rx_eq->napi); napi_enable(&tx_eq->napi); be_irq_register(adapter); be_intr_set(adapter, true); /* The evt queues are created in unarmed state; arm them */ be_eq_notify(adapter, rx_eq->q.id, true, false, 0); be_eq_notify(adapter, tx_eq->q.id, true, false, 0); /* Rx compl queue may be in unarmed state; rearm it */ be_cq_notify(adapter, adapter->rx_obj.cq.id, true, 0); /* Now that interrupts are on we can process async mcc */ be_async_mcc_enable(adapter); schedule_delayed_work(&adapter->work, msecs_to_jiffies(100)); status = be_cmd_link_status_query(adapter, &link_up, &mac_speed, &link_speed); if (status) goto err; be_link_status_update(adapter, link_up); if (be_physfn(adapter)) { status = be_vid_config(adapter); if (status) goto err; status = be_cmd_set_flow_control(adapter, adapter->tx_fc, adapter->rx_fc); if (status) goto err; } return 0; err: be_close(adapter->netdev); return -EIO; } static int be_setup_wol(struct be_adapter *adapter, bool enable) { struct be_dma_mem cmd; int status = 0; u8 mac[ETH_ALEN]; memset(mac, 0, ETH_ALEN); cmd.size = sizeof(struct be_cmd_req_acpi_wol_magic_config); cmd.va = pci_alloc_consistent(adapter->pdev, cmd.size, &cmd.dma); if (cmd.va == NULL) return -1; memset(cmd.va, 0, cmd.size); if (enable) { status = pci_write_config_dword(adapter->pdev, PCICFG_PM_CONTROL_OFFSET, PCICFG_PM_CONTROL_MASK); if (status) { dev_err(&adapter->pdev->dev, "Could not enable Wake-on-lan\n"); pci_free_consistent(adapter->pdev, cmd.size, cmd.va, cmd.dma); return status; } status = be_cmd_enable_magic_wol(adapter, adapter->netdev->dev_addr, &cmd); pci_enable_wake(adapter->pdev, PCI_D3hot, 1); pci_enable_wake(adapter->pdev, PCI_D3cold, 1); } else { status = be_cmd_enable_magic_wol(adapter, mac, &cmd); pci_enable_wake(adapter->pdev, PCI_D3hot, 0); pci_enable_wake(adapter->pdev, PCI_D3cold, 0); } pci_free_consistent(adapter->pdev, cmd.size, cmd.va, cmd.dma); return status; } static int be_setup(struct be_adapter *adapter) { struct net_device *netdev = adapter->netdev; u32 cap_flags, en_flags, vf = 0; int status; u8 mac[ETH_ALEN]; cap_flags = en_flags = BE_IF_FLAGS_UNTAGGED | BE_IF_FLAGS_BROADCAST; if (be_physfn(adapter)) { cap_flags |= BE_IF_FLAGS_MCAST_PROMISCUOUS | BE_IF_FLAGS_PROMISCUOUS | BE_IF_FLAGS_PASS_L3L4_ERRORS; en_flags |= BE_IF_FLAGS_PASS_L3L4_ERRORS; } status = be_cmd_if_create(adapter, cap_flags, en_flags, netdev->dev_addr, false/* pmac_invalid */, &adapter->if_handle, &adapter->pmac_id, 0); if (status != 0) goto do_none; if (be_physfn(adapter)) { while (vf < num_vfs) { cap_flags = en_flags = BE_IF_FLAGS_UNTAGGED | BE_IF_FLAGS_BROADCAST; status = be_cmd_if_create(adapter, cap_flags, en_flags, mac, true, &adapter->vf_if_handle[vf], NULL, vf+1); if (status) { dev_err(&adapter->pdev->dev, "Interface Create failed for VF %d\n", vf); goto if_destroy; } vf++; } } else if (!be_physfn(adapter)) { status = be_cmd_mac_addr_query(adapter, mac, MAC_ADDRESS_TYPE_NETWORK, false, adapter->if_handle); if (!status) { memcpy(adapter->netdev->dev_addr, mac, ETH_ALEN); memcpy(adapter->netdev->perm_addr, mac, ETH_ALEN); } } status = be_tx_queues_create(adapter); if (status != 0) goto if_destroy; status = be_rx_queues_create(adapter); if (status != 0) goto tx_qs_destroy; status = be_mcc_queues_create(adapter); if (status != 0) goto rx_qs_destroy; adapter->link_speed = -1; return 0; rx_qs_destroy: be_rx_queues_destroy(adapter); tx_qs_destroy: be_tx_queues_destroy(adapter); if_destroy: for (vf = 0; vf < num_vfs; vf++) if (adapter->vf_if_handle[vf]) be_cmd_if_destroy(adapter, adapter->vf_if_handle[vf]); be_cmd_if_destroy(adapter, adapter->if_handle); do_none: return status; } static int be_clear(struct be_adapter *adapter) { be_mcc_queues_destroy(adapter); be_rx_queues_destroy(adapter); be_tx_queues_destroy(adapter); be_cmd_if_destroy(adapter, adapter->if_handle); /* tell fw we're done with firing cmds */ be_cmd_fw_clean(adapter); return 0; } #define FW_FILE_HDR_SIGN "ServerEngines Corp. " char flash_cookie[2][16] = {"*** SE FLAS", "H DIRECTORY *** "}; static bool be_flash_redboot(struct be_adapter *adapter, const u8 *p, u32 img_start, int image_size, int hdr_size) { u32 crc_offset; u8 flashed_crc[4]; int status; crc_offset = hdr_size + img_start + image_size - 4; p += crc_offset; status = be_cmd_get_flash_crc(adapter, flashed_crc, (image_size - 4)); if (status) { dev_err(&adapter->pdev->dev, "could not get crc from flash, not flashing redboot\n"); return false; } /*update redboot only if crc does not match*/ if (!memcmp(flashed_crc, p, 4)) return false; else return true; } static int be_flash_data(struct be_adapter *adapter, const struct firmware *fw, struct be_dma_mem *flash_cmd, int num_of_images) { int status = 0, i, filehdr_size = 0; u32 total_bytes = 0, flash_op; int num_bytes; const u8 *p = fw->data; struct be_cmd_write_flashrom *req = flash_cmd->va; struct flash_comp *pflashcomp; int num_comp; struct flash_comp gen3_flash_types[9] = { { FLASH_iSCSI_PRIMARY_IMAGE_START_g3, IMG_TYPE_ISCSI_ACTIVE, FLASH_IMAGE_MAX_SIZE_g3}, { FLASH_REDBOOT_START_g3, IMG_TYPE_REDBOOT, FLASH_REDBOOT_IMAGE_MAX_SIZE_g3}, { FLASH_iSCSI_BIOS_START_g3, IMG_TYPE_BIOS, FLASH_BIOS_IMAGE_MAX_SIZE_g3}, { FLASH_PXE_BIOS_START_g3, IMG_TYPE_PXE_BIOS, FLASH_BIOS_IMAGE_MAX_SIZE_g3}, { FLASH_FCoE_BIOS_START_g3, IMG_TYPE_FCOE_BIOS, FLASH_BIOS_IMAGE_MAX_SIZE_g3}, { FLASH_iSCSI_BACKUP_IMAGE_START_g3, IMG_TYPE_ISCSI_BACKUP, FLASH_IMAGE_MAX_SIZE_g3}, { FLASH_FCoE_PRIMARY_IMAGE_START_g3, IMG_TYPE_FCOE_FW_ACTIVE, FLASH_IMAGE_MAX_SIZE_g3}, { FLASH_FCoE_BACKUP_IMAGE_START_g3, IMG_TYPE_FCOE_FW_BACKUP, FLASH_IMAGE_MAX_SIZE_g3}, { FLASH_NCSI_START_g3, IMG_TYPE_NCSI_FW, FLASH_NCSI_IMAGE_MAX_SIZE_g3} }; struct flash_comp gen2_flash_types[8] = { { FLASH_iSCSI_PRIMARY_IMAGE_START_g2, IMG_TYPE_ISCSI_ACTIVE, FLASH_IMAGE_MAX_SIZE_g2}, { FLASH_REDBOOT_START_g2, IMG_TYPE_REDBOOT, FLASH_REDBOOT_IMAGE_MAX_SIZE_g2}, { FLASH_iSCSI_BIOS_START_g2, IMG_TYPE_BIOS, FLASH_BIOS_IMAGE_MAX_SIZE_g2}, { FLASH_PXE_BIOS_START_g2, IMG_TYPE_PXE_BIOS, FLASH_BIOS_IMAGE_MAX_SIZE_g2}, { FLASH_FCoE_BIOS_START_g2, IMG_TYPE_FCOE_BIOS, FLASH_BIOS_IMAGE_MAX_SIZE_g2}, { FLASH_iSCSI_BACKUP_IMAGE_START_g2, IMG_TYPE_ISCSI_BACKUP, FLASH_IMAGE_MAX_SIZE_g2}, { FLASH_FCoE_PRIMARY_IMAGE_START_g2, IMG_TYPE_FCOE_FW_ACTIVE, FLASH_IMAGE_MAX_SIZE_g2}, { FLASH_FCoE_BACKUP_IMAGE_START_g2, IMG_TYPE_FCOE_FW_BACKUP, FLASH_IMAGE_MAX_SIZE_g2} }; if (adapter->generation == BE_GEN3) { pflashcomp = gen3_flash_types; filehdr_size = sizeof(struct flash_file_hdr_g3); num_comp = 9; } else { pflashcomp = gen2_flash_types; filehdr_size = sizeof(struct flash_file_hdr_g2); num_comp = 8; } for (i = 0; i < num_comp; i++) { if ((pflashcomp[i].optype == IMG_TYPE_NCSI_FW) && memcmp(adapter->fw_ver, "3.102.148.0", 11) < 0) continue; if ((pflashcomp[i].optype == IMG_TYPE_REDBOOT) && (!be_flash_redboot(adapter, fw->data, pflashcomp[i].offset, pflashcomp[i].size, filehdr_size))) continue; p = fw->data; p += filehdr_size + pflashcomp[i].offset + (num_of_images * sizeof(struct image_hdr)); if (p + pflashcomp[i].size > fw->data + fw->size) return -1; total_bytes = pflashcomp[i].size; while (total_bytes) { if (total_bytes > 32*1024) num_bytes = 32*1024; else num_bytes = total_bytes; total_bytes -= num_bytes; if (!total_bytes) flash_op = FLASHROM_OPER_FLASH; else flash_op = FLASHROM_OPER_SAVE; memcpy(req->params.data_buf, p, num_bytes); p += num_bytes; status = be_cmd_write_flashrom(adapter, flash_cmd, pflashcomp[i].optype, flash_op, num_bytes); if (status) { dev_err(&adapter->pdev->dev, "cmd to write to flash rom failed.\n"); return -1; } yield(); } } return 0; } static int get_ufigen_type(struct flash_file_hdr_g2 *fhdr) { if (fhdr == NULL) return 0; if (fhdr->build[0] == '3') return BE_GEN3; else if (fhdr->build[0] == '2') return BE_GEN2; else return 0; } int be_load_fw(struct be_adapter *adapter, u8 *func) { char fw_file[ETHTOOL_FLASH_MAX_FILENAME]; const struct firmware *fw; struct flash_file_hdr_g2 *fhdr; struct flash_file_hdr_g3 *fhdr3; struct image_hdr *img_hdr_ptr = NULL; struct be_dma_mem flash_cmd; int status, i = 0, num_imgs = 0; const u8 *p; strcpy(fw_file, func); status = request_firmware(&fw, fw_file, &adapter->pdev->dev); if (status) goto fw_exit; p = fw->data; fhdr = (struct flash_file_hdr_g2 *) p; dev_info(&adapter->pdev->dev, "Flashing firmware file %s\n", fw_file); flash_cmd.size = sizeof(struct be_cmd_write_flashrom) + 32*1024; flash_cmd.va = pci_alloc_consistent(adapter->pdev, flash_cmd.size, &flash_cmd.dma); if (!flash_cmd.va) { status = -ENOMEM; dev_err(&adapter->pdev->dev, "Memory allocation failure while flashing\n"); goto fw_exit; } if ((adapter->generation == BE_GEN3) && (get_ufigen_type(fhdr) == BE_GEN3)) { fhdr3 = (struct flash_file_hdr_g3 *) fw->data; num_imgs = le32_to_cpu(fhdr3->num_imgs); for (i = 0; i < num_imgs; i++) { img_hdr_ptr = (struct image_hdr *) (fw->data + (sizeof(struct flash_file_hdr_g3) + i * sizeof(struct image_hdr))); if (le32_to_cpu(img_hdr_ptr->imageid) == 1) status = be_flash_data(adapter, fw, &flash_cmd, num_imgs); } } else if ((adapter->generation == BE_GEN2) && (get_ufigen_type(fhdr) == BE_GEN2)) { status = be_flash_data(adapter, fw, &flash_cmd, 0); } else { dev_err(&adapter->pdev->dev, "UFI and Interface are not compatible for flashing\n"); status = -1; } pci_free_consistent(adapter->pdev, flash_cmd.size, flash_cmd.va, flash_cmd.dma); if (status) { dev_err(&adapter->pdev->dev, "Firmware load error\n"); goto fw_exit; } dev_info(&adapter->pdev->dev, "Firmware flashed successfully\n"); fw_exit: release_firmware(fw); return status; } static struct net_device_ops be_netdev_ops = { .ndo_open = be_open, .ndo_stop = be_close, .ndo_start_xmit = be_xmit, .ndo_get_stats = be_get_stats, .ndo_set_rx_mode = be_set_multicast_list, .ndo_set_mac_address = be_mac_addr_set, .ndo_change_mtu = be_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_vlan_rx_register = be_vlan_register, .ndo_vlan_rx_add_vid = be_vlan_add_vid, .ndo_vlan_rx_kill_vid = be_vlan_rem_vid, .ndo_set_vf_mac = be_set_vf_mac }; static void be_netdev_init(struct net_device *netdev) { struct be_adapter *adapter = netdev_priv(netdev); netdev->features |= NETIF_F_SG | NETIF_F_HW_VLAN_RX | NETIF_F_TSO | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER | NETIF_F_HW_CSUM | NETIF_F_GRO | NETIF_F_TSO6; netdev->vlan_features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_HW_CSUM; netdev->flags |= IFF_MULTICAST; adapter->rx_csum = true; /* Default settings for Rx and Tx flow control */ adapter->rx_fc = true; adapter->tx_fc = true; netif_set_gso_max_size(netdev, 65535); BE_SET_NETDEV_OPS(netdev, &be_netdev_ops); SET_ETHTOOL_OPS(netdev, &be_ethtool_ops); netif_napi_add(netdev, &adapter->rx_eq.napi, be_poll_rx, BE_NAPI_WEIGHT); netif_napi_add(netdev, &adapter->tx_eq.napi, be_poll_tx_mcc, BE_NAPI_WEIGHT); netif_carrier_off(netdev); netif_stop_queue(netdev); } static void be_unmap_pci_bars(struct be_adapter *adapter) { if (adapter->csr) iounmap(adapter->csr); if (adapter->db) iounmap(adapter->db); if (adapter->pcicfg && be_physfn(adapter)) iounmap(adapter->pcicfg); } static int be_map_pci_bars(struct be_adapter *adapter) { u8 __iomem *addr; int pcicfg_reg, db_reg; if (be_physfn(adapter)) { addr = ioremap_nocache(pci_resource_start(adapter->pdev, 2), pci_resource_len(adapter->pdev, 2)); if (addr == NULL) return -ENOMEM; adapter->csr = addr; } if (adapter->generation == BE_GEN2) { pcicfg_reg = 1; db_reg = 4; } else { pcicfg_reg = 0; if (be_physfn(adapter)) db_reg = 4; else db_reg = 0; } addr = ioremap_nocache(pci_resource_start(adapter->pdev, db_reg), pci_resource_len(adapter->pdev, db_reg)); if (addr == NULL) goto pci_map_err; adapter->db = addr; if (be_physfn(adapter)) { addr = ioremap_nocache( pci_resource_start(adapter->pdev, pcicfg_reg), pci_resource_len(adapter->pdev, pcicfg_reg)); if (addr == NULL) goto pci_map_err; adapter->pcicfg = addr; } else adapter->pcicfg = adapter->db + SRIOV_VF_PCICFG_OFFSET; return 0; pci_map_err: be_unmap_pci_bars(adapter); return -ENOMEM; } static void be_ctrl_cleanup(struct be_adapter *adapter) { struct be_dma_mem *mem = &adapter->mbox_mem_alloced; be_unmap_pci_bars(adapter); if (mem->va) pci_free_consistent(adapter->pdev, mem->size, mem->va, mem->dma); mem = &adapter->mc_cmd_mem; if (mem->va) pci_free_consistent(adapter->pdev, mem->size, mem->va, mem->dma); } static int be_ctrl_init(struct be_adapter *adapter) { struct be_dma_mem *mbox_mem_alloc = &adapter->mbox_mem_alloced; struct be_dma_mem *mbox_mem_align = &adapter->mbox_mem; struct be_dma_mem *mc_cmd_mem = &adapter->mc_cmd_mem; int status; status = be_map_pci_bars(adapter); if (status) goto done; mbox_mem_alloc->size = sizeof(struct be_mcc_mailbox) + 16; mbox_mem_alloc->va = pci_alloc_consistent(adapter->pdev, mbox_mem_alloc->size, &mbox_mem_alloc->dma); if (!mbox_mem_alloc->va) { status = -ENOMEM; goto unmap_pci_bars; } mbox_mem_align->size = sizeof(struct be_mcc_mailbox); mbox_mem_align->va = PTR_ALIGN(mbox_mem_alloc->va, 16); mbox_mem_align->dma = PTR_ALIGN(mbox_mem_alloc->dma, 16); memset(mbox_mem_align->va, 0, sizeof(struct be_mcc_mailbox)); mc_cmd_mem->size = sizeof(struct be_cmd_req_mcast_mac_config); mc_cmd_mem->va = pci_alloc_consistent(adapter->pdev, mc_cmd_mem->size, &mc_cmd_mem->dma); if (mc_cmd_mem->va == NULL) { status = -ENOMEM; goto free_mbox; } memset(mc_cmd_mem->va, 0, mc_cmd_mem->size); spin_lock_init(&adapter->mbox_lock); spin_lock_init(&adapter->mcc_lock); spin_lock_init(&adapter->mcc_cq_lock); init_completion(&adapter->flash_compl); pci_save_state(adapter->pdev); return 0; free_mbox: pci_free_consistent(adapter->pdev, mbox_mem_alloc->size, mbox_mem_alloc->va, mbox_mem_alloc->dma); unmap_pci_bars: be_unmap_pci_bars(adapter); done: return status; } static void be_stats_cleanup(struct be_adapter *adapter) { struct be_stats_obj *stats = &adapter->stats; struct be_dma_mem *cmd = &stats->cmd; if (cmd->va) pci_free_consistent(adapter->pdev, cmd->size, cmd->va, cmd->dma); } static int be_stats_init(struct be_adapter *adapter) { struct be_stats_obj *stats = &adapter->stats; struct be_dma_mem *cmd = &stats->cmd; cmd->size = sizeof(struct be_cmd_req_get_stats); cmd->va = pci_alloc_consistent(adapter->pdev, cmd->size, &cmd->dma); if (cmd->va == NULL) return -1; memset(cmd->va, 0, cmd->size); return 0; } static void __devexit be_remove(struct pci_dev *pdev) { struct be_adapter *adapter = pci_get_drvdata(pdev); if (!adapter) return; unregister_netdev(adapter->netdev); be_clear(adapter); be_stats_cleanup(adapter); be_ctrl_cleanup(adapter); be_sriov_disable(adapter); be_msix_disable(adapter); pci_set_drvdata(pdev, NULL); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(adapter->netdev); } static int be_get_config(struct be_adapter *adapter) { int status; u8 mac[ETH_ALEN]; status = be_cmd_get_fw_ver(adapter, adapter->fw_ver); if (status) return status; status = be_cmd_query_fw_cfg(adapter, &adapter->port_num, &adapter->cap); if (status) return status; memset(mac, 0, ETH_ALEN); if (be_physfn(adapter)) { status = be_cmd_mac_addr_query(adapter, mac, MAC_ADDRESS_TYPE_NETWORK, true /*permanent */, 0); if (status) return status; if (!is_valid_ether_addr(mac)) return -EADDRNOTAVAIL; memcpy(adapter->netdev->dev_addr, mac, ETH_ALEN); memcpy(adapter->netdev->perm_addr, mac, ETH_ALEN); } if (adapter->cap & 0x400) adapter->max_vlans = BE_NUM_VLANS_SUPPORTED/4; else adapter->max_vlans = BE_NUM_VLANS_SUPPORTED; return 0; } static int __devinit be_probe(struct pci_dev *pdev, const struct pci_device_id *pdev_id) { int status = 0; struct be_adapter *adapter; struct net_device *netdev; status = pci_enable_device(pdev); if (status) goto do_none; status = pci_request_regions(pdev, DRV_NAME); if (status) goto disable_dev; pci_set_master(pdev); netdev = alloc_etherdev(sizeof(struct be_adapter)); if (netdev == NULL) { status = -ENOMEM; goto rel_reg; } adapter = netdev_priv(netdev); switch (pdev->device) { case BE_DEVICE_ID1: case OC_DEVICE_ID1: adapter->generation = BE_GEN2; break; case BE_DEVICE_ID2: case OC_DEVICE_ID2: adapter->generation = BE_GEN3; break; default: adapter->generation = 0; } adapter->pdev = pdev; pci_set_drvdata(pdev, adapter); adapter->netdev = netdev; be_netdev_init(netdev); SET_NETDEV_DEV(netdev, &pdev->dev); be_msix_enable(adapter); status = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (!status) { netdev->features |= NETIF_F_HIGHDMA; } else { status = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (status) { dev_err(&pdev->dev, "Could not set PCI DMA Mask\n"); goto free_netdev; } } be_sriov_enable(adapter); status = be_ctrl_init(adapter); if (status) goto free_netdev; /* sync up with fw's ready state */ if (be_physfn(adapter)) { status = be_cmd_POST(adapter); if (status) goto ctrl_clean; } /* tell fw we're ready to fire cmds */ status = be_cmd_fw_init(adapter); if (status) goto ctrl_clean; if (be_physfn(adapter)) { status = be_cmd_reset_function(adapter); if (status) goto ctrl_clean; } status = be_stats_init(adapter); if (status) goto ctrl_clean; status = be_get_config(adapter); if (status) goto stats_clean; INIT_DELAYED_WORK(&adapter->work, be_worker); status = be_setup(adapter); if (status) goto stats_clean; status = register_netdev(netdev); if (status != 0) goto unsetup; dev_info(&pdev->dev, "%s port %d\n", nic_name(pdev), adapter->port_num); return 0; unsetup: be_clear(adapter); stats_clean: be_stats_cleanup(adapter); ctrl_clean: be_ctrl_cleanup(adapter); free_netdev: be_msix_disable(adapter); be_sriov_disable(adapter); free_netdev(adapter->netdev); pci_set_drvdata(pdev, NULL); rel_reg: pci_release_regions(pdev); disable_dev: pci_disable_device(pdev); do_none: dev_err(&pdev->dev, "%s initialization failed\n", nic_name(pdev)); return status; } static int be_suspend(struct pci_dev *pdev, pm_message_t state) { struct be_adapter *adapter = pci_get_drvdata(pdev); struct net_device *netdev = adapter->netdev; if (adapter->wol) be_setup_wol(adapter, true); netif_device_detach(netdev); if (netif_running(netdev)) { rtnl_lock(); be_close(netdev); rtnl_unlock(); } be_cmd_get_flow_control(adapter, &adapter->tx_fc, &adapter->rx_fc); be_clear(adapter); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int be_resume(struct pci_dev *pdev) { int status = 0; struct be_adapter *adapter = pci_get_drvdata(pdev); struct net_device *netdev = adapter->netdev; netif_device_detach(netdev); status = pci_enable_device(pdev); if (status) return status; pci_set_power_state(pdev, 0); pci_restore_state(pdev); /* tell fw we're ready to fire cmds */ status = be_cmd_fw_init(adapter); if (status) return status; be_setup(adapter); if (netif_running(netdev)) { rtnl_lock(); be_open(netdev); rtnl_unlock(); } netif_device_attach(netdev); if (adapter->wol) be_setup_wol(adapter, false); return 0; } /* * An FLR will stop BE from DMAing any data. */ static void be_shutdown(struct pci_dev *pdev) { struct be_adapter *adapter = pci_get_drvdata(pdev); struct net_device *netdev = adapter->netdev; netif_device_detach(netdev); be_cmd_reset_function(adapter); if (adapter->wol) be_setup_wol(adapter, true); pci_disable_device(pdev); } static pci_ers_result_t be_eeh_err_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct be_adapter *adapter = pci_get_drvdata(pdev); struct net_device *netdev = adapter->netdev; dev_err(&adapter->pdev->dev, "EEH error detected\n"); adapter->eeh_err = true; netif_device_detach(netdev); if (netif_running(netdev)) { rtnl_lock(); be_close(netdev); rtnl_unlock(); } be_clear(adapter); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; pci_disable_device(pdev); return PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t be_eeh_reset(struct pci_dev *pdev) { struct be_adapter *adapter = pci_get_drvdata(pdev); int status; dev_info(&adapter->pdev->dev, "EEH reset\n"); adapter->eeh_err = false; status = pci_enable_device(pdev); if (status) return PCI_ERS_RESULT_DISCONNECT; pci_set_master(pdev); pci_set_power_state(pdev, 0); pci_restore_state(pdev); /* Check if card is ok and fw is ready */ status = be_cmd_POST(adapter); if (status) return PCI_ERS_RESULT_DISCONNECT; return PCI_ERS_RESULT_RECOVERED; } static void be_eeh_resume(struct pci_dev *pdev) { int status = 0; struct be_adapter *adapter = pci_get_drvdata(pdev); struct net_device *netdev = adapter->netdev; dev_info(&adapter->pdev->dev, "EEH resume\n"); pci_save_state(pdev); /* tell fw we're ready to fire cmds */ status = be_cmd_fw_init(adapter); if (status) goto err; status = be_setup(adapter); if (status) goto err; if (netif_running(netdev)) { status = be_open(netdev); if (status) goto err; } netif_device_attach(netdev); return; err: dev_err(&adapter->pdev->dev, "EEH resume failed\n"); } static struct pci_error_handlers be_eeh_handlers = { .error_detected = be_eeh_err_detected, .slot_reset = be_eeh_reset, .resume = be_eeh_resume, }; static struct pci_driver be_driver = { .name = DRV_NAME, .id_table = be_dev_ids, .probe = be_probe, .remove = be_remove, .suspend = be_suspend, .resume = be_resume, .shutdown = be_shutdown, .err_handler = &be_eeh_handlers }; static int __init be_init_module(void) { if (rx_frag_size != 8192 && rx_frag_size != 4096 && rx_frag_size != 2048) { printk(KERN_WARNING DRV_NAME " : Module param rx_frag_size must be 2048/4096/8192." " Using 2048\n"); rx_frag_size = 2048; } if (num_vfs > 32) { printk(KERN_WARNING DRV_NAME " : Module param num_vfs must not be greater than 32." "Using 32\n"); num_vfs = 32; } return pci_register_driver(&be_driver); } module_init(be_init_module); static void __exit be_exit_module(void) { pci_unregister_driver(&be_driver); } module_exit(be_exit_module);