/* * * Alchemy Au1x00 ethernet driver * * Copyright 2001-2003, 2006 MontaVista Software Inc. * Copyright 2002 TimeSys Corp. * Added ethtool/mii-tool support, * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de * or riemer@riemer-nt.de: fixed the link beat detection with * ioctls (SIOCGMIIPHY) * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> * converted to use linux-2.6.x's PHY framework * * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com * * ######################################################################## * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * ######################################################################## * * */ #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/ioport.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/crc32.h> #include <linux/phy.h> #include <asm/cpu.h> #include <asm/mipsregs.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/processor.h> #include <au1000.h> #include <prom.h> #include "au1000_eth.h" #ifdef AU1000_ETH_DEBUG static int au1000_debug = 5; #else static int au1000_debug = 3; #endif #define DRV_NAME "au1000_eth" #define DRV_VERSION "1.6" #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" #define DRV_DESC "Au1xxx on-chip Ethernet driver" MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESC); MODULE_LICENSE("GPL"); // prototypes static void hard_stop(struct net_device *); static void enable_rx_tx(struct net_device *dev); static struct net_device * au1000_probe(int port_num); static int au1000_init(struct net_device *); static int au1000_open(struct net_device *); static int au1000_close(struct net_device *); static int au1000_tx(struct sk_buff *, struct net_device *); static int au1000_rx(struct net_device *); static irqreturn_t au1000_interrupt(int, void *); static void au1000_tx_timeout(struct net_device *); static void set_rx_mode(struct net_device *); static int au1000_ioctl(struct net_device *, struct ifreq *, int); static int mdio_read(struct net_device *, int, int); static void mdio_write(struct net_device *, int, int, u16); static void au1000_adjust_link(struct net_device *); static void enable_mac(struct net_device *, int); /* * Theory of operation * * The Au1000 MACs use a simple rx and tx descriptor ring scheme. * There are four receive and four transmit descriptors. These * descriptors are not in memory; rather, they are just a set of * hardware registers. * * Since the Au1000 has a coherent data cache, the receive and * transmit buffers are allocated from the KSEG0 segment. The * hardware registers, however, are still mapped at KSEG1 to * make sure there's no out-of-order writes, and that all writes * complete immediately. */ /* These addresses are only used if yamon doesn't tell us what * the mac address is, and the mac address is not passed on the * command line. */ static unsigned char au1000_mac_addr[6] __devinitdata = { 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 }; struct au1000_private *au_macs[NUM_ETH_INTERFACES]; /* * board-specific configurations * * PHY detection algorithm * * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is * autodetected: * * mii_probe() first searches the current MAC's MII bus for a PHY, * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is * defined) PHY address not already claimed by another netdev. * * If nothing was found that way when searching for the 2nd ethernet * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then * the first MII bus is searched as well for an unclaimed PHY; this is * needed in case of a dual-PHY accessible only through the MAC0's MII * bus. * * Finally, if no PHY is found, then the corresponding ethernet * controller is not registered to the network subsystem. */ /* autodetection defaults */ #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR #define AU1XXX_PHY1_SEARCH_ON_MAC0 /* static PHY setup * * most boards PHY setup should be detectable properly with the * autodetection algorithm in mii_probe(), but in some cases (e.g. if * you have a switch attached, or want to use the PHY's interrupt * notification capabilities) you can provide a static PHY * configuration here * * IRQs may only be set, if a PHY address was configured * If a PHY address is given, also a bus id is required to be set * * ps: make sure the used irqs are configured properly in the board * specific irq-map */ #if defined(CONFIG_MIPS_BOSPORUS) /* * Micrel/Kendin 5 port switch attached to MAC0, * MAC0 is associated with PHY address 5 (== WAN port) * MAC1 is not associated with any PHY, since it's connected directly * to the switch. * no interrupts are used */ # define AU1XXX_PHY_STATIC_CONFIG # define AU1XXX_PHY0_ADDR 5 # define AU1XXX_PHY0_BUSID 0 # undef AU1XXX_PHY0_IRQ # undef AU1XXX_PHY1_ADDR # undef AU1XXX_PHY1_BUSID # undef AU1XXX_PHY1_IRQ #endif #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0) # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet #endif /* * MII operations */ static int mdio_read(struct net_device *dev, int phy_addr, int reg) { struct au1000_private *aup = (struct au1000_private *) dev->priv; volatile u32 *const mii_control_reg = &aup->mac->mii_control; volatile u32 *const mii_data_reg = &aup->mac->mii_data; u32 timedout = 20; u32 mii_control; while (*mii_control_reg & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: read_MII busy timeout!!\n", dev->name); return -1; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; *mii_control_reg = mii_control; timedout = 20; while (*mii_control_reg & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: mdio_read busy timeout!!\n", dev->name); return -1; } } return (int)*mii_data_reg; } static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value) { struct au1000_private *aup = (struct au1000_private *) dev->priv; volatile u32 *const mii_control_reg = &aup->mac->mii_control; volatile u32 *const mii_data_reg = &aup->mac->mii_data; u32 timedout = 20; u32 mii_control; while (*mii_control_reg & MAC_MII_BUSY) { mdelay(1); if (--timedout == 0) { printk(KERN_ERR "%s: mdio_write busy timeout!!\n", dev->name); return; } } mii_control = MAC_SET_MII_SELECT_REG(reg) | MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; *mii_data_reg = value; *mii_control_reg = mii_control; } static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) { /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */ struct net_device *const dev = bus->priv; enable_mac(dev, 0); /* make sure the MAC associated with this * mii_bus is enabled */ return mdio_read(dev, phy_addr, regnum); } static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value) { struct net_device *const dev = bus->priv; enable_mac(dev, 0); /* make sure the MAC associated with this * mii_bus is enabled */ mdio_write(dev, phy_addr, regnum, value); return 0; } static int mdiobus_reset(struct mii_bus *bus) { struct net_device *const dev = bus->priv; enable_mac(dev, 0); /* make sure the MAC associated with this * mii_bus is enabled */ return 0; } static int mii_probe (struct net_device *dev) { struct au1000_private *const aup = (struct au1000_private *) dev->priv; struct phy_device *phydev = NULL; #if defined(AU1XXX_PHY_STATIC_CONFIG) BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); if(aup->mac_id == 0) { /* get PHY0 */ # if defined(AU1XXX_PHY0_ADDR) phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR]; # else printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n", dev->name); return 0; # endif /* defined(AU1XXX_PHY0_ADDR) */ } else if (aup->mac_id == 1) { /* get PHY1 */ # if defined(AU1XXX_PHY1_ADDR) phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR]; # else printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n", dev->name); return 0; # endif /* defined(AU1XXX_PHY1_ADDR) */ } #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */ int phy_addr; /* find the first (lowest address) PHY on the current MAC's MII bus */ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) if (aup->mii_bus.phy_map[phy_addr]) { phydev = aup->mii_bus.phy_map[phy_addr]; # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR) break; /* break out with first one found */ # endif } # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0) /* try harder to find a PHY */ if (!phydev && (aup->mac_id == 1)) { /* no PHY found, maybe we have a dual PHY? */ printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, " "let's see if it's attached to MAC0...\n"); BUG_ON(!au_macs[0]); /* find the first (lowest address) non-attached PHY on * the MAC0 MII bus */ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { struct phy_device *const tmp_phydev = au_macs[0]->mii_bus.phy_map[phy_addr]; if (!tmp_phydev) continue; /* no PHY here... */ if (tmp_phydev->attached_dev) continue; /* already claimed by MAC0 */ phydev = tmp_phydev; break; /* found it */ } } # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */ #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */ if (!phydev) { printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name); return -1; } /* now we are supposed to have a proper phydev, to attach to... */ BUG_ON(!phydev); BUG_ON(phydev->attached_dev); phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return PTR_ERR(phydev); } /* mask with MAC supported features */ phydev->supported &= (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */ | SUPPORTED_MII | SUPPORTED_TP); phydev->advertising = phydev->supported; aup->old_link = 0; aup->old_speed = 0; aup->old_duplex = -1; aup->phy_dev = phydev; printk(KERN_INFO "%s: attached PHY driver [%s] " "(mii_bus:phy_addr=%s, irq=%d)\n", dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq); return 0; } /* * Buffer allocation/deallocation routines. The buffer descriptor returned * has the virtual and dma address of a buffer suitable for * both, receive and transmit operations. */ static db_dest_t *GetFreeDB(struct au1000_private *aup) { db_dest_t *pDB; pDB = aup->pDBfree; if (pDB) { aup->pDBfree = pDB->pnext; } return pDB; } void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) { db_dest_t *pDBfree = aup->pDBfree; if (pDBfree) pDBfree->pnext = pDB; aup->pDBfree = pDB; } static void enable_rx_tx(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); au_sync_delay(10); } static void hard_stop(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk(KERN_INFO "%s: hard stop\n", dev->name); aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); au_sync_delay(10); } static void enable_mac(struct net_device *dev, int force_reset) { unsigned long flags; struct au1000_private *aup = (struct au1000_private *) dev->priv; spin_lock_irqsave(&aup->lock, flags); if(force_reset || (!aup->mac_enabled)) { *aup->enable = MAC_EN_CLOCK_ENABLE; au_sync_delay(2); *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE); au_sync_delay(2); aup->mac_enabled = 1; } spin_unlock_irqrestore(&aup->lock, flags); } static void reset_mac_unlocked(struct net_device *dev) { struct au1000_private *const aup = (struct au1000_private *) dev->priv; int i; hard_stop(dev); *aup->enable = MAC_EN_CLOCK_ENABLE; au_sync_delay(2); *aup->enable = 0; au_sync_delay(2); aup->tx_full = 0; for (i = 0; i < NUM_RX_DMA; i++) { /* reset control bits */ aup->rx_dma_ring[i]->buff_stat &= ~0xf; } for (i = 0; i < NUM_TX_DMA; i++) { /* reset control bits */ aup->tx_dma_ring[i]->buff_stat &= ~0xf; } aup->mac_enabled = 0; } static void reset_mac(struct net_device *dev) { struct au1000_private *const aup = (struct au1000_private *) dev->priv; unsigned long flags; if (au1000_debug > 4) printk(KERN_INFO "%s: reset mac, aup %x\n", dev->name, (unsigned)aup); spin_lock_irqsave(&aup->lock, flags); reset_mac_unlocked (dev); spin_unlock_irqrestore(&aup->lock, flags); } /* * Setup the receive and transmit "rings". These pointers are the addresses * of the rx and tx MAC DMA registers so they are fixed by the hardware -- * these are not descriptors sitting in memory. */ static void setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) { int i; for (i = 0; i < NUM_RX_DMA; i++) { aup->rx_dma_ring[i] = (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); } for (i = 0; i < NUM_TX_DMA; i++) { aup->tx_dma_ring[i] = (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); } } static struct { u32 base_addr; u32 macen_addr; int irq; struct net_device *dev; } iflist[2] = { #ifdef CONFIG_SOC_AU1000 {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT}, {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT} #endif #ifdef CONFIG_SOC_AU1100 {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT} #endif #ifdef CONFIG_SOC_AU1500 {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT}, {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT} #endif #ifdef CONFIG_SOC_AU1550 {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT}, {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT} #endif }; static int num_ifs; /* * Setup the base address and interupt of the Au1xxx ethernet macs * based on cpu type and whether the interface is enabled in sys_pinfunc * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0. */ static int __init au1000_init_module(void) { int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); struct net_device *dev; int i, found_one = 0; num_ifs = NUM_ETH_INTERFACES - ni; for(i = 0; i < num_ifs; i++) { dev = au1000_probe(i); iflist[i].dev = dev; if (dev) found_one++; } if (!found_one) return -ENODEV; return 0; } /* * ethtool operations */ static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct au1000_private *aup = (struct au1000_private *)dev->priv; if (aup->phy_dev) return phy_ethtool_gset(aup->phy_dev, cmd); return -EINVAL; } static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct au1000_private *aup = (struct au1000_private *)dev->priv; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (aup->phy_dev) return phy_ethtool_sset(aup->phy_dev, cmd); return -EINVAL; } static void au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct au1000_private *aup = (struct au1000_private *)dev->priv; strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); info->fw_version[0] = '\0'; sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); info->regdump_len = 0; } static const struct ethtool_ops au1000_ethtool_ops = { .get_settings = au1000_get_settings, .set_settings = au1000_set_settings, .get_drvinfo = au1000_get_drvinfo, .get_link = ethtool_op_get_link, }; static struct net_device * au1000_probe(int port_num) { static unsigned version_printed = 0; struct au1000_private *aup = NULL; struct net_device *dev = NULL; db_dest_t *pDB, *pDBfree; char ethaddr[6]; int irq, i, err; u32 base, macen; if (port_num >= NUM_ETH_INTERFACES) return NULL; base = CPHYSADDR(iflist[port_num].base_addr ); macen = CPHYSADDR(iflist[port_num].macen_addr); irq = iflist[port_num].irq; if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") || !request_mem_region(macen, 4, "Au1x00 ENET")) return NULL; if (version_printed++ == 0) printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); dev = alloc_etherdev(sizeof(struct au1000_private)); if (!dev) { printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME); return NULL; } if ((err = register_netdev(dev)) != 0) { printk(KERN_ERR "%s: Cannot register net device, error %d\n", DRV_NAME, err); free_netdev(dev); return NULL; } printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n", dev->name, base, irq); aup = dev->priv; /* Allocate the data buffers */ /* Snooping works fine with eth on all au1xxx */ aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), &aup->dma_addr, 0); if (!aup->vaddr) { free_netdev(dev); release_mem_region( base, MAC_IOSIZE); release_mem_region(macen, 4); return NULL; } /* aup->mac is the base address of the MAC's registers */ aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr; /* Setup some variables for quick register address access */ aup->enable = (volatile u32 *)iflist[port_num].macen_addr; aup->mac_id = port_num; au_macs[port_num] = aup; if (port_num == 0) { if (prom_get_ethernet_addr(ethaddr) == 0) memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); else { printk(KERN_INFO "%s: No MAC address found\n", dev->name); /* Use the hard coded MAC addresses */ } setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); } else if (port_num == 1) setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); /* * Assign to the Ethernet ports two consecutive MAC addresses * to match those that are printed on their stickers */ memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); dev->dev_addr[5] += port_num; *aup->enable = 0; aup->mac_enabled = 0; aup->mii_bus.priv = dev; aup->mii_bus.read = mdiobus_read; aup->mii_bus.write = mdiobus_write; aup->mii_bus.reset = mdiobus_reset; aup->mii_bus.name = "au1000_eth_mii"; aup->mii_bus.id = aup->mac_id; aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); for(i = 0; i < PHY_MAX_ADDR; ++i) aup->mii_bus.irq[i] = PHY_POLL; /* if known, set corresponding PHY IRQs */ #if defined(AU1XXX_PHY_STATIC_CONFIG) # if defined(AU1XXX_PHY0_IRQ) if (AU1XXX_PHY0_BUSID == aup->mii_bus.id) aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ; # endif # if defined(AU1XXX_PHY1_IRQ) if (AU1XXX_PHY1_BUSID == aup->mii_bus.id) aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ; # endif #endif mdiobus_register(&aup->mii_bus); if (mii_probe(dev) != 0) { goto err_out; } pDBfree = NULL; /* setup the data buffer descriptors and attach a buffer to each one */ pDB = aup->db; for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { pDB->pnext = pDBfree; pDBfree = pDB; pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); pDB++; } aup->pDBfree = pDBfree; for (i = 0; i < NUM_RX_DMA; i++) { pDB = GetFreeDB(aup); if (!pDB) { goto err_out; } aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; aup->rx_db_inuse[i] = pDB; } for (i = 0; i < NUM_TX_DMA; i++) { pDB = GetFreeDB(aup); if (!pDB) { goto err_out; } aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; aup->tx_dma_ring[i]->len = 0; aup->tx_db_inuse[i] = pDB; } spin_lock_init(&aup->lock); dev->base_addr = base; dev->irq = irq; dev->open = au1000_open; dev->hard_start_xmit = au1000_tx; dev->stop = au1000_close; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &au1000_ioctl; SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); dev->tx_timeout = au1000_tx_timeout; dev->watchdog_timeo = ETH_TX_TIMEOUT; /* * The boot code uses the ethernet controller, so reset it to start * fresh. au1000_init() expects that the device is in reset state. */ reset_mac(dev); return dev; err_out: /* here we should have a valid dev plus aup-> register addresses * so we can reset the mac properly.*/ reset_mac(dev); for (i = 0; i < NUM_RX_DMA; i++) { if (aup->rx_db_inuse[i]) ReleaseDB(aup, aup->rx_db_inuse[i]); } for (i = 0; i < NUM_TX_DMA; i++) { if (aup->tx_db_inuse[i]) ReleaseDB(aup, aup->tx_db_inuse[i]); } dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), (void *)aup->vaddr, aup->dma_addr); unregister_netdev(dev); free_netdev(dev); release_mem_region( base, MAC_IOSIZE); release_mem_region(macen, 4); return NULL; } /* * Initialize the interface. * * When the device powers up, the clocks are disabled and the * mac is in reset state. When the interface is closed, we * do the same -- reset the device and disable the clocks to * conserve power. Thus, whenever au1000_init() is called, * the device should already be in reset state. */ static int au1000_init(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; u32 flags; int i; u32 control; if (au1000_debug > 4) printk("%s: au1000_init\n", dev->name); /* bring the device out of reset */ enable_mac(dev, 1); spin_lock_irqsave(&aup->lock, flags); aup->mac->control = 0; aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; aup->tx_tail = aup->tx_head; aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | dev->dev_addr[1]<<8 | dev->dev_addr[0]; for (i = 0; i < NUM_RX_DMA; i++) { aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; } au_sync(); control = MAC_RX_ENABLE | MAC_TX_ENABLE; #ifndef CONFIG_CPU_LITTLE_ENDIAN control |= MAC_BIG_ENDIAN; #endif if (aup->phy_dev) { if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex)) control |= MAC_FULL_DUPLEX; else control |= MAC_DISABLE_RX_OWN; } else { /* PHY-less op, assume full-duplex */ control |= MAC_FULL_DUPLEX; } aup->mac->control = control; aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ au_sync(); spin_unlock_irqrestore(&aup->lock, flags); return 0; } static void au1000_adjust_link(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct phy_device *phydev = aup->phy_dev; unsigned long flags; int status_change = 0; BUG_ON(!aup->phy_dev); spin_lock_irqsave(&aup->lock, flags); if (phydev->link && (aup->old_speed != phydev->speed)) { // speed changed switch(phydev->speed) { case SPEED_10: case SPEED_100: break; default: printk(KERN_WARNING "%s: Speed (%d) is not 10/100 ???\n", dev->name, phydev->speed); break; } aup->old_speed = phydev->speed; status_change = 1; } if (phydev->link && (aup->old_duplex != phydev->duplex)) { // duplex mode changed /* switching duplex mode requires to disable rx and tx! */ hard_stop(dev); if (DUPLEX_FULL == phydev->duplex) aup->mac->control = ((aup->mac->control | MAC_FULL_DUPLEX) & ~MAC_DISABLE_RX_OWN); else aup->mac->control = ((aup->mac->control & ~MAC_FULL_DUPLEX) | MAC_DISABLE_RX_OWN); au_sync_delay(1); enable_rx_tx(dev); aup->old_duplex = phydev->duplex; status_change = 1; } if(phydev->link != aup->old_link) { // link state changed if (phydev->link) // link went up netif_schedule(dev); else { // link went down aup->old_speed = 0; aup->old_duplex = -1; } aup->old_link = phydev->link; status_change = 1; } spin_unlock_irqrestore(&aup->lock, flags); if (status_change) { if (phydev->link) printk(KERN_INFO "%s: link up (%d/%s)\n", dev->name, phydev->speed, DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); else printk(KERN_INFO "%s: link down\n", dev->name); } } static int au1000_open(struct net_device *dev) { int retval; struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk("%s: open: dev=%p\n", dev->name, dev); if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, dev->name, dev))) { printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name, dev->irq); return retval; } if ((retval = au1000_init(dev))) { printk(KERN_ERR "%s: error in au1000_init\n", dev->name); free_irq(dev->irq, dev); return retval; } if (aup->phy_dev) { /* cause the PHY state machine to schedule a link state check */ aup->phy_dev->state = PHY_CHANGELINK; phy_start(aup->phy_dev); } netif_start_queue(dev); if (au1000_debug > 4) printk("%s: open: Initialization done.\n", dev->name); return 0; } static int au1000_close(struct net_device *dev) { unsigned long flags; struct au1000_private *const aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk("%s: close: dev=%p\n", dev->name, dev); if (aup->phy_dev) phy_stop(aup->phy_dev); spin_lock_irqsave(&aup->lock, flags); reset_mac_unlocked (dev); /* stop the device */ netif_stop_queue(dev); /* disable the interrupt */ free_irq(dev->irq, dev); spin_unlock_irqrestore(&aup->lock, flags); return 0; } static void __exit au1000_cleanup_module(void) { int i, j; struct net_device *dev; struct au1000_private *aup; for (i = 0; i < num_ifs; i++) { dev = iflist[i].dev; if (dev) { aup = (struct au1000_private *) dev->priv; unregister_netdev(dev); for (j = 0; j < NUM_RX_DMA; j++) if (aup->rx_db_inuse[j]) ReleaseDB(aup, aup->rx_db_inuse[j]); for (j = 0; j < NUM_TX_DMA; j++) if (aup->tx_db_inuse[j]) ReleaseDB(aup, aup->tx_db_inuse[j]); dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), (void *)aup->vaddr, aup->dma_addr); release_mem_region(dev->base_addr, MAC_IOSIZE); release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4); free_netdev(dev); } } } static void update_tx_stats(struct net_device *dev, u32 status) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct net_device_stats *ps = &dev->stats; if (status & TX_FRAME_ABORTED) { if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) { if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { /* any other tx errors are only valid * in half duplex mode */ ps->tx_errors++; ps->tx_aborted_errors++; } } else { ps->tx_errors++; ps->tx_aborted_errors++; if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) ps->tx_carrier_errors++; } } } /* * Called from the interrupt service routine to acknowledge * the TX DONE bits. This is a must if the irq is setup as * edge triggered. */ static void au1000_tx_ack(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; volatile tx_dma_t *ptxd; ptxd = aup->tx_dma_ring[aup->tx_tail]; while (ptxd->buff_stat & TX_T_DONE) { update_tx_stats(dev, ptxd->status); ptxd->buff_stat &= ~TX_T_DONE; ptxd->len = 0; au_sync(); aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); ptxd = aup->tx_dma_ring[aup->tx_tail]; if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } } } /* * Au1000 transmit routine. */ static int au1000_tx(struct sk_buff *skb, struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct net_device_stats *ps = &dev->stats; volatile tx_dma_t *ptxd; u32 buff_stat; db_dest_t *pDB; int i; if (au1000_debug > 5) printk("%s: tx: aup %x len=%d, data=%p, head %d\n", dev->name, (unsigned)aup, skb->len, skb->data, aup->tx_head); ptxd = aup->tx_dma_ring[aup->tx_head]; buff_stat = ptxd->buff_stat; if (buff_stat & TX_DMA_ENABLE) { /* We've wrapped around and the transmitter is still busy */ netif_stop_queue(dev); aup->tx_full = 1; return 1; } else if (buff_stat & TX_T_DONE) { update_tx_stats(dev, ptxd->status); ptxd->len = 0; } if (aup->tx_full) { aup->tx_full = 0; netif_wake_queue(dev); } pDB = aup->tx_db_inuse[aup->tx_head]; skb_copy_from_linear_data(skb, pDB->vaddr, skb->len); if (skb->len < ETH_ZLEN) { for (i=skb->len; i<ETH_ZLEN; i++) { ((char *)pDB->vaddr)[i] = 0; } ptxd->len = ETH_ZLEN; } else ptxd->len = skb->len; ps->tx_packets++; ps->tx_bytes += ptxd->len; ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; au_sync(); dev_kfree_skb(skb); aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); dev->trans_start = jiffies; return 0; } static inline void update_rx_stats(struct net_device *dev, u32 status) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct net_device_stats *ps = &dev->stats; ps->rx_packets++; if (status & RX_MCAST_FRAME) ps->multicast++; if (status & RX_ERROR) { ps->rx_errors++; if (status & RX_MISSED_FRAME) ps->rx_missed_errors++; if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) ps->rx_length_errors++; if (status & RX_CRC_ERROR) ps->rx_crc_errors++; if (status & RX_COLL) ps->collisions++; } else ps->rx_bytes += status & RX_FRAME_LEN_MASK; } /* * Au1000 receive routine. */ static int au1000_rx(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; struct sk_buff *skb; volatile rx_dma_t *prxd; u32 buff_stat, status; db_dest_t *pDB; u32 frmlen; if (au1000_debug > 5) printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; while (buff_stat & RX_T_DONE) { status = prxd->status; pDB = aup->rx_db_inuse[aup->rx_head]; update_rx_stats(dev, status); if (!(status & RX_ERROR)) { /* good frame */ frmlen = (status & RX_FRAME_LEN_MASK); frmlen -= 4; /* Remove FCS */ skb = dev_alloc_skb(frmlen + 2); if (skb == NULL) { printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name); dev->stats.rx_dropped++; continue; } skb_reserve(skb, 2); /* 16 byte IP header align */ skb_copy_to_linear_data(skb, (unsigned char *)pDB->vaddr, frmlen); skb_put(skb, frmlen); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); /* pass the packet to upper layers */ } else { if (au1000_debug > 4) { if (status & RX_MISSED_FRAME) printk("rx miss\n"); if (status & RX_WDOG_TIMER) printk("rx wdog\n"); if (status & RX_RUNT) printk("rx runt\n"); if (status & RX_OVERLEN) printk("rx overlen\n"); if (status & RX_COLL) printk("rx coll\n"); if (status & RX_MII_ERROR) printk("rx mii error\n"); if (status & RX_CRC_ERROR) printk("rx crc error\n"); if (status & RX_LEN_ERROR) printk("rx len error\n"); if (status & RX_U_CNTRL_FRAME) printk("rx u control frame\n"); if (status & RX_MISSED_FRAME) printk("rx miss\n"); } } prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); au_sync(); /* next descriptor */ prxd = aup->rx_dma_ring[aup->rx_head]; buff_stat = prxd->buff_stat; dev->last_rx = jiffies; } return 0; } /* * Au1000 interrupt service routine. */ static irqreturn_t au1000_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; if (dev == NULL) { printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name); return IRQ_RETVAL(1); } /* Handle RX interrupts first to minimize chance of overrun */ au1000_rx(dev); au1000_tx_ack(dev); return IRQ_RETVAL(1); } /* * The Tx ring has been full longer than the watchdog timeout * value. The transmitter must be hung? */ static void au1000_tx_timeout(struct net_device *dev) { printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); reset_mac(dev); au1000_init(dev); dev->trans_start = jiffies; netif_wake_queue(dev); } static void set_rx_mode(struct net_device *dev) { struct au1000_private *aup = (struct au1000_private *) dev->priv; if (au1000_debug > 4) printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ aup->mac->control |= MAC_PROMISCUOUS; } else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > MULTICAST_FILTER_LIMIT) { aup->mac->control |= MAC_PASS_ALL_MULTI; aup->mac->control &= ~MAC_PROMISCUOUS; printk(KERN_INFO "%s: Pass all multicast\n", dev->name); } else { int i; struct dev_mc_list *mclist; u32 mc_filter[2]; /* Multicast hash filter */ mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, (long *)mc_filter); } aup->mac->multi_hash_high = mc_filter[1]; aup->mac->multi_hash_low = mc_filter[0]; aup->mac->control &= ~MAC_PROMISCUOUS; aup->mac->control |= MAC_HASH_MODE; } } static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct au1000_private *aup = (struct au1000_private *)dev->priv; if (!netif_running(dev)) return -EINVAL; if (!aup->phy_dev) return -EINVAL; // PHY not controllable return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd); } module_init(au1000_init_module); module_exit(au1000_cleanup_module);