/* * Copyright (C) 2006-2008 Nokia Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; see the file COPYING. If not, write to the Free Software * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Test random reads, writes and erases on MTD device. * * Author: Adrian Hunter */ #include #include #include #include #include #include #include #include #define PRINT_PREF KERN_INFO "mtd_stresstest: " static int dev = -EINVAL; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); static int count = 10000; module_param(count, int, S_IRUGO); MODULE_PARM_DESC(count, "Number of operations to do (default is 10000)"); static struct mtd_info *mtd; static unsigned char *writebuf; static unsigned char *readbuf; static unsigned char *bbt; static int *offsets; static int pgsize; static int bufsize; static int ebcnt; static int pgcnt; static unsigned long next = 1; static inline unsigned int simple_rand(void) { next = next * 1103515245 + 12345; return (unsigned int)((next / 65536) % 32768); } static inline void simple_srand(unsigned long seed) { next = seed; } static int rand_eb(void) { int eb; again: if (ebcnt < 32768) eb = simple_rand(); else eb = (simple_rand() << 15) | simple_rand(); /* Read or write up 2 eraseblocks at a time - hence 'ebcnt - 1' */ eb %= (ebcnt - 1); if (bbt[eb]) goto again; return eb; } static int rand_offs(void) { int offs; if (bufsize < 32768) offs = simple_rand(); else offs = (simple_rand() << 15) | simple_rand(); offs %= bufsize; return offs; } static int rand_len(int offs) { int len; if (bufsize < 32768) len = simple_rand(); else len = (simple_rand() << 15) | simple_rand(); len %= (bufsize - offs); return len; } static int erase_eraseblock(int ebnum) { int err; struct erase_info ei; loff_t addr = ebnum * mtd->erasesize; memset(&ei, 0, sizeof(struct erase_info)); ei.mtd = mtd; ei.addr = addr; ei.len = mtd->erasesize; err = mtd_erase(mtd, &ei); if (unlikely(err)) { printk(PRINT_PREF "error %d while erasing EB %d\n", err, ebnum); return err; } if (unlikely(ei.state == MTD_ERASE_FAILED)) { printk(PRINT_PREF "some erase error occurred at EB %d\n", ebnum); return -EIO; } return 0; } static int is_block_bad(int ebnum) { loff_t addr = ebnum * mtd->erasesize; int ret; ret = mtd->block_isbad(mtd, addr); if (ret) printk(PRINT_PREF "block %d is bad\n", ebnum); return ret; } static int do_read(void) { size_t read = 0; int eb = rand_eb(); int offs = rand_offs(); int len = rand_len(offs), err; loff_t addr; if (bbt[eb + 1]) { if (offs >= mtd->erasesize) offs -= mtd->erasesize; if (offs + len > mtd->erasesize) len = mtd->erasesize - offs; } addr = eb * mtd->erasesize + offs; err = mtd_read(mtd, addr, len, &read, readbuf); if (mtd_is_bitflip(err)) err = 0; if (unlikely(err || read != len)) { printk(PRINT_PREF "error: read failed at 0x%llx\n", (long long)addr); if (!err) err = -EINVAL; return err; } return 0; } static int do_write(void) { int eb = rand_eb(), offs, err, len; size_t written = 0; loff_t addr; offs = offsets[eb]; if (offs >= mtd->erasesize) { err = erase_eraseblock(eb); if (err) return err; offs = offsets[eb] = 0; } len = rand_len(offs); len = ((len + pgsize - 1) / pgsize) * pgsize; if (offs + len > mtd->erasesize) { if (bbt[eb + 1]) len = mtd->erasesize - offs; else { err = erase_eraseblock(eb + 1); if (err) return err; offsets[eb + 1] = 0; } } addr = eb * mtd->erasesize + offs; err = mtd->write(mtd, addr, len, &written, writebuf); if (unlikely(err || written != len)) { printk(PRINT_PREF "error: write failed at 0x%llx\n", (long long)addr); if (!err) err = -EINVAL; return err; } offs += len; while (offs > mtd->erasesize) { offsets[eb++] = mtd->erasesize; offs -= mtd->erasesize; } offsets[eb] = offs; return 0; } static int do_operation(void) { if (simple_rand() & 1) return do_read(); else return do_write(); } static int scan_for_bad_eraseblocks(void) { int i, bad = 0; bbt = kzalloc(ebcnt, GFP_KERNEL); if (!bbt) { printk(PRINT_PREF "error: cannot allocate memory\n"); return -ENOMEM; } /* NOR flash does not implement block_isbad */ if (mtd->block_isbad == NULL) return 0; printk(PRINT_PREF "scanning for bad eraseblocks\n"); for (i = 0; i < ebcnt; ++i) { bbt[i] = is_block_bad(i) ? 1 : 0; if (bbt[i]) bad += 1; cond_resched(); } printk(PRINT_PREF "scanned %d eraseblocks, %d are bad\n", i, bad); return 0; } static int __init mtd_stresstest_init(void) { int err; int i, op; uint64_t tmp; printk(KERN_INFO "\n"); printk(KERN_INFO "=================================================\n"); if (dev < 0) { printk(PRINT_PREF "Please specify a valid mtd-device via module paramter\n"); printk(KERN_CRIT "CAREFUL: This test wipes all data on the specified MTD device!\n"); return -EINVAL; } printk(PRINT_PREF "MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); printk(PRINT_PREF "error: cannot get MTD device\n"); return err; } if (mtd->writesize == 1) { printk(PRINT_PREF "not NAND flash, assume page size is 512 " "bytes.\n"); pgsize = 512; } else pgsize = mtd->writesize; tmp = mtd->size; do_div(tmp, mtd->erasesize); ebcnt = tmp; pgcnt = mtd->erasesize / pgsize; printk(PRINT_PREF "MTD device size %llu, eraseblock size %u, " "page size %u, count of eraseblocks %u, pages per " "eraseblock %u, OOB size %u\n", (unsigned long long)mtd->size, mtd->erasesize, pgsize, ebcnt, pgcnt, mtd->oobsize); if (ebcnt < 2) { printk(PRINT_PREF "error: need at least 2 eraseblocks\n"); err = -ENOSPC; goto out_put_mtd; } /* Read or write up 2 eraseblocks at a time */ bufsize = mtd->erasesize * 2; err = -ENOMEM; readbuf = vmalloc(bufsize); writebuf = vmalloc(bufsize); offsets = kmalloc(ebcnt * sizeof(int), GFP_KERNEL); if (!readbuf || !writebuf || !offsets) { printk(PRINT_PREF "error: cannot allocate memory\n"); goto out; } for (i = 0; i < ebcnt; i++) offsets[i] = mtd->erasesize; simple_srand(current->pid); for (i = 0; i < bufsize; i++) writebuf[i] = simple_rand(); err = scan_for_bad_eraseblocks(); if (err) goto out; /* Do operations */ printk(PRINT_PREF "doing operations\n"); for (op = 0; op < count; op++) { if ((op & 1023) == 0) printk(PRINT_PREF "%d operations done\n", op); err = do_operation(); if (err) goto out; cond_resched(); } printk(PRINT_PREF "finished, %d operations done\n", op); out: kfree(offsets); kfree(bbt); vfree(writebuf); vfree(readbuf); out_put_mtd: put_mtd_device(mtd); if (err) printk(PRINT_PREF "error %d occurred\n", err); printk(KERN_INFO "=================================================\n"); return err; } module_init(mtd_stresstest_init); static void __exit mtd_stresstest_exit(void) { return; } module_exit(mtd_stresstest_exit); MODULE_DESCRIPTION("Stress test module"); MODULE_AUTHOR("Adrian Hunter"); MODULE_LICENSE("GPL");