/* * Hisilicon NAND Flash controller driver * * Copyright © 2012-2014 HiSilicon Technologies Co., Ltd. * http://www.hisilicon.com * * Author: Zhou Wang * The initial developer of the original code is Zhiyong Cai * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #define HINFC504_MAX_CHIP (4) #define HINFC504_W_LATCH (5) #define HINFC504_R_LATCH (7) #define HINFC504_RW_LATCH (3) #define HINFC504_NFC_TIMEOUT (2 * HZ) #define HINFC504_NFC_PM_TIMEOUT (1 * HZ) #define HINFC504_NFC_DMA_TIMEOUT (5 * HZ) #define HINFC504_CHIP_DELAY (25) #define HINFC504_REG_BASE_ADDRESS_LEN (0x100) #define HINFC504_BUFFER_BASE_ADDRESS_LEN (2048 + 128) #define HINFC504_ADDR_CYCLE_MASK 0x4 #define HINFC504_CON 0x00 #define HINFC504_CON_OP_MODE_NORMAL BIT(0) #define HINFC504_CON_PAGEISZE_SHIFT (1) #define HINFC504_CON_PAGESIZE_MASK (0x07) #define HINFC504_CON_BUS_WIDTH BIT(4) #define HINFC504_CON_READY_BUSY_SEL BIT(8) #define HINFC504_CON_ECCTYPE_SHIFT (9) #define HINFC504_CON_ECCTYPE_MASK (0x07) #define HINFC504_PWIDTH 0x04 #define SET_HINFC504_PWIDTH(_w_lcnt, _r_lcnt, _rw_hcnt) \ ((_w_lcnt) | (((_r_lcnt) & 0x0F) << 4) | (((_rw_hcnt) & 0x0F) << 8)) #define HINFC504_CMD 0x0C #define HINFC504_ADDRL 0x10 #define HINFC504_ADDRH 0x14 #define HINFC504_DATA_NUM 0x18 #define HINFC504_OP 0x1C #define HINFC504_OP_READ_DATA_EN BIT(1) #define HINFC504_OP_WAIT_READY_EN BIT(2) #define HINFC504_OP_CMD2_EN BIT(3) #define HINFC504_OP_WRITE_DATA_EN BIT(4) #define HINFC504_OP_ADDR_EN BIT(5) #define HINFC504_OP_CMD1_EN BIT(6) #define HINFC504_OP_NF_CS_SHIFT (7) #define HINFC504_OP_NF_CS_MASK (3) #define HINFC504_OP_ADDR_CYCLE_SHIFT (9) #define HINFC504_OP_ADDR_CYCLE_MASK (7) #define HINFC504_STATUS 0x20 #define HINFC504_READY BIT(0) #define HINFC504_INTEN 0x24 #define HINFC504_INTEN_DMA BIT(9) #define HINFC504_INTEN_UE BIT(6) #define HINFC504_INTEN_CE BIT(5) #define HINFC504_INTS 0x28 #define HINFC504_INTS_DMA BIT(9) #define HINFC504_INTS_UE BIT(6) #define HINFC504_INTS_CE BIT(5) #define HINFC504_INTCLR 0x2C #define HINFC504_INTCLR_DMA BIT(9) #define HINFC504_INTCLR_UE BIT(6) #define HINFC504_INTCLR_CE BIT(5) #define HINFC504_ECC_STATUS 0x5C #define HINFC504_ECC_16_BIT_SHIFT 12 #define HINFC504_DMA_CTRL 0x60 #define HINFC504_DMA_CTRL_DMA_START BIT(0) #define HINFC504_DMA_CTRL_WE BIT(1) #define HINFC504_DMA_CTRL_DATA_AREA_EN BIT(2) #define HINFC504_DMA_CTRL_OOB_AREA_EN BIT(3) #define HINFC504_DMA_CTRL_BURST4_EN BIT(4) #define HINFC504_DMA_CTRL_BURST8_EN BIT(5) #define HINFC504_DMA_CTRL_BURST16_EN BIT(6) #define HINFC504_DMA_CTRL_ADDR_NUM_SHIFT (7) #define HINFC504_DMA_CTRL_ADDR_NUM_MASK (1) #define HINFC504_DMA_CTRL_CS_SHIFT (8) #define HINFC504_DMA_CTRL_CS_MASK (0x03) #define HINFC504_DMA_ADDR_DATA 0x64 #define HINFC504_DMA_ADDR_OOB 0x68 #define HINFC504_DMA_LEN 0x6C #define HINFC504_DMA_LEN_OOB_SHIFT (16) #define HINFC504_DMA_LEN_OOB_MASK (0xFFF) #define HINFC504_DMA_PARA 0x70 #define HINFC504_DMA_PARA_DATA_RW_EN BIT(0) #define HINFC504_DMA_PARA_OOB_RW_EN BIT(1) #define HINFC504_DMA_PARA_DATA_EDC_EN BIT(2) #define HINFC504_DMA_PARA_OOB_EDC_EN BIT(3) #define HINFC504_DMA_PARA_DATA_ECC_EN BIT(4) #define HINFC504_DMA_PARA_OOB_ECC_EN BIT(5) #define HINFC_VERSION 0x74 #define HINFC504_LOG_READ_ADDR 0x7C #define HINFC504_LOG_READ_LEN 0x80 #define HINFC504_NANDINFO_LEN 0x10 struct hinfc_host { struct nand_chip chip; struct device *dev; void __iomem *iobase; void __iomem *mmio; struct completion cmd_complete; unsigned int offset; unsigned int command; int chipselect; unsigned int addr_cycle; u32 addr_value[2]; u32 cache_addr_value[2]; char *buffer; dma_addr_t dma_buffer; dma_addr_t dma_oob; int version; unsigned int irq_status; /* interrupt status */ }; static inline unsigned int hinfc_read(struct hinfc_host *host, unsigned int reg) { return readl(host->iobase + reg); } static inline void hinfc_write(struct hinfc_host *host, unsigned int value, unsigned int reg) { writel(value, host->iobase + reg); } static void wait_controller_finished(struct hinfc_host *host) { unsigned long timeout = jiffies + HINFC504_NFC_TIMEOUT; int val; while (time_before(jiffies, timeout)) { val = hinfc_read(host, HINFC504_STATUS); if (host->command == NAND_CMD_ERASE2) { /* nfc is ready */ while (!(val & HINFC504_READY)) { usleep_range(500, 1000); val = hinfc_read(host, HINFC504_STATUS); } return; } if (val & HINFC504_READY) return; } /* wait cmd timeout */ dev_err(host->dev, "Wait NAND controller exec cmd timeout.\n"); } static void hisi_nfc_dma_transfer(struct hinfc_host *host, int todev) { struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); unsigned long val; int ret; hinfc_write(host, host->dma_buffer, HINFC504_DMA_ADDR_DATA); hinfc_write(host, host->dma_oob, HINFC504_DMA_ADDR_OOB); if (chip->ecc.mode == NAND_ECC_NONE) { hinfc_write(host, ((mtd->oobsize & HINFC504_DMA_LEN_OOB_MASK) << HINFC504_DMA_LEN_OOB_SHIFT), HINFC504_DMA_LEN); hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN | HINFC504_DMA_PARA_OOB_RW_EN, HINFC504_DMA_PARA); } else { if (host->command == NAND_CMD_READOOB) hinfc_write(host, HINFC504_DMA_PARA_OOB_RW_EN | HINFC504_DMA_PARA_OOB_EDC_EN | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); else hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN | HINFC504_DMA_PARA_OOB_RW_EN | HINFC504_DMA_PARA_DATA_EDC_EN | HINFC504_DMA_PARA_OOB_EDC_EN | HINFC504_DMA_PARA_DATA_ECC_EN | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); } val = (HINFC504_DMA_CTRL_DMA_START | HINFC504_DMA_CTRL_BURST4_EN | HINFC504_DMA_CTRL_BURST8_EN | HINFC504_DMA_CTRL_BURST16_EN | HINFC504_DMA_CTRL_DATA_AREA_EN | HINFC504_DMA_CTRL_OOB_AREA_EN | ((host->addr_cycle == 4 ? 1 : 0) << HINFC504_DMA_CTRL_ADDR_NUM_SHIFT) | ((host->chipselect & HINFC504_DMA_CTRL_CS_MASK) << HINFC504_DMA_CTRL_CS_SHIFT)); if (todev) val |= HINFC504_DMA_CTRL_WE; init_completion(&host->cmd_complete); hinfc_write(host, val, HINFC504_DMA_CTRL); ret = wait_for_completion_timeout(&host->cmd_complete, HINFC504_NFC_DMA_TIMEOUT); if (!ret) { dev_err(host->dev, "DMA operation(irq) timeout!\n"); /* sanity check */ val = hinfc_read(host, HINFC504_DMA_CTRL); if (!(val & HINFC504_DMA_CTRL_DMA_START)) dev_err(host->dev, "DMA is already done but without irq ACK!\n"); else dev_err(host->dev, "DMA is really timeout!\n"); } } static int hisi_nfc_send_cmd_pageprog(struct hinfc_host *host) { host->addr_value[0] &= 0xffff0000; hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); hinfc_write(host, NAND_CMD_PAGEPROG << 8 | NAND_CMD_SEQIN, HINFC504_CMD); hisi_nfc_dma_transfer(host, 1); return 0; } static int hisi_nfc_send_cmd_readstart(struct hinfc_host *host) { struct mtd_info *mtd = nand_to_mtd(&host->chip); if ((host->addr_value[0] == host->cache_addr_value[0]) && (host->addr_value[1] == host->cache_addr_value[1])) return 0; host->addr_value[0] &= 0xffff0000; hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); hinfc_write(host, NAND_CMD_READSTART << 8 | NAND_CMD_READ0, HINFC504_CMD); hinfc_write(host, 0, HINFC504_LOG_READ_ADDR); hinfc_write(host, mtd->writesize + mtd->oobsize, HINFC504_LOG_READ_LEN); hisi_nfc_dma_transfer(host, 0); host->cache_addr_value[0] = host->addr_value[0]; host->cache_addr_value[1] = host->addr_value[1]; return 0; } static int hisi_nfc_send_cmd_erase(struct hinfc_host *host) { hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); hinfc_write(host, (NAND_CMD_ERASE2 << 8) | NAND_CMD_ERASE1, HINFC504_CMD); hinfc_write(host, HINFC504_OP_WAIT_READY_EN | HINFC504_OP_CMD2_EN | HINFC504_OP_CMD1_EN | HINFC504_OP_ADDR_EN | ((host->chipselect & HINFC504_OP_NF_CS_MASK) << HINFC504_OP_NF_CS_SHIFT) | ((host->addr_cycle & HINFC504_OP_ADDR_CYCLE_MASK) << HINFC504_OP_ADDR_CYCLE_SHIFT), HINFC504_OP); wait_controller_finished(host); return 0; } static int hisi_nfc_send_cmd_readid(struct hinfc_host *host) { hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); hinfc_write(host, NAND_CMD_READID, HINFC504_CMD); hinfc_write(host, 0, HINFC504_ADDRL); hinfc_write(host, HINFC504_OP_CMD1_EN | HINFC504_OP_ADDR_EN | HINFC504_OP_READ_DATA_EN | ((host->chipselect & HINFC504_OP_NF_CS_MASK) << HINFC504_OP_NF_CS_SHIFT) | 1 << HINFC504_OP_ADDR_CYCLE_SHIFT, HINFC504_OP); wait_controller_finished(host); return 0; } static int hisi_nfc_send_cmd_status(struct hinfc_host *host) { hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); hinfc_write(host, NAND_CMD_STATUS, HINFC504_CMD); hinfc_write(host, HINFC504_OP_CMD1_EN | HINFC504_OP_READ_DATA_EN | ((host->chipselect & HINFC504_OP_NF_CS_MASK) << HINFC504_OP_NF_CS_SHIFT), HINFC504_OP); wait_controller_finished(host); return 0; } static int hisi_nfc_send_cmd_reset(struct hinfc_host *host, int chipselect) { hinfc_write(host, NAND_CMD_RESET, HINFC504_CMD); hinfc_write(host, HINFC504_OP_CMD1_EN | ((chipselect & HINFC504_OP_NF_CS_MASK) << HINFC504_OP_NF_CS_SHIFT) | HINFC504_OP_WAIT_READY_EN, HINFC504_OP); wait_controller_finished(host); return 0; } static void hisi_nfc_select_chip(struct mtd_info *mtd, int chipselect) { struct nand_chip *chip = mtd_to_nand(mtd); struct hinfc_host *host = nand_get_controller_data(chip); if (chipselect < 0) return; host->chipselect = chipselect; } static uint8_t hisi_nfc_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct hinfc_host *host = nand_get_controller_data(chip); if (host->command == NAND_CMD_STATUS) return *(uint8_t *)(host->mmio); host->offset++; if (host->command == NAND_CMD_READID) return *(uint8_t *)(host->mmio + host->offset - 1); return *(uint8_t *)(host->buffer + host->offset - 1); } static void hisi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct hinfc_host *host = nand_get_controller_data(chip); memcpy(host->buffer + host->offset, buf, len); host->offset += len; } static void hisi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct hinfc_host *host = nand_get_controller_data(chip); memcpy(buf, host->buffer + host->offset, len); host->offset += len; } static void set_addr(struct mtd_info *mtd, int column, int page_addr) { struct nand_chip *chip = mtd_to_nand(mtd); struct hinfc_host *host = nand_get_controller_data(chip); unsigned int command = host->command; host->addr_cycle = 0; host->addr_value[0] = 0; host->addr_value[1] = 0; /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (chip->options & NAND_BUSWIDTH_16 && !nand_opcode_8bits(command)) column >>= 1; host->addr_value[0] = column & 0xffff; host->addr_cycle = 2; } if (page_addr != -1) { host->addr_value[0] |= (page_addr & 0xffff) << (host->addr_cycle * 8); host->addr_cycle += 2; if (chip->options & NAND_ROW_ADDR_3) { host->addr_cycle += 1; if (host->command == NAND_CMD_ERASE1) host->addr_value[0] |= ((page_addr >> 16) & 0xff) << 16; else host->addr_value[1] |= ((page_addr >> 16) & 0xff); } } } static void hisi_nfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct nand_chip *chip = mtd_to_nand(mtd); struct hinfc_host *host = nand_get_controller_data(chip); int is_cache_invalid = 1; unsigned int flag = 0; host->command = command; switch (command) { case NAND_CMD_READ0: case NAND_CMD_READOOB: if (command == NAND_CMD_READ0) host->offset = column; else host->offset = column + mtd->writesize; is_cache_invalid = 0; set_addr(mtd, column, page_addr); hisi_nfc_send_cmd_readstart(host); break; case NAND_CMD_SEQIN: host->offset = column; set_addr(mtd, column, page_addr); break; case NAND_CMD_ERASE1: set_addr(mtd, column, page_addr); break; case NAND_CMD_PAGEPROG: hisi_nfc_send_cmd_pageprog(host); break; case NAND_CMD_ERASE2: hisi_nfc_send_cmd_erase(host); break; case NAND_CMD_READID: host->offset = column; memset(host->mmio, 0, 0x10); hisi_nfc_send_cmd_readid(host); break; case NAND_CMD_STATUS: flag = hinfc_read(host, HINFC504_CON); if (chip->ecc.mode == NAND_ECC_HW) hinfc_write(host, flag & ~(HINFC504_CON_ECCTYPE_MASK << HINFC504_CON_ECCTYPE_SHIFT), HINFC504_CON); host->offset = 0; memset(host->mmio, 0, 0x10); hisi_nfc_send_cmd_status(host); hinfc_write(host, flag, HINFC504_CON); break; case NAND_CMD_RESET: hisi_nfc_send_cmd_reset(host, host->chipselect); break; default: dev_err(host->dev, "Error: unsupported cmd(cmd=%x, col=%x, page=%x)\n", command, column, page_addr); } if (is_cache_invalid) { host->cache_addr_value[0] = ~0; host->cache_addr_value[1] = ~0; } } static irqreturn_t hinfc_irq_handle(int irq, void *devid) { struct hinfc_host *host = devid; unsigned int flag; flag = hinfc_read(host, HINFC504_INTS); /* store interrupts state */ host->irq_status |= flag; if (flag & HINFC504_INTS_DMA) { hinfc_write(host, HINFC504_INTCLR_DMA, HINFC504_INTCLR); complete(&host->cmd_complete); } else if (flag & HINFC504_INTS_CE) { hinfc_write(host, HINFC504_INTCLR_CE, HINFC504_INTCLR); } else if (flag & HINFC504_INTS_UE) { hinfc_write(host, HINFC504_INTCLR_UE, HINFC504_INTCLR); } return IRQ_HANDLED; } static int hisi_nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct hinfc_host *host = nand_get_controller_data(chip); int max_bitflips = 0, stat = 0, stat_max = 0, status_ecc; int stat_1, stat_2; nand_read_page_op(chip, page, 0, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); /* errors which can not be corrected by ECC */ if (host->irq_status & HINFC504_INTS_UE) { mtd->ecc_stats.failed++; } else if (host->irq_status & HINFC504_INTS_CE) { /* TODO: need add other ECC modes! */ switch (chip->ecc.strength) { case 16: status_ecc = hinfc_read(host, HINFC504_ECC_STATUS) >> HINFC504_ECC_16_BIT_SHIFT & 0x0fff; stat_2 = status_ecc & 0x3f; stat_1 = status_ecc >> 6 & 0x3f; stat = stat_1 + stat_2; stat_max = max_t(int, stat_1, stat_2); } mtd->ecc_stats.corrected += stat; max_bitflips = max_t(int, max_bitflips, stat_max); } host->irq_status = 0; return max_bitflips; } static int hisi_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct hinfc_host *host = nand_get_controller_data(chip); nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); if (host->irq_status & HINFC504_INTS_UE) { host->irq_status = 0; return -EBADMSG; } host->irq_status = 0; return 0; } static int hisi_nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); if (oob_required) chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); return nand_prog_page_end_op(chip); } static void hisi_nfc_host_init(struct hinfc_host *host) { struct nand_chip *chip = &host->chip; unsigned int flag = 0; host->version = hinfc_read(host, HINFC_VERSION); host->addr_cycle = 0; host->addr_value[0] = 0; host->addr_value[1] = 0; host->cache_addr_value[0] = ~0; host->cache_addr_value[1] = ~0; host->chipselect = 0; /* default page size: 2K, ecc_none. need modify */ flag = HINFC504_CON_OP_MODE_NORMAL | HINFC504_CON_READY_BUSY_SEL | ((0x001 & HINFC504_CON_PAGESIZE_MASK) << HINFC504_CON_PAGEISZE_SHIFT) | ((0x0 & HINFC504_CON_ECCTYPE_MASK) << HINFC504_CON_ECCTYPE_SHIFT) | ((chip->options & NAND_BUSWIDTH_16) ? HINFC504_CON_BUS_WIDTH : 0); hinfc_write(host, flag, HINFC504_CON); memset(host->mmio, 0xff, HINFC504_BUFFER_BASE_ADDRESS_LEN); hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); /* enable DMA irq */ hinfc_write(host, HINFC504_INTEN_DMA, HINFC504_INTEN); } static int hisi_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { /* FIXME: add ECC bytes position */ return -ENOTSUPP; } static int hisi_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section) return -ERANGE; oobregion->offset = 2; oobregion->length = 6; return 0; } static const struct mtd_ooblayout_ops hisi_ooblayout_ops = { .ecc = hisi_ooblayout_ecc, .free = hisi_ooblayout_free, }; static int hisi_nfc_ecc_probe(struct hinfc_host *host) { unsigned int flag; int size, strength, ecc_bits; struct device *dev = host->dev; struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); size = chip->ecc.size; strength = chip->ecc.strength; if (size != 1024) { dev_err(dev, "error ecc size: %d\n", size); return -EINVAL; } if ((size == 1024) && ((strength != 8) && (strength != 16) && (strength != 24) && (strength != 40))) { dev_err(dev, "ecc size and strength do not match\n"); return -EINVAL; } chip->ecc.size = size; chip->ecc.strength = strength; chip->ecc.read_page = hisi_nand_read_page_hwecc; chip->ecc.read_oob = hisi_nand_read_oob; chip->ecc.write_page = hisi_nand_write_page_hwecc; switch (chip->ecc.strength) { case 16: ecc_bits = 6; if (mtd->writesize == 2048) mtd_set_ooblayout(mtd, &hisi_ooblayout_ops); /* TODO: add more page size support */ break; /* TODO: add more ecc strength support */ default: dev_err(dev, "not support strength: %d\n", chip->ecc.strength); return -EINVAL; } flag = hinfc_read(host, HINFC504_CON); /* add ecc type configure */ flag |= ((ecc_bits & HINFC504_CON_ECCTYPE_MASK) << HINFC504_CON_ECCTYPE_SHIFT); hinfc_write(host, flag, HINFC504_CON); /* enable ecc irq */ flag = hinfc_read(host, HINFC504_INTEN) & 0xfff; hinfc_write(host, flag | HINFC504_INTEN_UE | HINFC504_INTEN_CE, HINFC504_INTEN); return 0; } static int hisi_nfc_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct hinfc_host *host = nand_get_controller_data(chip); int flag; host->buffer = dmam_alloc_coherent(host->dev, mtd->writesize + mtd->oobsize, &host->dma_buffer, GFP_KERNEL); if (!host->buffer) return -ENOMEM; host->dma_oob = host->dma_buffer + mtd->writesize; memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize); flag = hinfc_read(host, HINFC504_CON); flag &= ~(HINFC504_CON_PAGESIZE_MASK << HINFC504_CON_PAGEISZE_SHIFT); switch (mtd->writesize) { case 2048: flag |= (0x001 << HINFC504_CON_PAGEISZE_SHIFT); break; /* * TODO: add more pagesize support, * default pagesize has been set in hisi_nfc_host_init */ default: dev_err(host->dev, "NON-2KB page size nand flash\n"); return -EINVAL; } hinfc_write(host, flag, HINFC504_CON); if (chip->ecc.mode == NAND_ECC_HW) hisi_nfc_ecc_probe(host); return 0; } static const struct nand_controller_ops hisi_nfc_controller_ops = { .attach_chip = hisi_nfc_attach_chip, }; static int hisi_nfc_probe(struct platform_device *pdev) { int ret = 0, irq, max_chips = HINFC504_MAX_CHIP; struct device *dev = &pdev->dev; struct hinfc_host *host; struct nand_chip *chip; struct mtd_info *mtd; struct resource *res; struct device_node *np = dev->of_node; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) return -ENOMEM; host->dev = dev; platform_set_drvdata(pdev, host); chip = &host->chip; mtd = nand_to_mtd(chip); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "no IRQ resource defined\n"); return -ENXIO; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); host->iobase = devm_ioremap_resource(dev, res); if (IS_ERR(host->iobase)) return PTR_ERR(host->iobase); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); host->mmio = devm_ioremap_resource(dev, res); if (IS_ERR(host->mmio)) { dev_err(dev, "devm_ioremap_resource[1] fail\n"); return PTR_ERR(host->mmio); } mtd->name = "hisi_nand"; mtd->dev.parent = &pdev->dev; nand_set_controller_data(chip, host); nand_set_flash_node(chip, np); chip->cmdfunc = hisi_nfc_cmdfunc; chip->select_chip = hisi_nfc_select_chip; chip->read_byte = hisi_nfc_read_byte; chip->write_buf = hisi_nfc_write_buf; chip->read_buf = hisi_nfc_read_buf; chip->chip_delay = HINFC504_CHIP_DELAY; chip->set_features = nand_get_set_features_notsupp; chip->get_features = nand_get_set_features_notsupp; hisi_nfc_host_init(host); ret = devm_request_irq(dev, irq, hinfc_irq_handle, 0x0, "nandc", host); if (ret) { dev_err(dev, "failed to request IRQ\n"); return ret; } chip->dummy_controller.ops = &hisi_nfc_controller_ops; ret = nand_scan(chip, max_chips); if (ret) return ret; ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "Err MTD partition=%d\n", ret); nand_cleanup(chip); return ret; } return 0; } static int hisi_nfc_remove(struct platform_device *pdev) { struct hinfc_host *host = platform_get_drvdata(pdev); nand_release(&host->chip); return 0; } #ifdef CONFIG_PM_SLEEP static int hisi_nfc_suspend(struct device *dev) { struct hinfc_host *host = dev_get_drvdata(dev); unsigned long timeout = jiffies + HINFC504_NFC_PM_TIMEOUT; while (time_before(jiffies, timeout)) { if (((hinfc_read(host, HINFC504_STATUS) & 0x1) == 0x0) && (hinfc_read(host, HINFC504_DMA_CTRL) & HINFC504_DMA_CTRL_DMA_START)) { cond_resched(); return 0; } } dev_err(host->dev, "nand controller suspend timeout.\n"); return -EAGAIN; } static int hisi_nfc_resume(struct device *dev) { int cs; struct hinfc_host *host = dev_get_drvdata(dev); struct nand_chip *chip = &host->chip; for (cs = 0; cs < chip->numchips; cs++) hisi_nfc_send_cmd_reset(host, cs); hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); return 0; } #endif static SIMPLE_DEV_PM_OPS(hisi_nfc_pm_ops, hisi_nfc_suspend, hisi_nfc_resume); static const struct of_device_id nfc_id_table[] = { { .compatible = "hisilicon,504-nfc" }, {} }; MODULE_DEVICE_TABLE(of, nfc_id_table); static struct platform_driver hisi_nfc_driver = { .driver = { .name = "hisi_nand", .of_match_table = nfc_id_table, .pm = &hisi_nfc_pm_ops, }, .probe = hisi_nfc_probe, .remove = hisi_nfc_remove, }; module_platform_driver(hisi_nfc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Zhou Wang"); MODULE_AUTHOR("Zhiyong Cai"); MODULE_DESCRIPTION("Hisilicon Nand Flash Controller Driver");