// SPDX-License-Identifier: GPL-2.0 /* * Arasan NAND Flash Controller Driver * * Copyright (C) 2014 - 2020 Xilinx, Inc. * Author: * Miquel Raynal * Original work (fully rewritten): * Punnaiah Choudary Kalluri * Naga Sureshkumar Relli */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PKT_REG 0x00 #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x)) #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x)) #define MEM_ADDR1_REG 0x04 #define MEM_ADDR2_REG 0x08 #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x)) #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x)) #define CMD_REG 0x0C #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x)) #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x)) #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x)) #define CMD_DMA_ENABLE BIT(27) #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) #define CMD_ECC_ENABLE BIT(31) #define PROG_REG 0x10 #define PROG_PGRD BIT(0) #define PROG_ERASE BIT(2) #define PROG_STATUS BIT(3) #define PROG_PGPROG BIT(4) #define PROG_RDID BIT(6) #define PROG_RDPARAM BIT(7) #define PROG_RST BIT(8) #define PROG_GET_FEATURE BIT(9) #define PROG_SET_FEATURE BIT(10) #define PROG_CHG_RD_COL_ENH BIT(14) #define INTR_STS_EN_REG 0x14 #define INTR_SIG_EN_REG 0x18 #define INTR_STS_REG 0x1C #define WRITE_READY BIT(0) #define READ_READY BIT(1) #define XFER_COMPLETE BIT(2) #define DMA_BOUNDARY BIT(6) #define EVENT_MASK GENMASK(7, 0) #define READY_STS_REG 0x20 #define DMA_ADDR0_REG 0x50 #define DMA_ADDR1_REG 0x24 #define FLASH_STS_REG 0x28 #define TIMING_REG 0x2C #define TCCS_TIME_500NS 0 #define TCCS_TIME_300NS 3 #define TCCS_TIME_200NS 2 #define TCCS_TIME_100NS 1 #define FAST_TCAD BIT(2) #define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x)) #define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x)) #define DATA_PORT_REG 0x30 #define ECC_CONF_REG 0x34 #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x)) #define ECC_CONF_BCH_EN BIT(27) #define ECC_ERR_CNT_REG 0x38 #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x)) #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x)) #define ECC_SP_REG 0x3C #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x)) #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x)) #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) #define ECC_1ERR_CNT_REG 0x40 #define ECC_2ERR_CNT_REG 0x44 #define DATA_INTERFACE_REG 0x6C #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x)) #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x)) #define DIFACE_SDR 0 #define DIFACE_NVDDR BIT(9) #define ANFC_MAX_CS 2 #define ANFC_DFLT_TIMEOUT_US 1000000 #define ANFC_MAX_CHUNK_SIZE SZ_1M #define ANFC_MAX_PARAM_SIZE SZ_4K #define ANFC_MAX_STEPS SZ_2K #define ANFC_MAX_PKT_SIZE (SZ_2K - 1) #define ANFC_MAX_ADDR_CYC 5U #define ANFC_RSVD_ECC_BYTES 21 #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000 #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000 static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL}; /** * struct anfc_op - Defines how to execute an operation * @pkt_reg: Packet register * @addr1_reg: Memory address 1 register * @addr2_reg: Memory address 2 register * @cmd_reg: Command register * @prog_reg: Program register * @steps: Number of "packets" to read/write * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin * @len: Data transfer length * @read: Data transfer direction from the controller point of view * @buf: Data buffer */ struct anfc_op { u32 pkt_reg; u32 addr1_reg; u32 addr2_reg; u32 cmd_reg; u32 prog_reg; int steps; unsigned int rdy_timeout_ms; unsigned int len; bool read; u8 *buf; }; /** * struct anand - Defines the NAND chip related information * @node: Used to store NAND chips into a list * @chip: NAND chip information structure * @rb: Ready-busy line * @page_sz: Register value of the page_sz field to use * @clk: Expected clock frequency to use * @data_iface: Data interface timing mode to use * @timings: NV-DDR specific timings to use * @ecc_conf: Hardware ECC configuration value * @strength: Register value of the ECC strength * @raddr_cycles: Row address cycle information * @caddr_cycles: Column address cycle information * @ecc_bits: Exact number of ECC bits per syndrome * @ecc_total: Total number of ECC bytes * @errloc: Array of errors located with soft BCH * @hw_ecc: Buffer to store syndromes computed by hardware * @bch: BCH structure * @cs_idx: Array of chip-select for this device, values are indexes * of the controller structure @gpio_cs array * @ncs_idx: Size of the @cs_idx array */ struct anand { struct list_head node; struct nand_chip chip; unsigned int rb; unsigned int page_sz; unsigned long clk; u32 data_iface; u32 timings; u32 ecc_conf; u32 strength; u16 raddr_cycles; u16 caddr_cycles; unsigned int ecc_bits; unsigned int ecc_total; unsigned int *errloc; u8 *hw_ecc; struct bch_control *bch; int *cs_idx; int ncs_idx; }; /** * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance * @dev: Pointer to the device structure * @base: Remapped register area * @controller_clk: Pointer to the system clock * @bus_clk: Pointer to the flash clock * @controller: Base controller structure * @chips: List of all NAND chips attached to the controller * @cur_clk: Current clock rate * @cs_array: CS array. Native CS are left empty, the other cells are * populated with their corresponding GPIO descriptor. * @ncs: Size of @cs_array * @cur_cs: Index in @cs_array of the currently in use CS * @native_cs: Currently selected native CS * @spare_cs: Native CS that is not wired (may be selected when a GPIO * CS is in use) */ struct arasan_nfc { struct device *dev; void __iomem *base; struct clk *controller_clk; struct clk *bus_clk; struct nand_controller controller; struct list_head chips; unsigned int cur_clk; struct gpio_desc **cs_array; unsigned int ncs; int cur_cs; unsigned int native_cs; unsigned int spare_cs; }; static struct anand *to_anand(struct nand_chip *nand) { return container_of(nand, struct anand, chip); } static struct arasan_nfc *to_anfc(struct nand_controller *ctrl) { return container_of(ctrl, struct arasan_nfc, controller); } static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event) { u32 val; int ret; ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val, val & event, 0, ANFC_DFLT_TIMEOUT_US); if (ret) { dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event); return -ETIMEDOUT; } writel_relaxed(event, nfc->base + INTR_STS_REG); return 0; } static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, unsigned int timeout_ms) { struct anand *anand = to_anand(chip); u32 val; int ret; /* There is no R/B interrupt, we must poll a register */ ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val, val & BIT(anand->rb), 1, timeout_ms * 1000); if (ret) { dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n", readl_relaxed(nfc->base + READY_STS_REG)); return -ETIMEDOUT; } return 0; } static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) { writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG); writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG); writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG); writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG); writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG); } static int anfc_pkt_len_config(unsigned int len, unsigned int *steps, unsigned int *pktsize) { unsigned int nb, sz; for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) { sz = len / nb; if (sz <= ANFC_MAX_PKT_SIZE) break; } if (sz * nb != len) return -ENOTSUPP; if (steps) *steps = nb; if (pktsize) *pktsize = sz; return 0; } static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs) { return nfc_cs >= 0 && nfc->cs_array[nfc_cs]; } static int anfc_relative_to_absolute_cs(struct anand *anand, int num) { return anand->cs_idx[num]; } static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx) { /* CS did not change: do nothing */ if (nfc->cur_cs == nfc_cs_idx) return; /* Deassert the previous CS if it was a GPIO */ if (anfc_is_gpio_cs(nfc, nfc->cur_cs)) gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1); /* Assert the new one */ if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) { nfc->native_cs = nfc->spare_cs; gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0); } else { nfc->native_cs = nfc_cs_idx; } nfc->cur_cs = nfc_cs_idx; } static int anfc_select_target(struct nand_chip *chip, int target) { struct anand *anand = to_anand(chip); struct arasan_nfc *nfc = to_anfc(chip->controller); unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target); int ret; anfc_assert_cs(nfc, nfc_cs_idx); /* Update the controller timings and the potential ECC configuration */ writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG); writel_relaxed(anand->timings, nfc->base + TIMING_REG); /* Update clock frequency */ if (nfc->cur_clk != anand->clk) { clk_disable_unprepare(nfc->bus_clk); ret = clk_set_rate(nfc->bus_clk, anand->clk); if (ret) { dev_err(nfc->dev, "Failed to change clock rate\n"); return ret; } ret = clk_prepare_enable(nfc->bus_clk); if (ret) { dev_err(nfc->dev, "Failed to re-enable the bus clock\n"); return ret; } nfc->cur_clk = anand->clk; } return 0; } /* * When using the embedded hardware ECC engine, the controller is in charge of * feeding the engine with, first, the ECC residue present in the data array. * A typical read operation is: * 1/ Assert the read operation by sending the relevant command/address cycles * but targeting the column of the first ECC bytes in the OOB area instead of * the main data directly. * 2/ After having read the relevant number of ECC bytes, the controller uses * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command * Register" to move the pointer back at the beginning of the main data. * 3/ It will read the content of the main area for a given size (pktsize) and * will feed the ECC engine with this buffer again. * 4/ The ECC engine derives the ECC bytes for the given data and compare them * with the ones already received. It eventually trigger status flags and * then set the "Buffer Read Ready" flag. * 5/ The corrected data is then available for reading from the data port * register. * * The hardware BCH ECC engine is known to be inconstent in BCH mode and never * reports uncorrectable errors. Because of this bug, we have to use the * software BCH implementation in the read path. */ static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct arasan_nfc *nfc = to_anfc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); struct anand *anand = to_anand(chip); unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); unsigned int max_bitflips = 0; dma_addr_t dma_addr; int step, ret; struct anfc_op nfc_op = { .pkt_reg = PKT_SIZE(chip->ecc.size) | PKT_STEPS(chip->ecc.steps), .addr1_reg = (page & 0xFF) << (8 * (anand->caddr_cycles)) | (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), .addr2_reg = ((page >> 16) & 0xFF) | ADDR2_STRENGTH(anand->strength) | ADDR2_CS(nfc->native_cs), .cmd_reg = CMD_1(NAND_CMD_READ0) | CMD_2(NAND_CMD_READSTART) | CMD_PAGE_SIZE(anand->page_sz) | CMD_DMA_ENABLE | CMD_NADDRS(anand->caddr_cycles + anand->raddr_cycles), .prog_reg = PROG_PGRD, }; dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE); if (dma_mapping_error(nfc->dev, dma_addr)) { dev_err(nfc->dev, "Buffer mapping error"); return -EIO; } writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); anfc_trigger_op(nfc, &nfc_op); ret = anfc_wait_for_event(nfc, XFER_COMPLETE); dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE); if (ret) { dev_err(nfc->dev, "Error reading page %d\n", page); return ret; } /* Store the raw OOB bytes as well */ ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, 0); if (ret) return ret; /* * For each step, compute by softare the BCH syndrome over the raw data. * Compare the theoretical amount of errors and compare with the * hardware engine feedback. */ for (step = 0; step < chip->ecc.steps; step++) { u8 *raw_buf = &buf[step * chip->ecc.size]; unsigned int bit, byte; int bf, i; /* Extract the syndrome, it is not necessarily aligned */ memset(anand->hw_ecc, 0, chip->ecc.bytes); nand_extract_bits(anand->hw_ecc, 0, &chip->oob_poi[mtd->oobsize - anand->ecc_total], anand->ecc_bits * step, anand->ecc_bits); bf = bch_decode(anand->bch, raw_buf, chip->ecc.size, anand->hw_ecc, NULL, NULL, anand->errloc); if (!bf) { continue; } else if (bf > 0) { for (i = 0; i < bf; i++) { /* Only correct the data, not the syndrome */ if (anand->errloc[i] < (chip->ecc.size * 8)) { bit = BIT(anand->errloc[i] & 7); byte = anand->errloc[i] >> 3; raw_buf[byte] ^= bit; } } mtd->ecc_stats.corrected += bf; max_bitflips = max_t(unsigned int, max_bitflips, bf); continue; } bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size, NULL, 0, NULL, 0, chip->ecc.strength); if (bf > 0) { mtd->ecc_stats.corrected += bf; max_bitflips = max_t(unsigned int, max_bitflips, bf); memset(raw_buf, 0xFF, chip->ecc.size); } else if (bf < 0) { mtd->ecc_stats.failed++; } } return 0; } static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { int ret; ret = anfc_select_target(chip, chip->cur_cs); if (ret) return ret; return anfc_read_page_hw_ecc(chip, buf, oob_required, page); }; static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct anand *anand = to_anand(chip); struct arasan_nfc *nfc = to_anfc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); dma_addr_t dma_addr; int ret; struct anfc_op nfc_op = { .pkt_reg = PKT_SIZE(chip->ecc.size) | PKT_STEPS(chip->ecc.steps), .addr1_reg = (page & 0xFF) << (8 * (anand->caddr_cycles)) | (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), .addr2_reg = ((page >> 16) & 0xFF) | ADDR2_STRENGTH(anand->strength) | ADDR2_CS(nfc->native_cs), .cmd_reg = CMD_1(NAND_CMD_SEQIN) | CMD_2(NAND_CMD_PAGEPROG) | CMD_PAGE_SIZE(anand->page_sz) | CMD_DMA_ENABLE | CMD_NADDRS(anand->caddr_cycles + anand->raddr_cycles) | CMD_ECC_ENABLE, .prog_reg = PROG_PGPROG, }; writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG); writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) | ECC_SP_ADDRS(anand->caddr_cycles), nfc->base + ECC_SP_REG); dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE); if (dma_mapping_error(nfc->dev, dma_addr)) { dev_err(nfc->dev, "Buffer mapping error"); return -EIO; } writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); anfc_trigger_op(nfc, &nfc_op); ret = anfc_wait_for_event(nfc, XFER_COMPLETE); dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE); if (ret) { dev_err(nfc->dev, "Error writing page %d\n", page); return ret; } /* Spare data is not protected */ if (oob_required) ret = nand_write_oob_std(chip, page); return ret; } static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { int ret; ret = anfc_select_target(chip, chip->cur_cs); if (ret) return ret; return anfc_write_page_hw_ecc(chip, buf, oob_required, page); }; /* NAND framework ->exec_op() hooks and related helpers */ static int anfc_parse_instructions(struct nand_chip *chip, const struct nand_subop *subop, struct anfc_op *nfc_op) { struct arasan_nfc *nfc = to_anfc(chip->controller); struct anand *anand = to_anand(chip); const struct nand_op_instr *instr = NULL; bool first_cmd = true; unsigned int op_id; int ret, i; memset(nfc_op, 0, sizeof(*nfc_op)); nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs); nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz); for (op_id = 0; op_id < subop->ninstrs; op_id++) { unsigned int offset, naddrs, pktsize; const u8 *addrs; u8 *buf; instr = &subop->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: if (first_cmd) nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode); else nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode); first_cmd = false; break; case NAND_OP_ADDR_INSTR: offset = nand_subop_get_addr_start_off(subop, op_id); naddrs = nand_subop_get_num_addr_cyc(subop, op_id); addrs = &instr->ctx.addr.addrs[offset]; nfc_op->cmd_reg |= CMD_NADDRS(naddrs); for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) { if (i < 4) nfc_op->addr1_reg |= (u32)addrs[i] << i * 8; else nfc_op->addr2_reg |= addrs[i]; } break; case NAND_OP_DATA_IN_INSTR: nfc_op->read = true; fallthrough; case NAND_OP_DATA_OUT_INSTR: offset = nand_subop_get_data_start_off(subop, op_id); buf = instr->ctx.data.buf.in; nfc_op->buf = &buf[offset]; nfc_op->len = nand_subop_get_data_len(subop, op_id); ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps, &pktsize); if (ret) return ret; /* * Number of DATA cycles must be aligned on 4, this * means the controller might read/write more than * requested. This is harmless most of the time as extra * DATA are discarded in the write path and read pointer * adjusted in the read path. * * FIXME: The core should mark operations where * reading/writing more is allowed so the exec_op() * implementation can take the right decision when the * alignment constraint is not met: adjust the number of * DATA cycles when it's allowed, reject the operation * otherwise. */ nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) | PKT_STEPS(nfc_op->steps); break; case NAND_OP_WAITRDY_INSTR: nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; break; } } return 0; } static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) { unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps; unsigned int last_len = nfc_op->len % 4; unsigned int offset, dir; u8 *buf = nfc_op->buf; int ret, i; for (i = 0; i < nfc_op->steps; i++) { dir = nfc_op->read ? READ_READY : WRITE_READY; ret = anfc_wait_for_event(nfc, dir); if (ret) { dev_err(nfc->dev, "PIO %s ready signal not received\n", nfc_op->read ? "Read" : "Write"); return ret; } offset = i * (dwords * 4); if (nfc_op->read) ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset], dwords); else iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset], dwords); } if (last_len) { u32 remainder; offset = nfc_op->len - last_len; if (nfc_op->read) { remainder = readl_relaxed(nfc->base + DATA_PORT_REG); memcpy(&buf[offset], &remainder, last_len); } else { memcpy(&remainder, &buf[offset], last_len); writel_relaxed(remainder, nfc->base + DATA_PORT_REG); } } return anfc_wait_for_event(nfc, XFER_COMPLETE); } static int anfc_misc_data_type_exec(struct nand_chip *chip, const struct nand_subop *subop, u32 prog_reg) { struct arasan_nfc *nfc = to_anfc(chip->controller); struct anfc_op nfc_op = {}; int ret; ret = anfc_parse_instructions(chip, subop, &nfc_op); if (ret) return ret; nfc_op.prog_reg = prog_reg; anfc_trigger_op(nfc, &nfc_op); if (nfc_op.rdy_timeout_ms) { ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); if (ret) return ret; } return anfc_rw_pio_op(nfc, &nfc_op); } static int anfc_param_read_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM); } static int anfc_data_read_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { u32 prog_reg = PROG_PGRD; /* * Experience shows that while in SDR mode sending a CHANGE READ COLUMN * command through the READ PAGE "type" always works fine, when in * NV-DDR mode the same command simply fails. However, it was also * spotted that any CHANGE READ COLUMN command sent through the CHANGE * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR * and NV-DDR). So, for simplicity, let's program the controller with * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to * perform a CHANGE READ COLUMN operation. */ if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT && subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART) prog_reg = PROG_CHG_RD_COL_ENH; return anfc_misc_data_type_exec(chip, subop, prog_reg); } static int anfc_param_write_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE); } static int anfc_data_write_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG); } static int anfc_misc_zerolen_type_exec(struct nand_chip *chip, const struct nand_subop *subop, u32 prog_reg) { struct arasan_nfc *nfc = to_anfc(chip->controller); struct anfc_op nfc_op = {}; int ret; ret = anfc_parse_instructions(chip, subop, &nfc_op); if (ret) return ret; nfc_op.prog_reg = prog_reg; anfc_trigger_op(nfc, &nfc_op); ret = anfc_wait_for_event(nfc, XFER_COMPLETE); if (ret) return ret; if (nfc_op.rdy_timeout_ms) ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); return ret; } static int anfc_status_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct arasan_nfc *nfc = to_anfc(chip->controller); u32 tmp; int ret; /* See anfc_check_op() for details about this constraint */ if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS) return -ENOTSUPP; ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS); if (ret) return ret; tmp = readl_relaxed(nfc->base + FLASH_STS_REG); memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1); return 0; } static int anfc_reset_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST); } static int anfc_erase_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE); } static int anfc_wait_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct arasan_nfc *nfc = to_anfc(chip->controller); struct anfc_op nfc_op = {}; int ret; ret = anfc_parse_instructions(chip, subop, &nfc_op); if (ret) return ret; return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); } static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN( anfc_param_read_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), NAND_OP_PARSER_PATTERN( anfc_param_write_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)), NAND_OP_PARSER_PATTERN( anfc_data_read_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)), NAND_OP_PARSER_PATTERN( anfc_data_write_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE), NAND_OP_PARSER_PAT_CMD_ELEM(false)), NAND_OP_PARSER_PATTERN( anfc_reset_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), NAND_OP_PARSER_PATTERN( anfc_erase_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), NAND_OP_PARSER_PATTERN( anfc_status_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), NAND_OP_PARSER_PATTERN( anfc_wait_type_exec, NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), ); static int anfc_check_op(struct nand_chip *chip, const struct nand_operation *op) { const struct nand_op_instr *instr; int op_id; /* * The controller abstracts all the NAND operations and do not support * data only operations. * * TODO: The nand_op_parser framework should be extended to * support custom checks on DATA instructions. */ for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; switch (instr->type) { case NAND_OP_ADDR_INSTR: if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC) return -ENOTSUPP; break; case NAND_OP_DATA_IN_INSTR: case NAND_OP_DATA_OUT_INSTR: if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE) return -ENOTSUPP; if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL)) return -ENOTSUPP; break; default: break; } } /* * The controller does not allow to proceed with a CMD+DATA_IN cycle * manually on the bus by reading data from the data register. Instead, * the controller abstract a status read operation with its own status * register after ordering a read status operation. Hence, we cannot * support any CMD+DATA_IN operation other than a READ STATUS. * * TODO: The nand_op_parser() framework should be extended to describe * fixed patterns instead of open-coding this check here. */ if (op->ninstrs == 2 && op->instrs[0].type == NAND_OP_CMD_INSTR && op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS && op->instrs[1].type == NAND_OP_DATA_IN_INSTR) return -ENOTSUPP; return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true); } static int anfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { int ret; if (check_only) return anfc_check_op(chip, op); ret = anfc_select_target(chip, op->cs); if (ret) return ret; return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only); } static int anfc_setup_interface(struct nand_chip *chip, int target, const struct nand_interface_config *conf) { struct anand *anand = to_anand(chip); struct arasan_nfc *nfc = to_anfc(chip->controller); struct device_node *np = nfc->dev->of_node; const struct nand_sdr_timings *sdr; const struct nand_nvddr_timings *nvddr; unsigned int tccs_min, dqs_mode, fast_tcad; if (nand_interface_is_nvddr(conf)) { nvddr = nand_get_nvddr_timings(conf); if (IS_ERR(nvddr)) return PTR_ERR(nvddr); /* * The controller only supports data payload requests which are * a multiple of 4. In practice, most data accesses are 4-byte * aligned and this is not an issue. However, rounding up will * simply be refused by the controller if we reached the end of * the device *and* we are using the NV-DDR interface(!). In * this situation, unaligned data requests ending at the device * boundary will confuse the controller and cannot be performed. * * This is something that happens in nand_read_subpage() when * selecting software ECC support and must be avoided. */ if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) return -ENOTSUPP; } else { sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); } if (target < 0) return 0; if (nand_interface_is_sdr(conf)) { anand->data_iface = DIFACE_SDR | DIFACE_SDR_MODE(conf->timings.mode); anand->timings = 0; } else { anand->data_iface = DIFACE_NVDDR | DIFACE_DDR_MODE(conf->timings.mode); if (conf->timings.nvddr.tCCS_min <= 100000) tccs_min = TCCS_TIME_100NS; else if (conf->timings.nvddr.tCCS_min <= 200000) tccs_min = TCCS_TIME_200NS; else if (conf->timings.nvddr.tCCS_min <= 300000) tccs_min = TCCS_TIME_300NS; else tccs_min = TCCS_TIME_500NS; fast_tcad = 0; if (conf->timings.nvddr.tCAD_min < 45000) fast_tcad = FAST_TCAD; switch (conf->timings.mode) { case 5: case 4: dqs_mode = 2; break; case 3: dqs_mode = 3; break; case 2: dqs_mode = 4; break; case 1: dqs_mode = 5; break; case 0: default: dqs_mode = 6; break; } anand->timings = tccs_min | fast_tcad | DQS_BUFF_SEL_IN(dqs_mode) | DQS_BUFF_SEL_OUT(dqs_mode); } if (nand_interface_is_sdr(conf)) { anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK; } else { /* ONFI timings are defined in picoseconds */ anand->clk = div_u64((u64)NSEC_PER_SEC * 1000, conf->timings.nvddr.tCK_min); } /* * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work * with f > 90MHz (default clock is 100MHz) but signals are unstable * with higher modes. Hence we decrease a little bit the clock rate to * 80MHz when using SDR modes 2-5 with this SoC. */ if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") && nand_interface_is_sdr(conf) && conf->timings.mode >= 2) anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK; return 0; } static int anfc_calc_hw_ecc_bytes(int step_size, int strength) { unsigned int bch_gf_mag, ecc_bits; switch (step_size) { case SZ_512: bch_gf_mag = 13; break; case SZ_1K: bch_gf_mag = 14; break; default: return -EINVAL; } ecc_bits = bch_gf_mag * strength; return DIV_ROUND_UP(ecc_bits, 8); } static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12}; static const int anfc_hw_ecc_1024_strengths[] = {24}; static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = { { .stepsize = SZ_512, .strengths = anfc_hw_ecc_512_strengths, .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths), }, { .stepsize = SZ_1K, .strengths = anfc_hw_ecc_1024_strengths, .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths), }, }; static const struct nand_ecc_caps anfc_hw_ecc_caps = { .stepinfos = anfc_hw_ecc_step_infos, .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos), .calc_ecc_bytes = anfc_calc_hw_ecc_bytes, }; static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, struct nand_chip *chip) { struct anand *anand = to_anand(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset; int ret; switch (mtd->writesize) { case SZ_512: case SZ_2K: case SZ_4K: case SZ_8K: case SZ_16K: break; default: dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize); return -EINVAL; } ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize); if (ret) return ret; switch (ecc->strength) { case 12: anand->strength = 0x1; break; case 8: anand->strength = 0x2; break; case 4: anand->strength = 0x3; break; case 24: anand->strength = 0x4; break; default: dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength); return -EINVAL; } switch (ecc->size) { case SZ_512: bch_gf_mag = 13; bch_prim_poly = 0x201b; break; case SZ_1K: bch_gf_mag = 14; bch_prim_poly = 0x4443; break; default: dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength); return -EINVAL; } mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); ecc->steps = mtd->writesize / ecc->size; ecc->algo = NAND_ECC_ALGO_BCH; anand->ecc_bits = bch_gf_mag * ecc->strength; ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8); anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8); ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total; anand->ecc_conf = ECC_CONF_COL(ecc_offset) | ECC_CONF_LEN(anand->ecc_total) | ECC_CONF_BCH_EN; anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength, sizeof(*anand->errloc), GFP_KERNEL); if (!anand->errloc) return -ENOMEM; anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL); if (!anand->hw_ecc) return -ENOMEM; /* Enforce bit swapping to fit the hardware */ anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true); if (!anand->bch) return -EINVAL; ecc->read_page = anfc_sel_read_page_hw_ecc; ecc->write_page = anfc_sel_write_page_hw_ecc; return 0; } static int anfc_attach_chip(struct nand_chip *chip) { struct anand *anand = to_anand(chip); struct arasan_nfc *nfc = to_anfc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); int ret = 0; if (mtd->writesize <= SZ_512) anand->caddr_cycles = 1; else anand->caddr_cycles = 2; if (chip->options & NAND_ROW_ADDR_3) anand->raddr_cycles = 3; else anand->raddr_cycles = 2; switch (mtd->writesize) { case 512: anand->page_sz = 0; break; case 1024: anand->page_sz = 5; break; case 2048: anand->page_sz = 1; break; case 4096: anand->page_sz = 2; break; case 8192: anand->page_sz = 3; break; case 16384: anand->page_sz = 4; break; default: return -EINVAL; } /* These hooks are valid for all ECC providers */ chip->ecc.read_page_raw = nand_monolithic_read_page_raw; chip->ecc.write_page_raw = nand_monolithic_write_page_raw; switch (chip->ecc.engine_type) { case NAND_ECC_ENGINE_TYPE_NONE: case NAND_ECC_ENGINE_TYPE_SOFT: case NAND_ECC_ENGINE_TYPE_ON_DIE: break; case NAND_ECC_ENGINE_TYPE_ON_HOST: ret = anfc_init_hw_ecc_controller(nfc, chip); break; default: dev_err(nfc->dev, "Unsupported ECC mode: %d\n", chip->ecc.engine_type); return -EINVAL; } return ret; } static void anfc_detach_chip(struct nand_chip *chip) { struct anand *anand = to_anand(chip); if (anand->bch) bch_free(anand->bch); } static const struct nand_controller_ops anfc_ops = { .exec_op = anfc_exec_op, .setup_interface = anfc_setup_interface, .attach_chip = anfc_attach_chip, .detach_chip = anfc_detach_chip, }; static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np) { struct anand *anand; struct nand_chip *chip; struct mtd_info *mtd; int rb, ret, i; anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL); if (!anand) return -ENOMEM; /* Chip-select init */ anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32)); if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) { dev_err(nfc->dev, "Invalid reg property\n"); return -EINVAL; } anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx, sizeof(*anand->cs_idx), GFP_KERNEL); if (!anand->cs_idx) return -ENOMEM; for (i = 0; i < anand->ncs_idx; i++) { ret = of_property_read_u32_index(np, "reg", i, &anand->cs_idx[i]); if (ret) { dev_err(nfc->dev, "invalid CS property: %d\n", ret); return ret; } } /* Ready-busy init */ ret = of_property_read_u32(np, "nand-rb", &rb); if (ret) return ret; if (rb >= ANFC_MAX_CS) { dev_err(nfc->dev, "Wrong RB %d\n", rb); return -EINVAL; } anand->rb = rb; chip = &anand->chip; mtd = nand_to_mtd(chip); mtd->dev.parent = nfc->dev; chip->controller = &nfc->controller; chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA; nand_set_flash_node(chip, np); if (!mtd->name) { dev_err(nfc->dev, "NAND label property is mandatory\n"); return -EINVAL; } ret = nand_scan(chip, anand->ncs_idx); if (ret) { dev_err(nfc->dev, "Scan operation failed\n"); return ret; } ret = mtd_device_register(mtd, NULL, 0); if (ret) { nand_cleanup(chip); return ret; } list_add_tail(&anand->node, &nfc->chips); return 0; } static void anfc_chips_cleanup(struct arasan_nfc *nfc) { struct anand *anand, *tmp; struct nand_chip *chip; int ret; list_for_each_entry_safe(anand, tmp, &nfc->chips, node) { chip = &anand->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&anand->node); } } static int anfc_chips_init(struct arasan_nfc *nfc) { struct device_node *np = nfc->dev->of_node, *nand_np; int nchips = of_get_child_count(np); int ret; if (!nchips) { dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", nchips); return -EINVAL; } for_each_child_of_node(np, nand_np) { ret = anfc_chip_init(nfc, nand_np); if (ret) { of_node_put(nand_np); anfc_chips_cleanup(nfc); break; } } return ret; } static void anfc_reset(struct arasan_nfc *nfc) { /* Disable interrupt signals */ writel_relaxed(0, nfc->base + INTR_SIG_EN_REG); /* Enable interrupt status */ writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG); nfc->cur_cs = -1; } static int anfc_parse_cs(struct arasan_nfc *nfc) { int ret; /* Check the gpio-cs property */ ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs); if (ret) return ret; /* * The controller native CS cannot be both disabled at the same time. * Hence, only one native CS can be used if GPIO CS are needed, so that * the other is selected when a non-native CS must be asserted (not * wired physically or configured as GPIO instead of NAND CS). In this * case, the "not" chosen CS is assigned to nfc->spare_cs and selected * whenever a GPIO CS must be asserted. */ if (nfc->cs_array && nfc->ncs > 2) { if (!nfc->cs_array[0] && !nfc->cs_array[1]) { dev_err(nfc->dev, "Assign a single native CS when using GPIOs\n"); return -EINVAL; } if (nfc->cs_array[0]) nfc->spare_cs = 0; else nfc->spare_cs = 1; } if (!nfc->cs_array) { nfc->cs_array = anfc_default_cs_array; nfc->ncs = ANFC_MAX_CS; return 0; } return 0; } static int anfc_probe(struct platform_device *pdev) { struct arasan_nfc *nfc; int ret; nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->dev = &pdev->dev; nand_controller_init(&nfc->controller); nfc->controller.ops = &anfc_ops; INIT_LIST_HEAD(&nfc->chips); nfc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(nfc->base)) return PTR_ERR(nfc->base); anfc_reset(nfc); nfc->controller_clk = devm_clk_get(&pdev->dev, "controller"); if (IS_ERR(nfc->controller_clk)) return PTR_ERR(nfc->controller_clk); nfc->bus_clk = devm_clk_get(&pdev->dev, "bus"); if (IS_ERR(nfc->bus_clk)) return PTR_ERR(nfc->bus_clk); ret = clk_prepare_enable(nfc->controller_clk); if (ret) return ret; ret = clk_prepare_enable(nfc->bus_clk); if (ret) goto disable_controller_clk; ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); if (ret) goto disable_bus_clk; ret = anfc_parse_cs(nfc); if (ret) goto disable_bus_clk; ret = anfc_chips_init(nfc); if (ret) goto disable_bus_clk; platform_set_drvdata(pdev, nfc); return 0; disable_bus_clk: clk_disable_unprepare(nfc->bus_clk); disable_controller_clk: clk_disable_unprepare(nfc->controller_clk); return ret; } static void anfc_remove(struct platform_device *pdev) { struct arasan_nfc *nfc = platform_get_drvdata(pdev); anfc_chips_cleanup(nfc); clk_disable_unprepare(nfc->bus_clk); clk_disable_unprepare(nfc->controller_clk); } static const struct of_device_id anfc_ids[] = { { .compatible = "xlnx,zynqmp-nand-controller", }, { .compatible = "arasan,nfc-v3p10", }, {} }; MODULE_DEVICE_TABLE(of, anfc_ids); static struct platform_driver anfc_driver = { .driver = { .name = "arasan-nand-controller", .of_match_table = anfc_ids, }, .probe = anfc_probe, .remove_new = anfc_remove, }; module_platform_driver(anfc_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Punnaiah Choudary Kalluri "); MODULE_AUTHOR("Naga Sureshkumar Relli "); MODULE_AUTHOR("Miquel Raynal "); MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");