/* * davinci_nand.c - NAND Flash Driver for DaVinci family chips * * Copyright © 2006 Texas Instruments. * * Port to 2.6.23 Copyright © 2008 by: * Sander Huijsen * Troy Kisky * Dirk Behme * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This is a device driver for the NAND flash controller found on the * various DaVinci family chips. It handles up to four SoC chipselects, * and some flavors of secondary chipselect (e.g. based on A12) as used * with multichip packages. * * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC * available on chips like the DM355 and OMAP-L137 and needed with the * more error-prone MLC NAND chips. * * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY * outputs in a "wire-AND" configuration, with no per-chip signals. */ struct davinci_nand_info { struct mtd_info mtd; struct nand_chip chip; struct nand_ecclayout ecclayout; struct device *dev; struct clk *clk; bool is_readmode; void __iomem *base; void __iomem *vaddr; uint32_t ioaddr; uint32_t current_cs; uint32_t mask_chipsel; uint32_t mask_ale; uint32_t mask_cle; uint32_t core_chipsel; struct davinci_aemif_timing *timing; }; static DEFINE_SPINLOCK(davinci_nand_lock); static bool ecc4_busy; #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd) static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, int offset) { return __raw_readl(info->base + offset); } static inline void davinci_nand_writel(struct davinci_nand_info *info, int offset, unsigned long value) { __raw_writel(value, info->base + offset); } /*----------------------------------------------------------------------*/ /* * Access to hardware control lines: ALE, CLE, secondary chipselect. */ static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct davinci_nand_info *info = to_davinci_nand(mtd); uint32_t addr = info->current_cs; struct nand_chip *nand = mtd->priv; /* Did the control lines change? */ if (ctrl & NAND_CTRL_CHANGE) { if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE) addr |= info->mask_cle; else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE) addr |= info->mask_ale; nand->IO_ADDR_W = (void __iomem __force *)addr; } if (cmd != NAND_CMD_NONE) iowrite8(cmd, nand->IO_ADDR_W); } static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) { struct davinci_nand_info *info = to_davinci_nand(mtd); uint32_t addr = info->ioaddr; /* maybe kick in a second chipselect */ if (chip > 0) addr |= info->mask_chipsel; info->current_cs = addr; info->chip.IO_ADDR_W = (void __iomem __force *)addr; info->chip.IO_ADDR_R = info->chip.IO_ADDR_W; } /*----------------------------------------------------------------------*/ /* * 1-bit hardware ECC ... context maintained for each core chipselect */ static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) { struct davinci_nand_info *info = to_davinci_nand(mtd); return davinci_nand_readl(info, NANDF1ECC_OFFSET + 4 * info->core_chipsel); } static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode) { struct davinci_nand_info *info; uint32_t nandcfr; unsigned long flags; info = to_davinci_nand(mtd); /* Reset ECC hardware */ nand_davinci_readecc_1bit(mtd); spin_lock_irqsave(&davinci_nand_lock, flags); /* Restart ECC hardware */ nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); nandcfr |= BIT(8 + info->core_chipsel); davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); spin_unlock_irqrestore(&davinci_nand_lock, flags); } /* * Read hardware ECC value and pack into three bytes */ static int nand_davinci_calculate_1bit(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { unsigned int ecc_val = nand_davinci_readecc_1bit(mtd); unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); /* invert so that erased block ecc is correct */ ecc24 = ~ecc24; ecc_code[0] = (u_char)(ecc24); ecc_code[1] = (u_char)(ecc24 >> 8); ecc_code[2] = (u_char)(ecc24 >> 16); return 0; } static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *chip = mtd->priv; uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); uint32_t diff = eccCalc ^ eccNand; if (diff) { if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { /* Correctable error */ if ((diff >> (12 + 3)) < chip->ecc.size) { dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); return 1; } else { return -1; } } else if (!(diff & (diff - 1))) { /* Single bit ECC error in the ECC itself, * nothing to fix */ return 1; } else { /* Uncorrectable error */ return -1; } } return 0; } /*----------------------------------------------------------------------*/ /* * 4-bit hardware ECC ... context maintained over entire AEMIF * * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME * since that forces use of a problematic "infix OOB" layout. * Among other things, it trashes manufacturer bad block markers. * Also, and specific to this hardware, it ECC-protects the "prepad" * in the OOB ... while having ECC protection for parts of OOB would * seem useful, the current MTD stack sometimes wants to update the * OOB without recomputing ECC. */ static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode) { struct davinci_nand_info *info = to_davinci_nand(mtd); unsigned long flags; u32 val; spin_lock_irqsave(&davinci_nand_lock, flags); /* Start 4-bit ECC calculation for read/write */ val = davinci_nand_readl(info, NANDFCR_OFFSET); val &= ~(0x03 << 4); val |= (info->core_chipsel << 4) | BIT(12); davinci_nand_writel(info, NANDFCR_OFFSET, val); info->is_readmode = (mode == NAND_ECC_READ); spin_unlock_irqrestore(&davinci_nand_lock, flags); } /* Read raw ECC code after writing to NAND. */ static void nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) { const u32 mask = 0x03ff03ff; code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; } /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ static int nand_davinci_calculate_4bit(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct davinci_nand_info *info = to_davinci_nand(mtd); u32 raw_ecc[4], *p; unsigned i; /* After a read, terminate ECC calculation by a dummy read * of some 4-bit ECC register. ECC covers everything that * was read; correct() just uses the hardware state, so * ecc_code is not needed. */ if (info->is_readmode) { davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); return 0; } /* Pack eight raw 10-bit ecc values into ten bytes, making * two passes which each convert four values (in upper and * lower halves of two 32-bit words) into five bytes. The * ROM boot loader uses this same packing scheme. */ nand_davinci_readecc_4bit(info, raw_ecc); for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { *ecc_code++ = p[0] & 0xff; *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); *ecc_code++ = (p[1] >> 18) & 0xff; } return 0; } /* Correct up to 4 bits in data we just read, using state left in the * hardware plus the ecc_code computed when it was first written. */ static int nand_davinci_correct_4bit(struct mtd_info *mtd, u_char *data, u_char *ecc_code, u_char *null) { int i; struct davinci_nand_info *info = to_davinci_nand(mtd); unsigned short ecc10[8]; unsigned short *ecc16; u32 syndrome[4]; u32 ecc_state; unsigned num_errors, corrected; unsigned long timeo; /* All bytes 0xff? It's an erased page; ignore its ECC. */ for (i = 0; i < 10; i++) { if (ecc_code[i] != 0xff) goto compare; } return 0; compare: /* Unpack ten bytes into eight 10 bit values. We know we're * little-endian, and use type punning for less shifting/masking. */ if (WARN_ON(0x01 & (unsigned) ecc_code)) return -EINVAL; ecc16 = (unsigned short *)ecc_code; ecc10[0] = (ecc16[0] >> 0) & 0x3ff; ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); ecc10[2] = (ecc16[1] >> 4) & 0x3ff; ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); ecc10[5] = (ecc16[3] >> 2) & 0x3ff; ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); ecc10[7] = (ecc16[4] >> 6) & 0x3ff; /* Tell ECC controller about the expected ECC codes. */ for (i = 7; i >= 0; i--) davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); /* Allow time for syndrome calculation ... then read it. * A syndrome of all zeroes 0 means no detected errors. */ davinci_nand_readl(info, NANDFSR_OFFSET); nand_davinci_readecc_4bit(info, syndrome); if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) return 0; /* * Clear any previous address calculation by doing a dummy read of an * error address register. */ davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); /* Start address calculation, and wait for it to complete. * We _could_ start reading more data while this is working, * to speed up the overall page read. */ davinci_nand_writel(info, NANDFCR_OFFSET, davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); /* * ECC_STATE field reads 0x3 (Error correction complete) immediately * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately * begin trying to poll for the state, you may fall right out of your * loop without any of the correction calculations having taken place. * The recommendation from the hardware team is to initially delay as * long as ECC_STATE reads less than 4. After that, ECC HW has entered * correction state. */ timeo = jiffies + usecs_to_jiffies(100); do { ecc_state = (davinci_nand_readl(info, NANDFSR_OFFSET) >> 8) & 0x0f; cpu_relax(); } while ((ecc_state < 4) && time_before(jiffies, timeo)); for (;;) { u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); switch ((fsr >> 8) & 0x0f) { case 0: /* no error, should not happen */ davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); return 0; case 1: /* five or more errors detected */ davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); return -EIO; case 2: /* error addresses computed */ case 3: num_errors = 1 + ((fsr >> 16) & 0x03); goto correct; default: /* still working on it */ cpu_relax(); continue; } } correct: /* correct each error */ for (i = 0, corrected = 0; i < num_errors; i++) { int error_address, error_value; if (i > 1) { error_address = davinci_nand_readl(info, NAND_ERR_ADD2_OFFSET); error_value = davinci_nand_readl(info, NAND_ERR_ERRVAL2_OFFSET); } else { error_address = davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); error_value = davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); } if (i & 1) { error_address >>= 16; error_value >>= 16; } error_address &= 0x3ff; error_address = (512 + 7) - error_address; if (error_address < 512) { data[error_address] ^= error_value; corrected++; } } return corrected; } /*----------------------------------------------------------------------*/ /* * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's * how these chips are normally wired. This translates to both 8 and 16 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4). * * For now we assume that configuration, or any other one which ignores * the two LSBs for NAND access ... so we can issue 32-bit reads/writes * and have that transparently morphed into multiple NAND operations. */ static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) ioread32_rep(chip->IO_ADDR_R, buf, len >> 2); else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) ioread16_rep(chip->IO_ADDR_R, buf, len >> 1); else ioread8_rep(chip->IO_ADDR_R, buf, len); } static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2); else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1); else iowrite8_rep(chip->IO_ADDR_R, buf, len); } /* * Check hardware register for wait status. Returns 1 if device is ready, * 0 if it is still busy. */ static int nand_davinci_dev_ready(struct mtd_info *mtd) { struct davinci_nand_info *info = to_davinci_nand(mtd); return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); } /*----------------------------------------------------------------------*/ /* An ECC layout for using 4-bit ECC with small-page flash, storing * ten ECC bytes plus the manufacturer's bad block marker byte, and * and not overlapping the default BBT markers. */ static struct nand_ecclayout hwecc4_small = { .eccbytes = 10, .eccpos = { 0, 1, 2, 3, 4, /* offset 5 holds the badblock marker */ 6, 7, 13, 14, 15, }, .oobfree = { {.offset = 8, .length = 5, }, {.offset = 16, }, }, }; /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash, * storing ten ECC bytes plus the manufacturer's bad block marker byte, * and not overlapping the default BBT markers. */ static struct nand_ecclayout hwecc4_2048 = { .eccbytes = 40, .eccpos = { /* at the end of spare sector */ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, }, .oobfree = { /* 2 bytes at offset 0 hold manufacturer badblock markers */ {.offset = 2, .length = 22, }, /* 5 bytes at offset 8 hold BBT markers */ /* 8 bytes at offset 16 hold JFFS2 clean markers */ }, }; #if defined(CONFIG_OF) static const struct of_device_id davinci_nand_of_match[] = { {.compatible = "ti,davinci-nand", }, {}, }; MODULE_DEVICE_TABLE(of, davinci_nand_of_match); static struct davinci_nand_pdata *nand_davinci_get_pdata(struct platform_device *pdev) { if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { struct davinci_nand_pdata *pdata; const char *mode; u32 prop; pdata = devm_kzalloc(&pdev->dev, sizeof(struct davinci_nand_pdata), GFP_KERNEL); pdev->dev.platform_data = pdata; if (!pdata) return ERR_PTR(-ENOMEM); if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-chipselect", &prop)) pdev->id = prop; else return ERR_PTR(-EINVAL); if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-mask-ale", &prop)) pdata->mask_ale = prop; if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-mask-cle", &prop)) pdata->mask_cle = prop; if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-mask-chipsel", &prop)) pdata->mask_chipsel = prop; if (!of_property_read_string(pdev->dev.of_node, "nand-ecc-mode", &mode) || !of_property_read_string(pdev->dev.of_node, "ti,davinci-ecc-mode", &mode)) { if (!strncmp("none", mode, 4)) pdata->ecc_mode = NAND_ECC_NONE; if (!strncmp("soft", mode, 4)) pdata->ecc_mode = NAND_ECC_SOFT; if (!strncmp("hw", mode, 2)) pdata->ecc_mode = NAND_ECC_HW; } if (!of_property_read_u32(pdev->dev.of_node, "ti,davinci-ecc-bits", &prop)) pdata->ecc_bits = prop; prop = of_get_nand_bus_width(pdev->dev.of_node); if (0 < prop || !of_property_read_u32(pdev->dev.of_node, "ti,davinci-nand-buswidth", &prop)) if (prop == 16) pdata->options |= NAND_BUSWIDTH_16; if (of_property_read_bool(pdev->dev.of_node, "nand-on-flash-bbt") || of_property_read_bool(pdev->dev.of_node, "ti,davinci-nand-use-bbt")) pdata->bbt_options = NAND_BBT_USE_FLASH; } return dev_get_platdata(&pdev->dev); } #else static struct davinci_nand_pdata *nand_davinci_get_pdata(struct platform_device *pdev) { return dev_get_platdata(&pdev->dev); } #endif static int nand_davinci_probe(struct platform_device *pdev) { struct davinci_nand_pdata *pdata; struct davinci_nand_info *info; struct resource *res1; struct resource *res2; void __iomem *vaddr; void __iomem *base; int ret; uint32_t val; nand_ecc_modes_t ecc_mode; pdata = nand_davinci_get_pdata(pdev); if (IS_ERR(pdata)) return PTR_ERR(pdata); /* insist on board-specific configuration */ if (!pdata) return -ENODEV; /* which external chipselect will we be managing? */ if (pdev->id < 0 || pdev->id > 3) return -ENODEV; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; platform_set_drvdata(pdev, info); res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res1 || !res2) { dev_err(&pdev->dev, "resource missing\n"); return -EINVAL; } vaddr = devm_ioremap_resource(&pdev->dev, res1); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); /* * This registers range is used to setup NAND settings. In case with * TI AEMIF driver, the same memory address range is requested already * by AEMIF, so we cannot request it twice, just ioremap. * The AEMIF and NAND drivers not use the same registers in this range. */ base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); if (!base) { dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); return -EADDRNOTAVAIL; } info->dev = &pdev->dev; info->base = base; info->vaddr = vaddr; info->mtd.priv = &info->chip; info->mtd.name = dev_name(&pdev->dev); info->mtd.owner = THIS_MODULE; info->mtd.dev.parent = &pdev->dev; info->chip.IO_ADDR_R = vaddr; info->chip.IO_ADDR_W = vaddr; info->chip.chip_delay = 0; info->chip.select_chip = nand_davinci_select_chip; /* options such as NAND_BBT_USE_FLASH */ info->chip.bbt_options = pdata->bbt_options; /* options such as 16-bit widths */ info->chip.options = pdata->options; info->chip.bbt_td = pdata->bbt_td; info->chip.bbt_md = pdata->bbt_md; info->timing = pdata->timing; info->ioaddr = (uint32_t __force) vaddr; info->current_cs = info->ioaddr; info->core_chipsel = pdev->id; info->mask_chipsel = pdata->mask_chipsel; /* use nandboot-capable ALE/CLE masks by default */ info->mask_ale = pdata->mask_ale ? : MASK_ALE; info->mask_cle = pdata->mask_cle ? : MASK_CLE; /* Set address of hardware control function */ info->chip.cmd_ctrl = nand_davinci_hwcontrol; info->chip.dev_ready = nand_davinci_dev_ready; /* Speed up buffer I/O */ info->chip.read_buf = nand_davinci_read_buf; info->chip.write_buf = nand_davinci_write_buf; /* Use board-specific ECC config */ ecc_mode = pdata->ecc_mode; ret = -EINVAL; switch (ecc_mode) { case NAND_ECC_NONE: case NAND_ECC_SOFT: pdata->ecc_bits = 0; break; case NAND_ECC_HW: if (pdata->ecc_bits == 4) { /* No sanity checks: CPUs must support this, * and the chips may not use NAND_BUSWIDTH_16. */ /* No sharing 4-bit hardware between chipselects yet */ spin_lock_irq(&davinci_nand_lock); if (ecc4_busy) ret = -EBUSY; else ecc4_busy = true; spin_unlock_irq(&davinci_nand_lock); if (ret == -EBUSY) return ret; info->chip.ecc.calculate = nand_davinci_calculate_4bit; info->chip.ecc.correct = nand_davinci_correct_4bit; info->chip.ecc.hwctl = nand_davinci_hwctl_4bit; info->chip.ecc.bytes = 10; } else { info->chip.ecc.calculate = nand_davinci_calculate_1bit; info->chip.ecc.correct = nand_davinci_correct_1bit; info->chip.ecc.hwctl = nand_davinci_hwctl_1bit; info->chip.ecc.bytes = 3; } info->chip.ecc.size = 512; info->chip.ecc.strength = pdata->ecc_bits; break; default: return -EINVAL; } info->chip.ecc.mode = ecc_mode; info->clk = devm_clk_get(&pdev->dev, "aemif"); if (IS_ERR(info->clk)) { ret = PTR_ERR(info->clk); dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); return ret; } ret = clk_prepare_enable(info->clk); if (ret < 0) { dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", ret); goto err_clk_enable; } /* * Setup Async configuration register in case we did not boot from * NAND and so bootloader did not bother to set it up. */ val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4); /* Extended Wait is not valid and Select Strobe mode is not used */ val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK); if (info->chip.options & NAND_BUSWIDTH_16) val |= 0x1; davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val); ret = 0; if (info->timing) ret = davinci_aemif_setup_timing(info->timing, info->base, info->core_chipsel); if (ret < 0) { dev_dbg(&pdev->dev, "NAND timing values setup fail\n"); goto err; } spin_lock_irq(&davinci_nand_lock); /* put CSxNAND into NAND mode */ val = davinci_nand_readl(info, NANDFCR_OFFSET); val |= BIT(info->core_chipsel); davinci_nand_writel(info, NANDFCR_OFFSET, val); spin_unlock_irq(&davinci_nand_lock); /* Scan to find existence of the device(s) */ ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL); if (ret < 0) { dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); goto err; } /* Update ECC layout if needed ... for 1-bit HW ECC, the default * is OK, but it allocates 6 bytes when only 3 are needed (for * each 512 bytes). For the 4-bit HW ECC, that default is not * usable: 10 bytes are needed, not 6. */ if (pdata->ecc_bits == 4) { int chunks = info->mtd.writesize / 512; if (!chunks || info->mtd.oobsize < 16) { dev_dbg(&pdev->dev, "too small\n"); ret = -EINVAL; goto err; } /* For small page chips, preserve the manufacturer's * badblock marking data ... and make sure a flash BBT * table marker fits in the free bytes. */ if (chunks == 1) { info->ecclayout = hwecc4_small; info->ecclayout.oobfree[1].length = info->mtd.oobsize - 16; goto syndrome_done; } if (chunks == 4) { info->ecclayout = hwecc4_2048; info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST; goto syndrome_done; } /* 4KiB page chips are not yet supported. The eccpos from * nand_ecclayout cannot hold 80 bytes and change to eccpos[] * breaks userspace ioctl interface with mtd-utils. Once we * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used * for the 4KiB page chips. * * TODO: Note that nand_ecclayout has now been expanded and can * hold plenty of OOB entries. */ dev_warn(&pdev->dev, "no 4-bit ECC support yet " "for 4KiB-page NAND\n"); ret = -EIO; goto err; syndrome_done: info->chip.ecc.layout = &info->ecclayout; } ret = nand_scan_tail(&info->mtd); if (ret < 0) goto err; if (pdata->parts) ret = mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts, pdata->nr_parts); else { struct mtd_part_parser_data ppdata; ppdata.of_node = pdev->dev.of_node; ret = mtd_device_parse_register(&info->mtd, NULL, &ppdata, NULL, 0); } if (ret < 0) goto err; val = davinci_nand_readl(info, NRCSR_OFFSET); dev_info(&pdev->dev, "controller rev. %d.%d\n", (val >> 8) & 0xff, val & 0xff); return 0; err: clk_disable_unprepare(info->clk); err_clk_enable: spin_lock_irq(&davinci_nand_lock); if (ecc_mode == NAND_ECC_HW_SYNDROME) ecc4_busy = false; spin_unlock_irq(&davinci_nand_lock); return ret; } static int nand_davinci_remove(struct platform_device *pdev) { struct davinci_nand_info *info = platform_get_drvdata(pdev); spin_lock_irq(&davinci_nand_lock); if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) ecc4_busy = false; spin_unlock_irq(&davinci_nand_lock); nand_release(&info->mtd); clk_disable_unprepare(info->clk); return 0; } static struct platform_driver nand_davinci_driver = { .probe = nand_davinci_probe, .remove = nand_davinci_remove, .driver = { .name = "davinci_nand", .owner = THIS_MODULE, .of_match_table = of_match_ptr(davinci_nand_of_match), }, }; MODULE_ALIAS("platform:davinci_nand"); module_platform_driver(nand_davinci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Texas Instruments"); MODULE_DESCRIPTION("Davinci NAND flash driver");