/** * IBM Accelerator Family 'GenWQE' * * (C) Copyright IBM Corp. 2013 * * Author: Frank Haverkamp * Author: Joerg-Stephan Vogt * Author: Michael Jung * Author: Michael Ruettger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License (version 2 only) * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * Module initialization and PCIe setup. Card health monitoring and * recovery functionality. Character device creation and deletion are * controlled from here. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "card_base.h" #include "card_ddcb.h" MODULE_AUTHOR("Frank Haverkamp "); MODULE_AUTHOR("Michael Ruettger "); MODULE_AUTHOR("Joerg-Stephan Vogt "); MODULE_AUTHOR("Michal Jung "); MODULE_DESCRIPTION("GenWQE Card"); MODULE_VERSION(DRV_VERS_STRING); MODULE_LICENSE("GPL"); static char genwqe_driver_name[] = GENWQE_DEVNAME; static struct class *class_genwqe; static struct dentry *debugfs_genwqe; static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX]; /* PCI structure for identifying device by PCI vendor and device ID */ static DEFINE_PCI_DEVICE_TABLE(genwqe_device_table) = { { .vendor = PCI_VENDOR_ID_IBM, .device = PCI_DEVICE_GENWQE, .subvendor = PCI_SUBVENDOR_ID_IBM, .subdevice = PCI_SUBSYSTEM_ID_GENWQE5, .class = (PCI_CLASSCODE_GENWQE5 << 8), .class_mask = ~0, .driver_data = 0 }, /* Initial SR-IOV bring-up image */ { .vendor = PCI_VENDOR_ID_IBM, .device = PCI_DEVICE_GENWQE, .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV, .subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV, .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8), .class_mask = ~0, .driver_data = 0 }, { .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */ .device = 0x0000, /* VF Device ID */ .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV, .subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV, .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8), .class_mask = ~0, .driver_data = 0 }, /* Fixed up image */ { .vendor = PCI_VENDOR_ID_IBM, .device = PCI_DEVICE_GENWQE, .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV, .subdevice = PCI_SUBSYSTEM_ID_GENWQE5, .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8), .class_mask = ~0, .driver_data = 0 }, { .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */ .device = 0x0000, /* VF Device ID */ .subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV, .subdevice = PCI_SUBSYSTEM_ID_GENWQE5, .class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8), .class_mask = ~0, .driver_data = 0 }, /* Even one more ... */ { .vendor = PCI_VENDOR_ID_IBM, .device = PCI_DEVICE_GENWQE, .subvendor = PCI_SUBVENDOR_ID_IBM, .subdevice = PCI_SUBSYSTEM_ID_GENWQE5_NEW, .class = (PCI_CLASSCODE_GENWQE5 << 8), .class_mask = ~0, .driver_data = 0 }, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, genwqe_device_table); /** * genwqe_dev_alloc() - Create and prepare a new card descriptor * * Return: Pointer to card descriptor, or ERR_PTR(err) on error */ static struct genwqe_dev *genwqe_dev_alloc(void) { unsigned int i = 0, j; struct genwqe_dev *cd; for (i = 0; i < GENWQE_CARD_NO_MAX; i++) { if (genwqe_devices[i] == NULL) break; } if (i >= GENWQE_CARD_NO_MAX) return ERR_PTR(-ENODEV); cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL); if (!cd) return ERR_PTR(-ENOMEM); cd->card_idx = i; cd->class_genwqe = class_genwqe; cd->debugfs_genwqe = debugfs_genwqe; /* * This comes from kernel config option and can be overritten via * debugfs. */ cd->use_platform_recovery = CONFIG_GENWQE_PLATFORM_ERROR_RECOVERY; init_waitqueue_head(&cd->queue_waitq); spin_lock_init(&cd->file_lock); INIT_LIST_HEAD(&cd->file_list); cd->card_state = GENWQE_CARD_UNUSED; spin_lock_init(&cd->print_lock); cd->ddcb_software_timeout = genwqe_ddcb_software_timeout; cd->kill_timeout = genwqe_kill_timeout; for (j = 0; j < GENWQE_MAX_VFS; j++) cd->vf_jobtimeout_msec[j] = genwqe_vf_jobtimeout_msec; genwqe_devices[i] = cd; return cd; } static void genwqe_dev_free(struct genwqe_dev *cd) { if (!cd) return; genwqe_devices[cd->card_idx] = NULL; kfree(cd); } /** * genwqe_bus_reset() - Card recovery * * pci_reset_function() will recover the device and ensure that the * registers are accessible again when it completes with success. If * not, the card will stay dead and registers will be unaccessible * still. */ static int genwqe_bus_reset(struct genwqe_dev *cd) { int bars, rc = 0; struct pci_dev *pci_dev = cd->pci_dev; void __iomem *mmio; if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE) return -EIO; mmio = cd->mmio; cd->mmio = NULL; pci_iounmap(pci_dev, mmio); bars = pci_select_bars(pci_dev, IORESOURCE_MEM); pci_release_selected_regions(pci_dev, bars); /* * Firmware/BIOS might change memory mapping during bus reset. * Settings like enable bus-mastering, ... are backuped and * restored by the pci_reset_function(). */ dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__); rc = pci_reset_function(pci_dev); if (rc) { dev_err(&pci_dev->dev, "[%s] err: failed reset func (rc %d)\n", __func__, rc); return rc; } dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc); /* * Here is the right spot to clear the register read * failure. pci_bus_reset() does this job in real systems. */ cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE | GENWQE_INJECT_GFIR_FATAL | GENWQE_INJECT_GFIR_INFO); rc = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name); if (rc) { dev_err(&pci_dev->dev, "[%s] err: request bars failed (%d)\n", __func__, rc); return -EIO; } cd->mmio = pci_iomap(pci_dev, 0, 0); if (cd->mmio == NULL) { dev_err(&pci_dev->dev, "[%s] err: mapping BAR0 failed\n", __func__); return -ENOMEM; } return 0; } /* * Hardware circumvention section. Certain bitstreams in our test-lab * had different kinds of problems. Here is where we adjust those * bitstreams to function will with this version of our device driver. * * Thise circumventions are applied to the physical function only. * The magical numbers below are identifying development/manufacturing * versions of the bitstream used on the card. * * Turn off error reporting for old/manufacturing images. */ bool genwqe_need_err_masking(struct genwqe_dev *cd) { return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull; } static void genwqe_tweak_hardware(struct genwqe_dev *cd) { struct pci_dev *pci_dev = cd->pci_dev; /* Mask FIRs for development images */ if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) && ((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) { dev_warn(&pci_dev->dev, "FIRs masked due to bitstream %016llx.%016llx\n", cd->slu_unitcfg, cd->app_unitcfg); __genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR, 0xFFFFFFFFFFFFFFFFull); __genwqe_writeq(cd, IO_APP_ERR_ACT_MASK, 0x0000000000000000ull); } } /** * genwqe_recovery_on_fatal_gfir_required() - Version depended actions * * Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must * be ignored. This is e.g. true for the bitstream we gave to the card * manufacturer, but also for some old bitstreams we released to our * test-lab. */ int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd) { return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull; } int genwqe_flash_readback_fails(struct genwqe_dev *cd) { return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull; } /** * genwqe_T_psec() - Calculate PF/VF timeout register content * * Note: From a design perspective it turned out to be a bad idea to * use codes here to specifiy the frequency/speed values. An old * driver cannot understand new codes and is therefore always a * problem. Better is to measure out the value or put the * speed/frequency directly into a register which is always a valid * value for old as well as for new software. */ /* T = 1/f */ static int genwqe_T_psec(struct genwqe_dev *cd) { u16 speed; /* 1/f -> 250, 200, 166, 175 */ static const int T[] = { 4000, 5000, 6000, 5714 }; speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full); if (speed >= ARRAY_SIZE(T)) return -1; /* illegal value */ return T[speed]; } /** * genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution * * Do this _after_ card_reset() is called. Otherwise the values will * vanish. The settings need to be done when the queues are inactive. * * The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16. * The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16. */ static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd) { u32 T = genwqe_T_psec(cd); u64 x; if (genwqe_pf_jobtimeout_msec == 0) return false; /* PF: large value needed, flash update 2sec per block */ x = ilog2(genwqe_pf_jobtimeout_msec * 16000000000uL/(T * 15)) - 10; genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT, 0xff00 | (x & 0xff), 0); return true; } /** * genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution */ static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd) { struct pci_dev *pci_dev = cd->pci_dev; unsigned int vf; u32 T = genwqe_T_psec(cd); u64 x; for (vf = 0; vf < pci_sriov_get_totalvfs(pci_dev); vf++) { if (cd->vf_jobtimeout_msec[vf] == 0) continue; x = ilog2(cd->vf_jobtimeout_msec[vf] * 16000000000uL/(T * 15)) - 10; genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT, 0xff00 | (x & 0xff), vf + 1); } return true; } static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd) { unsigned int type, e = 0; for (type = 0; type < GENWQE_DBG_UNITS; type++) { switch (type) { case GENWQE_DBG_UNIT0: e = genwqe_ffdc_buff_size(cd, 0); break; case GENWQE_DBG_UNIT1: e = genwqe_ffdc_buff_size(cd, 1); break; case GENWQE_DBG_UNIT2: e = genwqe_ffdc_buff_size(cd, 2); break; case GENWQE_DBG_REGS: e = GENWQE_FFDC_REGS; break; } /* currently support only the debug units mentioned here */ cd->ffdc[type].entries = e; cd->ffdc[type].regs = kmalloc(e * sizeof(struct genwqe_reg), GFP_KERNEL); /* * regs == NULL is ok, the using code treats this as no regs, * Printing warning is ok in this case. */ } return 0; } static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd) { unsigned int type; for (type = 0; type < GENWQE_DBG_UNITS; type++) { kfree(cd->ffdc[type].regs); cd->ffdc[type].regs = NULL; } } static int genwqe_read_ids(struct genwqe_dev *cd) { int err = 0; int slu_id; struct pci_dev *pci_dev = cd->pci_dev; cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG); if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) { dev_err(&pci_dev->dev, "err: SLUID=%016llx\n", cd->slu_unitcfg); err = -EIO; goto out_err; } slu_id = genwqe_get_slu_id(cd); if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) { dev_err(&pci_dev->dev, "err: incompatible SLU Architecture %u\n", slu_id); err = -ENOENT; goto out_err; } cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG); if (cd->app_unitcfg == IO_ILLEGAL_VALUE) { dev_err(&pci_dev->dev, "err: APPID=%016llx\n", cd->app_unitcfg); err = -EIO; goto out_err; } genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name)); /* * Is access to all registers possible? If we are a VF the * answer is obvious. If we run fully virtualized, we need to * check if we can access all registers. If we do not have * full access we will cause an UR and some informational FIRs * in the PF, but that should not harm. */ if (pci_dev->is_virtfn) cd->is_privileged = 0; else cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM) != IO_ILLEGAL_VALUE); out_err: return err; } static int genwqe_start(struct genwqe_dev *cd) { int err; struct pci_dev *pci_dev = cd->pci_dev; err = genwqe_read_ids(cd); if (err) return err; if (genwqe_is_privileged(cd)) { /* do this after the tweaks. alloc fail is acceptable */ genwqe_ffdc_buffs_alloc(cd); genwqe_stop_traps(cd); /* Collect registers e.g. FIRs, UNITIDs, traces ... */ genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs, cd->ffdc[GENWQE_DBG_REGS].entries, 0); genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0, cd->ffdc[GENWQE_DBG_UNIT0].regs, cd->ffdc[GENWQE_DBG_UNIT0].entries); genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1, cd->ffdc[GENWQE_DBG_UNIT1].regs, cd->ffdc[GENWQE_DBG_UNIT1].entries); genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2, cd->ffdc[GENWQE_DBG_UNIT2].regs, cd->ffdc[GENWQE_DBG_UNIT2].entries); genwqe_start_traps(cd); if (cd->card_state == GENWQE_CARD_FATAL_ERROR) { dev_warn(&pci_dev->dev, "[%s] chip reload/recovery!\n", __func__); /* * Stealth Mode: Reload chip on either hot * reset or PERST. */ cd->softreset = 0x7Cull; __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset); err = genwqe_bus_reset(cd); if (err != 0) { dev_err(&pci_dev->dev, "[%s] err: bus reset failed!\n", __func__); goto out; } /* * Re-read the IDs because * it could happen that the bitstream load * failed! */ err = genwqe_read_ids(cd); if (err) goto out; } } err = genwqe_setup_service_layer(cd); /* does a reset to the card */ if (err != 0) { dev_err(&pci_dev->dev, "[%s] err: could not setup servicelayer!\n", __func__); err = -ENODEV; goto out; } if (genwqe_is_privileged(cd)) { /* code is running _after_ reset */ genwqe_tweak_hardware(cd); genwqe_setup_pf_jtimer(cd); genwqe_setup_vf_jtimer(cd); } err = genwqe_device_create(cd); if (err < 0) { dev_err(&pci_dev->dev, "err: chdev init failed! (err=%d)\n", err); goto out_release_service_layer; } return 0; out_release_service_layer: genwqe_release_service_layer(cd); out: if (genwqe_is_privileged(cd)) genwqe_ffdc_buffs_free(cd); return -EIO; } /** * genwqe_stop() - Stop card operation * * Recovery notes: * As long as genwqe_thread runs we might access registers during * error data capture. Same is with the genwqe_health_thread. * When genwqe_bus_reset() fails this function might called two times: * first by the genwqe_health_thread() and later by genwqe_remove() to * unbind the device. We must be able to survive that. * * This function must be robust enough to be called twice. */ static int genwqe_stop(struct genwqe_dev *cd) { genwqe_finish_queue(cd); /* no register access */ genwqe_device_remove(cd); /* device removed, procs killed */ genwqe_release_service_layer(cd); /* here genwqe_thread is stopped */ if (genwqe_is_privileged(cd)) { pci_disable_sriov(cd->pci_dev); /* access pci config space */ genwqe_ffdc_buffs_free(cd); } return 0; } /** * genwqe_recover_card() - Try to recover the card if it is possible * * If fatal_err is set no register access is possible anymore. It is * likely that genwqe_start fails in that situation. Proper error * handling is required in this case. * * genwqe_bus_reset() will cause the pci code to call genwqe_remove() * and later genwqe_probe() for all virtual functions. */ static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err) { int rc; struct pci_dev *pci_dev = cd->pci_dev; genwqe_stop(cd); /* * Make sure chip is not reloaded to maintain FFDC. Write SLU * Reset Register, CPLDReset field to 0. */ if (!fatal_err) { cd->softreset = 0x70ull; __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset); } rc = genwqe_bus_reset(cd); if (rc != 0) { dev_err(&pci_dev->dev, "[%s] err: card recovery impossible!\n", __func__); return rc; } rc = genwqe_start(cd); if (rc < 0) { dev_err(&pci_dev->dev, "[%s] err: failed to launch device!\n", __func__); return rc; } return 0; } static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir) { *gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); return (*gfir & GFIR_ERR_TRIGGER) && genwqe_recovery_on_fatal_gfir_required(cd); } /** * genwqe_fir_checking() - Check the fault isolation registers of the card * * If this code works ok, can be tried out with help of the genwqe_poke tool: * sudo ./tools/genwqe_poke 0x8 0xfefefefefef * * Now the relevant FIRs/sFIRs should be printed out and the driver should * invoke recovery (devices are removed and readded). */ static u64 genwqe_fir_checking(struct genwqe_dev *cd) { int j, iterations = 0; u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec; u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr; struct pci_dev *pci_dev = cd->pci_dev; healthMonitor: iterations++; if (iterations > 16) { dev_err(&pci_dev->dev, "* exit looping after %d times\n", iterations); goto fatal_error; } gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); if (gfir != 0x0) dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", IO_SLC_CFGREG_GFIR, gfir); if (gfir == IO_ILLEGAL_VALUE) goto fatal_error; /* * Avoid printing when to GFIR bit is on prevents contignous * printout e.g. for the following bug: * FIR set without a 2ndary FIR/FIR cannot be cleared * Comment out the following if to get the prints: */ if (gfir == 0) return 0; gfir_masked = gfir & GFIR_ERR_TRIGGER; /* fatal errors */ for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */ /* read the primary FIR (pfir) */ fir_addr = (uid << 24) + 0x08; fir = __genwqe_readq(cd, fir_addr); if (fir == 0x0) continue; /* no error in this unit */ dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir); if (fir == IO_ILLEGAL_VALUE) goto fatal_error; /* read primary FEC */ fec_addr = (uid << 24) + 0x18; fec = __genwqe_readq(cd, fec_addr); dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec); if (fec == IO_ILLEGAL_VALUE) goto fatal_error; for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) { /* secondary fir empty, skip it */ if ((fir & mask) == 0x0) continue; sfir_addr = (uid << 24) + 0x100 + 0x08 * j; sfir = __genwqe_readq(cd, sfir_addr); if (sfir == IO_ILLEGAL_VALUE) goto fatal_error; dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", sfir_addr, sfir); sfec_addr = (uid << 24) + 0x300 + 0x08 * j; sfec = __genwqe_readq(cd, sfec_addr); if (sfec == IO_ILLEGAL_VALUE) goto fatal_error; dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", sfec_addr, sfec); gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); if (gfir == IO_ILLEGAL_VALUE) goto fatal_error; /* gfir turned on during routine! get out and start over. */ if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) { goto healthMonitor; } /* do not clear if we entered with a fatal gfir */ if (gfir_masked == 0x0) { /* NEW clear by mask the logged bits */ sfir_addr = (uid << 24) + 0x100 + 0x08 * j; __genwqe_writeq(cd, sfir_addr, sfir); dev_dbg(&pci_dev->dev, "[HM] Clearing 2ndary FIR 0x%08x " "with 0x%016llx\n", sfir_addr, sfir); /* * note, these cannot be error-Firs * since gfir_masked is 0 after sfir * was read. Also, it is safe to do * this write if sfir=0. Still need to * clear the primary. This just means * there is no secondary FIR. */ /* clear by mask the logged bit. */ fir_clr_addr = (uid << 24) + 0x10; __genwqe_writeq(cd, fir_clr_addr, mask); dev_dbg(&pci_dev->dev, "[HM] Clearing primary FIR 0x%08x " "with 0x%016llx\n", fir_clr_addr, mask); } } } gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); if (gfir == IO_ILLEGAL_VALUE) goto fatal_error; if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) { /* * Check once more that it didn't go on after all the * FIRS were cleared. */ dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n", iterations); goto healthMonitor; } return gfir_masked; fatal_error: return IO_ILLEGAL_VALUE; } /** * genwqe_pci_fundamental_reset() - trigger a PCIe fundamental reset on the slot * * Note: pci_set_pcie_reset_state() is not implemented on all archs, so this * reset method will not work in all cases. * * Return: 0 on success or error code from pci_set_pcie_reset_state() */ static int genwqe_pci_fundamental_reset(struct pci_dev *pci_dev) { int rc; /* * lock pci config space access from userspace, * save state and issue PCIe fundamental reset */ pci_cfg_access_lock(pci_dev); pci_save_state(pci_dev); rc = pci_set_pcie_reset_state(pci_dev, pcie_warm_reset); if (!rc) { /* keep PCIe reset asserted for 250ms */ msleep(250); pci_set_pcie_reset_state(pci_dev, pcie_deassert_reset); /* Wait for 2s to reload flash and train the link */ msleep(2000); } pci_restore_state(pci_dev); pci_cfg_access_unlock(pci_dev); return rc; } static int genwqe_platform_recovery(struct genwqe_dev *cd) { struct pci_dev *pci_dev = cd->pci_dev; int rc; dev_info(&pci_dev->dev, "[%s] resetting card for error recovery\n", __func__); /* Clear out error injection flags */ cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE | GENWQE_INJECT_GFIR_FATAL | GENWQE_INJECT_GFIR_INFO); genwqe_stop(cd); /* Try recoverying the card with fundamental reset */ rc = genwqe_pci_fundamental_reset(pci_dev); if (!rc) { rc = genwqe_start(cd); if (!rc) dev_info(&pci_dev->dev, "[%s] card recovered\n", __func__); else dev_err(&pci_dev->dev, "[%s] err: cannot start card services! (err=%d)\n", __func__, rc); } else { dev_err(&pci_dev->dev, "[%s] card reset failed\n", __func__); } return rc; } /* * genwqe_reload_bistream() - reload card bitstream * * Set the appropriate register and call fundamental reset to reaload the card * bitstream. * * Return: 0 on success, error code otherwise */ static int genwqe_reload_bistream(struct genwqe_dev *cd) { struct pci_dev *pci_dev = cd->pci_dev; int rc; dev_info(&pci_dev->dev, "[%s] resetting card for bitstream reload\n", __func__); genwqe_stop(cd); /* * Cause a CPLD reprogram with the 'next_bitstream' * partition on PCIe hot or fundamental reset */ __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, (cd->softreset & 0xcull) | 0x70ull); rc = genwqe_pci_fundamental_reset(pci_dev); if (rc) { /* * A fundamental reset failure can be caused * by lack of support on the arch, so we just * log the error and try to start the card * again. */ dev_err(&pci_dev->dev, "[%s] err: failed to reset card for bitstream reload\n", __func__); } rc = genwqe_start(cd); if (rc) { dev_err(&pci_dev->dev, "[%s] err: cannot start card services! (err=%d)\n", __func__, rc); return rc; } dev_info(&pci_dev->dev, "[%s] card reloaded\n", __func__); return 0; } /** * genwqe_health_thread() - Health checking thread * * This thread is only started for the PF of the card. * * This thread monitors the health of the card. A critical situation * is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In * this case we need to be recovered from outside. Writing to * registers will very likely not work either. * * This thread must only exit if kthread_should_stop() becomes true. * * Condition for the health-thread to trigger: * a) when a kthread_stop() request comes in or * b) a critical GFIR occured * * Informational GFIRs are checked and potentially printed in * health_check_interval seconds. */ static int genwqe_health_thread(void *data) { int rc, should_stop = 0; struct genwqe_dev *cd = data; struct pci_dev *pci_dev = cd->pci_dev; u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg; health_thread_begin: while (!kthread_should_stop()) { rc = wait_event_interruptible_timeout(cd->health_waitq, (genwqe_health_check_cond(cd, &gfir) || (should_stop = kthread_should_stop())), genwqe_health_check_interval * HZ); if (should_stop) break; if (gfir == IO_ILLEGAL_VALUE) { dev_err(&pci_dev->dev, "[%s] GFIR=%016llx\n", __func__, gfir); goto fatal_error; } slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG); if (slu_unitcfg == IO_ILLEGAL_VALUE) { dev_err(&pci_dev->dev, "[%s] SLU_UNITCFG=%016llx\n", __func__, slu_unitcfg); goto fatal_error; } app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG); if (app_unitcfg == IO_ILLEGAL_VALUE) { dev_err(&pci_dev->dev, "[%s] APP_UNITCFG=%016llx\n", __func__, app_unitcfg); goto fatal_error; } gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); if (gfir == IO_ILLEGAL_VALUE) { dev_err(&pci_dev->dev, "[%s] %s: GFIR=%016llx\n", __func__, (gfir & GFIR_ERR_TRIGGER) ? "err" : "info", gfir); goto fatal_error; } gfir_masked = genwqe_fir_checking(cd); if (gfir_masked == IO_ILLEGAL_VALUE) goto fatal_error; /* * GFIR ErrorTrigger bits set => reset the card! * Never do this for old/manufacturing images! */ if ((gfir_masked) && !cd->skip_recovery && genwqe_recovery_on_fatal_gfir_required(cd)) { cd->card_state = GENWQE_CARD_FATAL_ERROR; rc = genwqe_recover_card(cd, 0); if (rc < 0) { /* FIXME Card is unusable and needs unbind! */ goto fatal_error; } } if (cd->card_state == GENWQE_CARD_RELOAD_BITSTREAM) { /* Userspace requested card bitstream reload */ rc = genwqe_reload_bistream(cd); if (rc) goto fatal_error; } cd->last_gfir = gfir; cond_resched(); } return 0; fatal_error: if (cd->use_platform_recovery) { /* * Since we use raw accessors, EEH errors won't be detected * by the platform until we do a non-raw MMIO or config space * read */ readq(cd->mmio + IO_SLC_CFGREG_GFIR); /* We do nothing if the card is going over PCI recovery */ if (pci_channel_offline(pci_dev)) return -EIO; /* * If it's supported by the platform, we try a fundamental reset * to recover from a fatal error. Otherwise, we continue to wait * for an external recovery procedure to take care of it. */ rc = genwqe_platform_recovery(cd); if (!rc) goto health_thread_begin; } dev_err(&pci_dev->dev, "[%s] card unusable. Please trigger unbind!\n", __func__); /* Bring down logical devices to inform user space via udev remove. */ cd->card_state = GENWQE_CARD_FATAL_ERROR; genwqe_stop(cd); /* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */ while (!kthread_should_stop()) cond_resched(); return -EIO; } static int genwqe_health_check_start(struct genwqe_dev *cd) { int rc; if (genwqe_health_check_interval <= 0) return 0; /* valid for disabling the service */ /* moved before request_irq() */ /* init_waitqueue_head(&cd->health_waitq); */ cd->health_thread = kthread_run(genwqe_health_thread, cd, GENWQE_DEVNAME "%d_health", cd->card_idx); if (IS_ERR(cd->health_thread)) { rc = PTR_ERR(cd->health_thread); cd->health_thread = NULL; return rc; } return 0; } static int genwqe_health_thread_running(struct genwqe_dev *cd) { return cd->health_thread != NULL; } static int genwqe_health_check_stop(struct genwqe_dev *cd) { int rc; if (!genwqe_health_thread_running(cd)) return -EIO; rc = kthread_stop(cd->health_thread); cd->health_thread = NULL; return 0; } /** * genwqe_pci_setup() - Allocate PCIe related resources for our card */ static int genwqe_pci_setup(struct genwqe_dev *cd) { int err, bars; struct pci_dev *pci_dev = cd->pci_dev; bars = pci_select_bars(pci_dev, IORESOURCE_MEM); err = pci_enable_device_mem(pci_dev); if (err) { dev_err(&pci_dev->dev, "err: failed to enable pci memory (err=%d)\n", err); goto err_out; } /* Reserve PCI I/O and memory resources */ err = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name); if (err) { dev_err(&pci_dev->dev, "[%s] err: request bars failed (%d)\n", __func__, err); err = -EIO; goto err_disable_device; } /* check for 64-bit DMA address supported (DAC) */ if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) { err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(64)); if (err) { dev_err(&pci_dev->dev, "err: DMA64 consistent mask error\n"); err = -EIO; goto out_release_resources; } /* check for 32-bit DMA address supported (SAC) */ } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) { err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pci_dev->dev, "err: DMA32 consistent mask error\n"); err = -EIO; goto out_release_resources; } } else { dev_err(&pci_dev->dev, "err: neither DMA32 nor DMA64 supported\n"); err = -EIO; goto out_release_resources; } pci_set_master(pci_dev); pci_enable_pcie_error_reporting(pci_dev); /* EEH recovery requires PCIe fundamental reset */ pci_dev->needs_freset = 1; /* request complete BAR-0 space (length = 0) */ cd->mmio_len = pci_resource_len(pci_dev, 0); cd->mmio = pci_iomap(pci_dev, 0, 0); if (cd->mmio == NULL) { dev_err(&pci_dev->dev, "[%s] err: mapping BAR0 failed\n", __func__); err = -ENOMEM; goto out_release_resources; } cd->num_vfs = pci_sriov_get_totalvfs(pci_dev); err = genwqe_read_ids(cd); if (err) goto out_iounmap; return 0; out_iounmap: pci_iounmap(pci_dev, cd->mmio); out_release_resources: pci_release_selected_regions(pci_dev, bars); err_disable_device: pci_disable_device(pci_dev); err_out: return err; } /** * genwqe_pci_remove() - Free PCIe related resources for our card */ static void genwqe_pci_remove(struct genwqe_dev *cd) { int bars; struct pci_dev *pci_dev = cd->pci_dev; if (cd->mmio) pci_iounmap(pci_dev, cd->mmio); bars = pci_select_bars(pci_dev, IORESOURCE_MEM); pci_release_selected_regions(pci_dev, bars); pci_disable_device(pci_dev); } /** * genwqe_probe() - Device initialization * @pdev: PCI device information struct * * Callable for multiple cards. This function is called on bind. * * Return: 0 if succeeded, < 0 when failed */ static int genwqe_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { int err; struct genwqe_dev *cd; genwqe_init_crc32(); cd = genwqe_dev_alloc(); if (IS_ERR(cd)) { dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n", (int)PTR_ERR(cd)); return PTR_ERR(cd); } dev_set_drvdata(&pci_dev->dev, cd); cd->pci_dev = pci_dev; err = genwqe_pci_setup(cd); if (err < 0) { dev_err(&pci_dev->dev, "err: problems with PCI setup (err=%d)\n", err); goto out_free_dev; } err = genwqe_start(cd); if (err < 0) { dev_err(&pci_dev->dev, "err: cannot start card services! (err=%d)\n", err); goto out_pci_remove; } if (genwqe_is_privileged(cd)) { err = genwqe_health_check_start(cd); if (err < 0) { dev_err(&pci_dev->dev, "err: cannot start health checking! " "(err=%d)\n", err); goto out_stop_services; } } return 0; out_stop_services: genwqe_stop(cd); out_pci_remove: genwqe_pci_remove(cd); out_free_dev: genwqe_dev_free(cd); return err; } /** * genwqe_remove() - Called when device is removed (hot-plugable) * * Or when driver is unloaded respecitively when unbind is done. */ static void genwqe_remove(struct pci_dev *pci_dev) { struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev); genwqe_health_check_stop(cd); /* * genwqe_stop() must survive if it is called twice * sequentially. This happens when the health thread calls it * and fails on genwqe_bus_reset(). */ genwqe_stop(cd); genwqe_pci_remove(cd); genwqe_dev_free(cd); } /* * genwqe_err_error_detected() - Error detection callback * * This callback is called by the PCI subsystem whenever a PCI bus * error is detected. */ static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev, enum pci_channel_state state) { struct genwqe_dev *cd; dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state); cd = dev_get_drvdata(&pci_dev->dev); if (cd == NULL) return PCI_ERS_RESULT_DISCONNECT; /* Stop the card */ genwqe_health_check_stop(cd); genwqe_stop(cd); /* * On permanent failure, the PCI code will call device remove * after the return of this function. * genwqe_stop() can be called twice. */ if (state == pci_channel_io_perm_failure) { return PCI_ERS_RESULT_DISCONNECT; } else { genwqe_pci_remove(cd); return PCI_ERS_RESULT_NEED_RESET; } } static pci_ers_result_t genwqe_err_slot_reset(struct pci_dev *pci_dev) { int rc; struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev); rc = genwqe_pci_setup(cd); if (!rc) { return PCI_ERS_RESULT_RECOVERED; } else { dev_err(&pci_dev->dev, "err: problems with PCI setup (err=%d)\n", rc); return PCI_ERS_RESULT_DISCONNECT; } } static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev) { return PCI_ERS_RESULT_NONE; } static void genwqe_err_resume(struct pci_dev *pci_dev) { int rc; struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev); rc = genwqe_start(cd); if (!rc) { rc = genwqe_health_check_start(cd); if (rc) dev_err(&pci_dev->dev, "err: cannot start health checking! (err=%d)\n", rc); } else { dev_err(&pci_dev->dev, "err: cannot start card services! (err=%d)\n", rc); } } static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs) { struct genwqe_dev *cd = dev_get_drvdata(&dev->dev); if (numvfs > 0) { genwqe_setup_vf_jtimer(cd); pci_enable_sriov(dev, numvfs); return numvfs; } if (numvfs == 0) { pci_disable_sriov(dev); return 0; } return 0; } static struct pci_error_handlers genwqe_err_handler = { .error_detected = genwqe_err_error_detected, .mmio_enabled = genwqe_err_result_none, .link_reset = genwqe_err_result_none, .slot_reset = genwqe_err_slot_reset, .resume = genwqe_err_resume, }; static struct pci_driver genwqe_driver = { .name = genwqe_driver_name, .id_table = genwqe_device_table, .probe = genwqe_probe, .remove = genwqe_remove, .sriov_configure = genwqe_sriov_configure, .err_handler = &genwqe_err_handler, }; /** * genwqe_init_module() - Driver registration and initialization */ static int __init genwqe_init_module(void) { int rc; class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME); if (IS_ERR(class_genwqe)) { pr_err("[%s] create class failed\n", __func__); return -ENOMEM; } debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL); if (!debugfs_genwqe) { rc = -ENOMEM; goto err_out; } rc = pci_register_driver(&genwqe_driver); if (rc != 0) { pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc); goto err_out0; } return rc; err_out0: debugfs_remove(debugfs_genwqe); err_out: class_destroy(class_genwqe); return rc; } /** * genwqe_exit_module() - Driver exit */ static void __exit genwqe_exit_module(void) { pci_unregister_driver(&genwqe_driver); debugfs_remove(debugfs_genwqe); class_destroy(class_genwqe); } module_init(genwqe_init_module); module_exit(genwqe_exit_module);