/* DVB USB framework compliant Linux driver for the * DVBWorld DVB-S 2101, 2102, DVB-S2 2104, DVB-C 3101, * TeVii S421, S480, S482, S600, S630, S632, S650, S660, S662, * Prof 1100, 7500, * Geniatech SU3000, T220, * TechnoTrend S2-4600, * Terratec Cinergy S2 cards * Copyright (C) 2008-2012 Igor M. Liplianin (liplianin@me.by) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, version 2. * * see Documentation/media/dvb-drivers/dvb-usb.rst for more information */ #include #include "dw2102.h" #include "si21xx.h" #include "stv0299.h" #include "z0194a.h" #include "stv0288.h" #include "stb6000.h" #include "eds1547.h" #include "cx24116.h" #include "tda1002x.h" #include "mt312.h" #include "zl10039.h" #include "ts2020.h" #include "ds3000.h" #include "stv0900.h" #include "stv6110.h" #include "stb6100.h" #include "stb6100_proc.h" #include "m88rs2000.h" #include "tda18271.h" #include "cxd2820r.h" #include "m88ds3103.h" /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 64 #define DW210X_READ_MSG 0 #define DW210X_WRITE_MSG 1 #define REG_1F_SYMBOLRATE_BYTE0 0x1f #define REG_20_SYMBOLRATE_BYTE1 0x20 #define REG_21_SYMBOLRATE_BYTE2 0x21 /* on my own*/ #define DW2102_VOLTAGE_CTRL (0x1800) #define SU3000_STREAM_CTRL (0x1900) #define DW2102_RC_QUERY (0x1a00) #define DW2102_LED_CTRL (0x1b00) #define DW2101_FIRMWARE "dvb-usb-dw2101.fw" #define DW2102_FIRMWARE "dvb-usb-dw2102.fw" #define DW2104_FIRMWARE "dvb-usb-dw2104.fw" #define DW3101_FIRMWARE "dvb-usb-dw3101.fw" #define S630_FIRMWARE "dvb-usb-s630.fw" #define S660_FIRMWARE "dvb-usb-s660.fw" #define P1100_FIRMWARE "dvb-usb-p1100.fw" #define P7500_FIRMWARE "dvb-usb-p7500.fw" #define err_str "did not find the firmware file '%s'. You can use /scripts/get_dvb_firmware to get the firmware" struct dw2102_state { u8 initialized; u8 last_lock; u8 data[MAX_XFER_SIZE + 4]; struct i2c_client *i2c_client_demod; struct i2c_client *i2c_client_tuner; /* fe hook functions*/ int (*old_set_voltage)(struct dvb_frontend *f, enum fe_sec_voltage v); int (*fe_read_status)(struct dvb_frontend *fe, enum fe_status *status); }; /* debug */ static int dvb_usb_dw2102_debug; module_param_named(debug, dvb_usb_dw2102_debug, int, 0644); MODULE_PARM_DESC(debug, "set debugging level (1=info 2=xfer 4=rc(or-able))." DVB_USB_DEBUG_STATUS); /* demod probe */ static int demod_probe = 1; module_param_named(demod, demod_probe, int, 0644); MODULE_PARM_DESC(demod, "demod to probe (1=cx24116 2=stv0903+stv6110 4=stv0903+stb6100(or-able))."); DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static int dw210x_op_rw(struct usb_device *dev, u8 request, u16 value, u16 index, u8 * data, u16 len, int flags) { int ret; u8 *u8buf; unsigned int pipe = (flags == DW210X_READ_MSG) ? usb_rcvctrlpipe(dev, 0) : usb_sndctrlpipe(dev, 0); u8 request_type = (flags == DW210X_READ_MSG) ? USB_DIR_IN : USB_DIR_OUT; u8buf = kmalloc(len, GFP_KERNEL); if (!u8buf) return -ENOMEM; if (flags == DW210X_WRITE_MSG) memcpy(u8buf, data, len); ret = usb_control_msg(dev, pipe, request, request_type | USB_TYPE_VENDOR, value, index , u8buf, len, 2000); if (flags == DW210X_READ_MSG) memcpy(data, u8buf, len); kfree(u8buf); return ret; } /* I2C */ static int dw2102_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); int i = 0; u8 buf6[] = {0x2c, 0x05, 0xc0, 0, 0, 0, 0}; u16 value; if (!d) return -ENODEV; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; switch (num) { case 2: /* read stv0299 register */ value = msg[0].buf[0];/* register */ for (i = 0; i < msg[1].len; i++) { dw210x_op_rw(d->udev, 0xb5, value + i, 0, buf6, 2, DW210X_READ_MSG); msg[1].buf[i] = buf6[0]; } break; case 1: switch (msg[0].addr) { case 0x68: /* write to stv0299 register */ buf6[0] = 0x2a; buf6[1] = msg[0].buf[0]; buf6[2] = msg[0].buf[1]; dw210x_op_rw(d->udev, 0xb2, 0, 0, buf6, 3, DW210X_WRITE_MSG); break; case 0x60: if (msg[0].flags == 0) { /* write to tuner pll */ buf6[0] = 0x2c; buf6[1] = 5; buf6[2] = 0xc0; buf6[3] = msg[0].buf[0]; buf6[4] = msg[0].buf[1]; buf6[5] = msg[0].buf[2]; buf6[6] = msg[0].buf[3]; dw210x_op_rw(d->udev, 0xb2, 0, 0, buf6, 7, DW210X_WRITE_MSG); } else { /* read from tuner */ dw210x_op_rw(d->udev, 0xb5, 0, 0, buf6, 1, DW210X_READ_MSG); msg[0].buf[0] = buf6[0]; } break; case (DW2102_RC_QUERY): dw210x_op_rw(d->udev, 0xb8, 0, 0, buf6, 2, DW210X_READ_MSG); msg[0].buf[0] = buf6[0]; msg[0].buf[1] = buf6[1]; break; case (DW2102_VOLTAGE_CTRL): buf6[0] = 0x30; buf6[1] = msg[0].buf[0]; dw210x_op_rw(d->udev, 0xb2, 0, 0, buf6, 2, DW210X_WRITE_MSG); break; } break; } mutex_unlock(&d->i2c_mutex); return num; } static int dw2102_serit_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); u8 buf6[] = {0, 0, 0, 0, 0, 0, 0}; if (!d) return -ENODEV; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; switch (num) { case 2: if (msg[0].len != 1) { warn("i2c rd: len=%d is not 1!\n", msg[0].len); num = -EOPNOTSUPP; break; } if (2 + msg[1].len > sizeof(buf6)) { warn("i2c rd: len=%d is too big!\n", msg[1].len); num = -EOPNOTSUPP; break; } /* read si2109 register by number */ buf6[0] = msg[0].addr << 1; buf6[1] = msg[0].len; buf6[2] = msg[0].buf[0]; dw210x_op_rw(d->udev, 0xc2, 0, 0, buf6, msg[0].len + 2, DW210X_WRITE_MSG); /* read si2109 register */ dw210x_op_rw(d->udev, 0xc3, 0xd0, 0, buf6, msg[1].len + 2, DW210X_READ_MSG); memcpy(msg[1].buf, buf6 + 2, msg[1].len); break; case 1: switch (msg[0].addr) { case 0x68: if (2 + msg[0].len > sizeof(buf6)) { warn("i2c wr: len=%d is too big!\n", msg[0].len); num = -EOPNOTSUPP; break; } /* write to si2109 register */ buf6[0] = msg[0].addr << 1; buf6[1] = msg[0].len; memcpy(buf6 + 2, msg[0].buf, msg[0].len); dw210x_op_rw(d->udev, 0xc2, 0, 0, buf6, msg[0].len + 2, DW210X_WRITE_MSG); break; case(DW2102_RC_QUERY): dw210x_op_rw(d->udev, 0xb8, 0, 0, buf6, 2, DW210X_READ_MSG); msg[0].buf[0] = buf6[0]; msg[0].buf[1] = buf6[1]; break; case(DW2102_VOLTAGE_CTRL): buf6[0] = 0x30; buf6[1] = msg[0].buf[0]; dw210x_op_rw(d->udev, 0xb2, 0, 0, buf6, 2, DW210X_WRITE_MSG); break; } break; } mutex_unlock(&d->i2c_mutex); return num; } static int dw2102_earda_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); int ret; if (!d) return -ENODEV; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; switch (num) { case 2: { /* read */ /* first write first register number */ u8 ibuf[MAX_XFER_SIZE], obuf[3]; if (2 + msg[0].len != sizeof(obuf)) { warn("i2c rd: len=%d is not 1!\n", msg[0].len); ret = -EOPNOTSUPP; goto unlock; } if (2 + msg[1].len > sizeof(ibuf)) { warn("i2c rd: len=%d is too big!\n", msg[1].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[0].addr << 1; obuf[1] = msg[0].len; obuf[2] = msg[0].buf[0]; dw210x_op_rw(d->udev, 0xc2, 0, 0, obuf, msg[0].len + 2, DW210X_WRITE_MSG); /* second read registers */ dw210x_op_rw(d->udev, 0xc3, 0xd1 , 0, ibuf, msg[1].len + 2, DW210X_READ_MSG); memcpy(msg[1].buf, ibuf + 2, msg[1].len); break; } case 1: switch (msg[0].addr) { case 0x68: { /* write to register */ u8 obuf[MAX_XFER_SIZE]; if (2 + msg[0].len > sizeof(obuf)) { warn("i2c wr: len=%d is too big!\n", msg[1].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[0].addr << 1; obuf[1] = msg[0].len; memcpy(obuf + 2, msg[0].buf, msg[0].len); dw210x_op_rw(d->udev, 0xc2, 0, 0, obuf, msg[0].len + 2, DW210X_WRITE_MSG); break; } case 0x61: { /* write to tuner */ u8 obuf[MAX_XFER_SIZE]; if (2 + msg[0].len > sizeof(obuf)) { warn("i2c wr: len=%d is too big!\n", msg[1].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[0].addr << 1; obuf[1] = msg[0].len; memcpy(obuf + 2, msg[0].buf, msg[0].len); dw210x_op_rw(d->udev, 0xc2, 0, 0, obuf, msg[0].len + 2, DW210X_WRITE_MSG); break; } case(DW2102_RC_QUERY): { u8 ibuf[2]; dw210x_op_rw(d->udev, 0xb8, 0, 0, ibuf, 2, DW210X_READ_MSG); memcpy(msg[0].buf, ibuf , 2); break; } case(DW2102_VOLTAGE_CTRL): { u8 obuf[2]; obuf[0] = 0x30; obuf[1] = msg[0].buf[0]; dw210x_op_rw(d->udev, 0xb2, 0, 0, obuf, 2, DW210X_WRITE_MSG); break; } } break; } ret = num; unlock: mutex_unlock(&d->i2c_mutex); return ret; } static int dw2104_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); int len, i, j, ret; if (!d) return -ENODEV; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; for (j = 0; j < num; j++) { switch (msg[j].addr) { case(DW2102_RC_QUERY): { u8 ibuf[2]; dw210x_op_rw(d->udev, 0xb8, 0, 0, ibuf, 2, DW210X_READ_MSG); memcpy(msg[j].buf, ibuf , 2); break; } case(DW2102_VOLTAGE_CTRL): { u8 obuf[2]; obuf[0] = 0x30; obuf[1] = msg[j].buf[0]; dw210x_op_rw(d->udev, 0xb2, 0, 0, obuf, 2, DW210X_WRITE_MSG); break; } /*case 0x55: cx24116 case 0x6a: stv0903 case 0x68: ds3000, stv0903 case 0x60: ts2020, stv6110, stb6100 */ default: { if (msg[j].flags == I2C_M_RD) { /* read registers */ u8 ibuf[MAX_XFER_SIZE]; if (2 + msg[j].len > sizeof(ibuf)) { warn("i2c rd: len=%d is too big!\n", msg[j].len); ret = -EOPNOTSUPP; goto unlock; } dw210x_op_rw(d->udev, 0xc3, (msg[j].addr << 1) + 1, 0, ibuf, msg[j].len + 2, DW210X_READ_MSG); memcpy(msg[j].buf, ibuf + 2, msg[j].len); mdelay(10); } else if (((msg[j].buf[0] == 0xb0) && (msg[j].addr == 0x68)) || ((msg[j].buf[0] == 0xf7) && (msg[j].addr == 0x55))) { /* write firmware */ u8 obuf[19]; obuf[0] = msg[j].addr << 1; obuf[1] = (msg[j].len > 15 ? 17 : msg[j].len); obuf[2] = msg[j].buf[0]; len = msg[j].len - 1; i = 1; do { memcpy(obuf + 3, msg[j].buf + i, (len > 16 ? 16 : len)); dw210x_op_rw(d->udev, 0xc2, 0, 0, obuf, (len > 16 ? 16 : len) + 3, DW210X_WRITE_MSG); i += 16; len -= 16; } while (len > 0); } else { /* write registers */ u8 obuf[MAX_XFER_SIZE]; if (2 + msg[j].len > sizeof(obuf)) { warn("i2c wr: len=%d is too big!\n", msg[j].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[j].addr << 1; obuf[1] = msg[j].len; memcpy(obuf + 2, msg[j].buf, msg[j].len); dw210x_op_rw(d->udev, 0xc2, 0, 0, obuf, msg[j].len + 2, DW210X_WRITE_MSG); } break; } } } ret = num; unlock: mutex_unlock(&d->i2c_mutex); return ret; } static int dw3101_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); int ret; int i; if (!d) return -ENODEV; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; switch (num) { case 2: { /* read */ /* first write first register number */ u8 ibuf[MAX_XFER_SIZE], obuf[3]; if (2 + msg[0].len != sizeof(obuf)) { warn("i2c rd: len=%d is not 1!\n", msg[0].len); ret = -EOPNOTSUPP; goto unlock; } if (2 + msg[1].len > sizeof(ibuf)) { warn("i2c rd: len=%d is too big!\n", msg[1].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[0].addr << 1; obuf[1] = msg[0].len; obuf[2] = msg[0].buf[0]; dw210x_op_rw(d->udev, 0xc2, 0, 0, obuf, msg[0].len + 2, DW210X_WRITE_MSG); /* second read registers */ dw210x_op_rw(d->udev, 0xc3, 0x19 , 0, ibuf, msg[1].len + 2, DW210X_READ_MSG); memcpy(msg[1].buf, ibuf + 2, msg[1].len); break; } case 1: switch (msg[0].addr) { case 0x60: case 0x0c: { /* write to register */ u8 obuf[MAX_XFER_SIZE]; if (2 + msg[0].len > sizeof(obuf)) { warn("i2c wr: len=%d is too big!\n", msg[0].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[0].addr << 1; obuf[1] = msg[0].len; memcpy(obuf + 2, msg[0].buf, msg[0].len); dw210x_op_rw(d->udev, 0xc2, 0, 0, obuf, msg[0].len + 2, DW210X_WRITE_MSG); break; } case(DW2102_RC_QUERY): { u8 ibuf[2]; dw210x_op_rw(d->udev, 0xb8, 0, 0, ibuf, 2, DW210X_READ_MSG); memcpy(msg[0].buf, ibuf , 2); break; } } break; } for (i = 0; i < num; i++) { deb_xfer("%02x:%02x: %s ", i, msg[i].addr, msg[i].flags == 0 ? ">>>" : "<<<"); debug_dump(msg[i].buf, msg[i].len, deb_xfer); } ret = num; unlock: mutex_unlock(&d->i2c_mutex); return ret; } static int s6x0_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); struct usb_device *udev; int len, i, j, ret; if (!d) return -ENODEV; udev = d->udev; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; for (j = 0; j < num; j++) { switch (msg[j].addr) { case (DW2102_RC_QUERY): { u8 ibuf[5]; dw210x_op_rw(d->udev, 0xb8, 0, 0, ibuf, 5, DW210X_READ_MSG); memcpy(msg[j].buf, ibuf + 3, 2); break; } case (DW2102_VOLTAGE_CTRL): { u8 obuf[2]; obuf[0] = 1; obuf[1] = msg[j].buf[1];/* off-on */ dw210x_op_rw(d->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG); obuf[0] = 3; obuf[1] = msg[j].buf[0];/* 13v-18v */ dw210x_op_rw(d->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG); break; } case (DW2102_LED_CTRL): { u8 obuf[2]; obuf[0] = 5; obuf[1] = msg[j].buf[0]; dw210x_op_rw(d->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG); break; } /*case 0x55: cx24116 case 0x6a: stv0903 case 0x68: ds3000, stv0903, rs2000 case 0x60: ts2020, stv6110, stb6100 case 0xa0: eeprom */ default: { if (msg[j].flags == I2C_M_RD) { /* read registers */ u8 ibuf[MAX_XFER_SIZE]; if (msg[j].len > sizeof(ibuf)) { warn("i2c rd: len=%d is too big!\n", msg[j].len); ret = -EOPNOTSUPP; goto unlock; } dw210x_op_rw(d->udev, 0x91, 0, 0, ibuf, msg[j].len, DW210X_READ_MSG); memcpy(msg[j].buf, ibuf, msg[j].len); break; } else if ((msg[j].buf[0] == 0xb0) && (msg[j].addr == 0x68)) { /* write firmware */ u8 obuf[19]; obuf[0] = (msg[j].len > 16 ? 18 : msg[j].len + 1); obuf[1] = msg[j].addr << 1; obuf[2] = msg[j].buf[0]; len = msg[j].len - 1; i = 1; do { memcpy(obuf + 3, msg[j].buf + i, (len > 16 ? 16 : len)); dw210x_op_rw(d->udev, 0x80, 0, 0, obuf, (len > 16 ? 16 : len) + 3, DW210X_WRITE_MSG); i += 16; len -= 16; } while (len > 0); } else if (j < (num - 1)) { /* write register addr before read */ u8 obuf[MAX_XFER_SIZE]; if (2 + msg[j].len > sizeof(obuf)) { warn("i2c wr: len=%d is too big!\n", msg[j].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[j + 1].len; obuf[1] = (msg[j].addr << 1); memcpy(obuf + 2, msg[j].buf, msg[j].len); dw210x_op_rw(d->udev, le16_to_cpu(udev->descriptor.idProduct) == 0x7500 ? 0x92 : 0x90, 0, 0, obuf, msg[j].len + 2, DW210X_WRITE_MSG); break; } else { /* write registers */ u8 obuf[MAX_XFER_SIZE]; if (2 + msg[j].len > sizeof(obuf)) { warn("i2c wr: len=%d is too big!\n", msg[j].len); ret = -EOPNOTSUPP; goto unlock; } obuf[0] = msg[j].len + 1; obuf[1] = (msg[j].addr << 1); memcpy(obuf + 2, msg[j].buf, msg[j].len); dw210x_op_rw(d->udev, 0x80, 0, 0, obuf, msg[j].len + 2, DW210X_WRITE_MSG); break; } break; } } } ret = num; unlock: mutex_unlock(&d->i2c_mutex); return ret; } static int su3000_i2c_transfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); struct dw2102_state *state; if (!d) return -ENODEV; state = d->priv; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; if (mutex_lock_interruptible(&d->data_mutex) < 0) { mutex_unlock(&d->i2c_mutex); return -EAGAIN; } switch (num) { case 1: switch (msg[0].addr) { case SU3000_STREAM_CTRL: state->data[0] = msg[0].buf[0] + 0x36; state->data[1] = 3; state->data[2] = 0; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 0, 0) < 0) err("i2c transfer failed."); break; case DW2102_RC_QUERY: state->data[0] = 0x10; if (dvb_usb_generic_rw(d, state->data, 1, state->data, 2, 0) < 0) err("i2c transfer failed."); msg[0].buf[1] = state->data[0]; msg[0].buf[0] = state->data[1]; break; default: if (3 + msg[0].len > sizeof(state->data)) { warn("i2c wr: len=%d is too big!\n", msg[0].len); num = -EOPNOTSUPP; break; } /* always i2c write*/ state->data[0] = 0x08; state->data[1] = msg[0].addr; state->data[2] = msg[0].len; memcpy(&state->data[3], msg[0].buf, msg[0].len); if (dvb_usb_generic_rw(d, state->data, msg[0].len + 3, state->data, 1, 0) < 0) err("i2c transfer failed."); } break; case 2: /* always i2c read */ if (4 + msg[0].len > sizeof(state->data)) { warn("i2c rd: len=%d is too big!\n", msg[0].len); num = -EOPNOTSUPP; break; } if (1 + msg[1].len > sizeof(state->data)) { warn("i2c rd: len=%d is too big!\n", msg[1].len); num = -EOPNOTSUPP; break; } state->data[0] = 0x09; state->data[1] = msg[0].len; state->data[2] = msg[1].len; state->data[3] = msg[0].addr; memcpy(&state->data[4], msg[0].buf, msg[0].len); if (dvb_usb_generic_rw(d, state->data, msg[0].len + 4, state->data, msg[1].len + 1, 0) < 0) err("i2c transfer failed."); memcpy(msg[1].buf, &state->data[1], msg[1].len); break; default: warn("more than 2 i2c messages at a time is not handled yet."); break; } mutex_unlock(&d->data_mutex); mutex_unlock(&d->i2c_mutex); return num; } static u32 dw210x_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm dw2102_i2c_algo = { .master_xfer = dw2102_i2c_transfer, .functionality = dw210x_i2c_func, }; static struct i2c_algorithm dw2102_serit_i2c_algo = { .master_xfer = dw2102_serit_i2c_transfer, .functionality = dw210x_i2c_func, }; static struct i2c_algorithm dw2102_earda_i2c_algo = { .master_xfer = dw2102_earda_i2c_transfer, .functionality = dw210x_i2c_func, }; static struct i2c_algorithm dw2104_i2c_algo = { .master_xfer = dw2104_i2c_transfer, .functionality = dw210x_i2c_func, }; static struct i2c_algorithm dw3101_i2c_algo = { .master_xfer = dw3101_i2c_transfer, .functionality = dw210x_i2c_func, }; static struct i2c_algorithm s6x0_i2c_algo = { .master_xfer = s6x0_i2c_transfer, .functionality = dw210x_i2c_func, }; static struct i2c_algorithm su3000_i2c_algo = { .master_xfer = su3000_i2c_transfer, .functionality = dw210x_i2c_func, }; static int dw210x_read_mac_address(struct dvb_usb_device *d, u8 mac[6]) { int i; u8 ibuf[] = {0, 0}; u8 eeprom[256], eepromline[16]; for (i = 0; i < 256; i++) { if (dw210x_op_rw(d->udev, 0xb6, 0xa0 , i, ibuf, 2, DW210X_READ_MSG) < 0) { err("read eeprom failed."); return -1; } else { eepromline[i%16] = ibuf[0]; eeprom[i] = ibuf[0]; } if ((i % 16) == 15) { deb_xfer("%02x: ", i - 15); debug_dump(eepromline, 16, deb_xfer); } } memcpy(mac, eeprom + 8, 6); return 0; }; static int s6x0_read_mac_address(struct dvb_usb_device *d, u8 mac[6]) { int i, ret; u8 ibuf[] = { 0 }, obuf[] = { 0 }; u8 eeprom[256], eepromline[16]; struct i2c_msg msg[] = { { .addr = 0xa0 >> 1, .flags = 0, .buf = obuf, .len = 1, }, { .addr = 0xa0 >> 1, .flags = I2C_M_RD, .buf = ibuf, .len = 1, } }; for (i = 0; i < 256; i++) { obuf[0] = i; ret = s6x0_i2c_transfer(&d->i2c_adap, msg, 2); if (ret != 2) { err("read eeprom failed."); return -1; } else { eepromline[i % 16] = ibuf[0]; eeprom[i] = ibuf[0]; } if ((i % 16) == 15) { deb_xfer("%02x: ", i - 15); debug_dump(eepromline, 16, deb_xfer); } } memcpy(mac, eeprom + 16, 6); return 0; }; static int su3000_streaming_ctrl(struct dvb_usb_adapter *adap, int onoff) { static u8 command_start[] = {0x00}; static u8 command_stop[] = {0x01}; struct i2c_msg msg = { .addr = SU3000_STREAM_CTRL, .flags = 0, .buf = onoff ? command_start : command_stop, .len = 1 }; i2c_transfer(&adap->dev->i2c_adap, &msg, 1); return 0; } static int su3000_power_ctrl(struct dvb_usb_device *d, int i) { struct dw2102_state *state = (struct dw2102_state *)d->priv; int ret = 0; info("%s: %d, initialized %d", __func__, i, state->initialized); if (i && !state->initialized) { mutex_lock(&d->data_mutex); state->data[0] = 0xde; state->data[1] = 0; state->initialized = 1; /* reset board */ ret = dvb_usb_generic_rw(d, state->data, 2, NULL, 0, 0); mutex_unlock(&d->data_mutex); } return ret; } static int su3000_read_mac_address(struct dvb_usb_device *d, u8 mac[6]) { int i; u8 obuf[] = { 0x1f, 0xf0 }; u8 ibuf[] = { 0 }; struct i2c_msg msg[] = { { .addr = 0x51, .flags = 0, .buf = obuf, .len = 2, }, { .addr = 0x51, .flags = I2C_M_RD, .buf = ibuf, .len = 1, } }; for (i = 0; i < 6; i++) { obuf[1] = 0xf0 + i; if (i2c_transfer(&d->i2c_adap, msg, 2) != 2) break; else mac[i] = ibuf[0]; } return 0; } static int su3000_identify_state(struct usb_device *udev, struct dvb_usb_device_properties *props, struct dvb_usb_device_description **desc, int *cold) { info("%s", __func__); *cold = 0; return 0; } static int dw210x_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage) { static u8 command_13v[] = {0x00, 0x01}; static u8 command_18v[] = {0x01, 0x01}; static u8 command_off[] = {0x00, 0x00}; struct i2c_msg msg = { .addr = DW2102_VOLTAGE_CTRL, .flags = 0, .buf = command_off, .len = 2, }; struct dvb_usb_adapter *udev_adap = (struct dvb_usb_adapter *)(fe->dvb->priv); if (voltage == SEC_VOLTAGE_18) msg.buf = command_18v; else if (voltage == SEC_VOLTAGE_13) msg.buf = command_13v; i2c_transfer(&udev_adap->dev->i2c_adap, &msg, 1); return 0; } static int s660_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage) { struct dvb_usb_adapter *d = (struct dvb_usb_adapter *)(fe->dvb->priv); struct dw2102_state *st = (struct dw2102_state *)d->dev->priv; dw210x_set_voltage(fe, voltage); if (st->old_set_voltage) st->old_set_voltage(fe, voltage); return 0; } static void dw210x_led_ctrl(struct dvb_frontend *fe, int offon) { static u8 led_off[] = { 0 }; static u8 led_on[] = { 1 }; struct i2c_msg msg = { .addr = DW2102_LED_CTRL, .flags = 0, .buf = led_off, .len = 1 }; struct dvb_usb_adapter *udev_adap = (struct dvb_usb_adapter *)(fe->dvb->priv); if (offon) msg.buf = led_on; i2c_transfer(&udev_adap->dev->i2c_adap, &msg, 1); } static int tt_s2_4600_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct dvb_usb_adapter *d = (struct dvb_usb_adapter *)(fe->dvb->priv); struct dw2102_state *st = (struct dw2102_state *)d->dev->priv; int ret; ret = st->fe_read_status(fe, status); /* resync slave fifo when signal change from unlock to lock */ if ((*status & FE_HAS_LOCK) && (!st->last_lock)) su3000_streaming_ctrl(d, 1); st->last_lock = (*status & FE_HAS_LOCK) ? 1 : 0; return ret; } static struct stv0299_config sharp_z0194a_config = { .demod_address = 0x68, .inittab = sharp_z0194a_inittab, .mclk = 88000000UL, .invert = 1, .skip_reinit = 0, .lock_output = STV0299_LOCKOUTPUT_1, .volt13_op0_op1 = STV0299_VOLT13_OP1, .min_delay_ms = 100, .set_symbol_rate = sharp_z0194a_set_symbol_rate, }; static struct cx24116_config dw2104_config = { .demod_address = 0x55, .mpg_clk_pos_pol = 0x01, }; static struct si21xx_config serit_sp1511lhb_config = { .demod_address = 0x68, .min_delay_ms = 100, }; static struct tda10023_config dw3101_tda10023_config = { .demod_address = 0x0c, .invert = 1, }; static struct mt312_config zl313_config = { .demod_address = 0x0e, }; static struct ds3000_config dw2104_ds3000_config = { .demod_address = 0x68, }; static struct ts2020_config dw2104_ts2020_config = { .tuner_address = 0x60, .clk_out_div = 1, .frequency_div = 1060000, }; static struct ds3000_config s660_ds3000_config = { .demod_address = 0x68, .ci_mode = 1, .set_lock_led = dw210x_led_ctrl, }; static struct ts2020_config s660_ts2020_config = { .tuner_address = 0x60, .clk_out_div = 1, .frequency_div = 1146000, }; static struct stv0900_config dw2104a_stv0900_config = { .demod_address = 0x6a, .demod_mode = 0, .xtal = 27000000, .clkmode = 3,/* 0-CLKI, 2-XTALI, else AUTO */ .diseqc_mode = 2,/* 2/3 PWM */ .tun1_maddress = 0,/* 0x60 */ .tun1_adc = 0,/* 2 Vpp */ .path1_mode = 3, }; static struct stb6100_config dw2104a_stb6100_config = { .tuner_address = 0x60, .refclock = 27000000, }; static struct stv0900_config dw2104_stv0900_config = { .demod_address = 0x68, .demod_mode = 0, .xtal = 8000000, .clkmode = 3, .diseqc_mode = 2, .tun1_maddress = 0, .tun1_adc = 1,/* 1 Vpp */ .path1_mode = 3, }; static struct stv6110_config dw2104_stv6110_config = { .i2c_address = 0x60, .mclk = 16000000, .clk_div = 1, }; static struct stv0900_config prof_7500_stv0900_config = { .demod_address = 0x6a, .demod_mode = 0, .xtal = 27000000, .clkmode = 3,/* 0-CLKI, 2-XTALI, else AUTO */ .diseqc_mode = 2,/* 2/3 PWM */ .tun1_maddress = 0,/* 0x60 */ .tun1_adc = 0,/* 2 Vpp */ .path1_mode = 3, .tun1_type = 3, .set_lock_led = dw210x_led_ctrl, }; static struct ds3000_config su3000_ds3000_config = { .demod_address = 0x68, .ci_mode = 1, .set_lock_led = dw210x_led_ctrl, }; static struct cxd2820r_config cxd2820r_config = { .i2c_address = 0x6c, /* (0xd8 >> 1) */ .ts_mode = 0x38, .ts_clock_inv = 1, }; static struct tda18271_config tda18271_config = { .output_opt = TDA18271_OUTPUT_LT_OFF, .gate = TDA18271_GATE_DIGITAL, }; static u8 m88rs2000_inittab[] = { DEMOD_WRITE, 0x9a, 0x30, DEMOD_WRITE, 0x00, 0x01, WRITE_DELAY, 0x19, 0x00, DEMOD_WRITE, 0x00, 0x00, DEMOD_WRITE, 0x9a, 0xb0, DEMOD_WRITE, 0x81, 0xc1, DEMOD_WRITE, 0x81, 0x81, DEMOD_WRITE, 0x86, 0xc6, DEMOD_WRITE, 0x9a, 0x30, DEMOD_WRITE, 0xf0, 0x80, DEMOD_WRITE, 0xf1, 0xbf, DEMOD_WRITE, 0xb0, 0x45, DEMOD_WRITE, 0xb2, 0x01, DEMOD_WRITE, 0x9a, 0xb0, 0xff, 0xaa, 0xff }; static struct m88rs2000_config s421_m88rs2000_config = { .demod_addr = 0x68, .inittab = m88rs2000_inittab, }; static int dw2104_frontend_attach(struct dvb_usb_adapter *d) { struct dvb_tuner_ops *tuner_ops = NULL; if (demod_probe & 4) { d->fe_adap[0].fe = dvb_attach(stv0900_attach, &dw2104a_stv0900_config, &d->dev->i2c_adap, 0); if (d->fe_adap[0].fe != NULL) { if (dvb_attach(stb6100_attach, d->fe_adap[0].fe, &dw2104a_stb6100_config, &d->dev->i2c_adap)) { tuner_ops = &d->fe_adap[0].fe->ops.tuner_ops; tuner_ops->set_frequency = stb6100_set_freq; tuner_ops->get_frequency = stb6100_get_freq; tuner_ops->set_bandwidth = stb6100_set_bandw; tuner_ops->get_bandwidth = stb6100_get_bandw; d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached STV0900+STB6100!"); return 0; } } } if (demod_probe & 2) { d->fe_adap[0].fe = dvb_attach(stv0900_attach, &dw2104_stv0900_config, &d->dev->i2c_adap, 0); if (d->fe_adap[0].fe != NULL) { if (dvb_attach(stv6110_attach, d->fe_adap[0].fe, &dw2104_stv6110_config, &d->dev->i2c_adap)) { d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached STV0900+STV6110A!"); return 0; } } } if (demod_probe & 1) { d->fe_adap[0].fe = dvb_attach(cx24116_attach, &dw2104_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe != NULL) { d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached cx24116!"); return 0; } } d->fe_adap[0].fe = dvb_attach(ds3000_attach, &dw2104_ds3000_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe != NULL) { dvb_attach(ts2020_attach, d->fe_adap[0].fe, &dw2104_ts2020_config, &d->dev->i2c_adap); d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached DS3000!"); return 0; } return -EIO; } static struct dvb_usb_device_properties dw2102_properties; static struct dvb_usb_device_properties dw2104_properties; static struct dvb_usb_device_properties s6x0_properties; static int dw2102_frontend_attach(struct dvb_usb_adapter *d) { if (dw2102_properties.i2c_algo == &dw2102_serit_i2c_algo) { /*dw2102_properties.adapter->tuner_attach = NULL;*/ d->fe_adap[0].fe = dvb_attach(si21xx_attach, &serit_sp1511lhb_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe != NULL) { d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached si21xx!"); return 0; } } if (dw2102_properties.i2c_algo == &dw2102_earda_i2c_algo) { d->fe_adap[0].fe = dvb_attach(stv0288_attach, &earda_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe != NULL) { if (dvb_attach(stb6000_attach, d->fe_adap[0].fe, 0x61, &d->dev->i2c_adap)) { d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached stv0288!"); return 0; } } } if (dw2102_properties.i2c_algo == &dw2102_i2c_algo) { /*dw2102_properties.adapter->tuner_attach = dw2102_tuner_attach;*/ d->fe_adap[0].fe = dvb_attach(stv0299_attach, &sharp_z0194a_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe != NULL) { d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached stv0299!"); return 0; } } return -EIO; } static int dw3101_frontend_attach(struct dvb_usb_adapter *d) { d->fe_adap[0].fe = dvb_attach(tda10023_attach, &dw3101_tda10023_config, &d->dev->i2c_adap, 0x48); if (d->fe_adap[0].fe != NULL) { info("Attached tda10023!"); return 0; } return -EIO; } static int zl100313_frontend_attach(struct dvb_usb_adapter *d) { d->fe_adap[0].fe = dvb_attach(mt312_attach, &zl313_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe != NULL) { if (dvb_attach(zl10039_attach, d->fe_adap[0].fe, 0x60, &d->dev->i2c_adap)) { d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; info("Attached zl100313+zl10039!"); return 0; } } return -EIO; } static int stv0288_frontend_attach(struct dvb_usb_adapter *d) { u8 obuf[] = {7, 1}; d->fe_adap[0].fe = dvb_attach(stv0288_attach, &earda_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe == NULL) return -EIO; if (NULL == dvb_attach(stb6000_attach, d->fe_adap[0].fe, 0x61, &d->dev->i2c_adap)) return -EIO; d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; dw210x_op_rw(d->dev->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG); info("Attached stv0288+stb6000!"); return 0; } static int ds3000_frontend_attach(struct dvb_usb_adapter *d) { struct dw2102_state *st = d->dev->priv; u8 obuf[] = {7, 1}; d->fe_adap[0].fe = dvb_attach(ds3000_attach, &s660_ds3000_config, &d->dev->i2c_adap); if (d->fe_adap[0].fe == NULL) return -EIO; dvb_attach(ts2020_attach, d->fe_adap[0].fe, &s660_ts2020_config, &d->dev->i2c_adap); st->old_set_voltage = d->fe_adap[0].fe->ops.set_voltage; d->fe_adap[0].fe->ops.set_voltage = s660_set_voltage; dw210x_op_rw(d->dev->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG); info("Attached ds3000+ts2020!"); return 0; } static int prof_7500_frontend_attach(struct dvb_usb_adapter *d) { u8 obuf[] = {7, 1}; d->fe_adap[0].fe = dvb_attach(stv0900_attach, &prof_7500_stv0900_config, &d->dev->i2c_adap, 0); if (d->fe_adap[0].fe == NULL) return -EIO; d->fe_adap[0].fe->ops.set_voltage = dw210x_set_voltage; dw210x_op_rw(d->dev->udev, 0x8a, 0, 0, obuf, 2, DW210X_WRITE_MSG); info("Attached STV0900+STB6100A!"); return 0; } static int su3000_frontend_attach(struct dvb_usb_adapter *adap) { struct dvb_usb_device *d = adap->dev; struct dw2102_state *state = d->priv; mutex_lock(&d->data_mutex); state->data[0] = 0xe; state->data[1] = 0x80; state->data[2] = 0; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0xe; state->data[1] = 0x02; state->data[2] = 1; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); msleep(300); state->data[0] = 0xe; state->data[1] = 0x83; state->data[2] = 0; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0xe; state->data[1] = 0x83; state->data[2] = 1; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0x51; if (dvb_usb_generic_rw(d, state->data, 1, state->data, 1, 0) < 0) err("command 0x51 transfer failed."); mutex_unlock(&d->data_mutex); adap->fe_adap[0].fe = dvb_attach(ds3000_attach, &su3000_ds3000_config, &d->i2c_adap); if (adap->fe_adap[0].fe == NULL) return -EIO; if (dvb_attach(ts2020_attach, adap->fe_adap[0].fe, &dw2104_ts2020_config, &d->i2c_adap)) { info("Attached DS3000/TS2020!"); return 0; } info("Failed to attach DS3000/TS2020!"); return -EIO; } static int t220_frontend_attach(struct dvb_usb_adapter *adap) { struct dvb_usb_device *d = adap->dev; struct dw2102_state *state = d->priv; mutex_lock(&d->data_mutex); state->data[0] = 0xe; state->data[1] = 0x87; state->data[2] = 0x0; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0xe; state->data[1] = 0x86; state->data[2] = 1; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0xe; state->data[1] = 0x80; state->data[2] = 0; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); msleep(50); state->data[0] = 0xe; state->data[1] = 0x80; state->data[2] = 1; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0x51; if (dvb_usb_generic_rw(d, state->data, 1, state->data, 1, 0) < 0) err("command 0x51 transfer failed."); mutex_unlock(&d->data_mutex); adap->fe_adap[0].fe = dvb_attach(cxd2820r_attach, &cxd2820r_config, &d->i2c_adap, NULL); if (adap->fe_adap[0].fe != NULL) { if (dvb_attach(tda18271_attach, adap->fe_adap[0].fe, 0x60, &d->i2c_adap, &tda18271_config)) { info("Attached TDA18271HD/CXD2820R!"); return 0; } } info("Failed to attach TDA18271HD/CXD2820R!"); return -EIO; } static int m88rs2000_frontend_attach(struct dvb_usb_adapter *adap) { struct dvb_usb_device *d = adap->dev; struct dw2102_state *state = d->priv; mutex_lock(&d->data_mutex); state->data[0] = 0x51; if (dvb_usb_generic_rw(d, state->data, 1, state->data, 1, 0) < 0) err("command 0x51 transfer failed."); mutex_unlock(&d->data_mutex); adap->fe_adap[0].fe = dvb_attach(m88rs2000_attach, &s421_m88rs2000_config, &d->i2c_adap); if (adap->fe_adap[0].fe == NULL) return -EIO; if (dvb_attach(ts2020_attach, adap->fe_adap[0].fe, &dw2104_ts2020_config, &d->i2c_adap)) { info("Attached RS2000/TS2020!"); return 0; } info("Failed to attach RS2000/TS2020!"); return -EIO; } static int tt_s2_4600_frontend_attach(struct dvb_usb_adapter *adap) { struct dvb_usb_device *d = adap->dev; struct dw2102_state *state = d->priv; struct i2c_adapter *i2c_adapter; struct i2c_client *client; struct i2c_board_info board_info; struct m88ds3103_platform_data m88ds3103_pdata = {}; struct ts2020_config ts2020_config = {}; mutex_lock(&d->data_mutex); state->data[0] = 0xe; state->data[1] = 0x80; state->data[2] = 0x0; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0xe; state->data[1] = 0x02; state->data[2] = 1; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); msleep(300); state->data[0] = 0xe; state->data[1] = 0x83; state->data[2] = 0; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0xe; state->data[1] = 0x83; state->data[2] = 1; if (dvb_usb_generic_rw(d, state->data, 3, state->data, 1, 0) < 0) err("command 0x0e transfer failed."); state->data[0] = 0x51; if (dvb_usb_generic_rw(d, state->data, 1, state->data, 1, 0) < 0) err("command 0x51 transfer failed."); mutex_unlock(&d->data_mutex); /* attach demod */ m88ds3103_pdata.clk = 27000000; m88ds3103_pdata.i2c_wr_max = 33; m88ds3103_pdata.ts_mode = M88DS3103_TS_CI; m88ds3103_pdata.ts_clk = 16000; m88ds3103_pdata.ts_clk_pol = 0; m88ds3103_pdata.spec_inv = 0; m88ds3103_pdata.agc = 0x99; m88ds3103_pdata.agc_inv = 0; m88ds3103_pdata.clk_out = M88DS3103_CLOCK_OUT_ENABLED; m88ds3103_pdata.envelope_mode = 0; m88ds3103_pdata.lnb_hv_pol = 1; m88ds3103_pdata.lnb_en_pol = 0; memset(&board_info, 0, sizeof(board_info)); strlcpy(board_info.type, "m88ds3103", I2C_NAME_SIZE); board_info.addr = 0x68; board_info.platform_data = &m88ds3103_pdata; request_module("m88ds3103"); client = i2c_new_device(&d->i2c_adap, &board_info); if (client == NULL || client->dev.driver == NULL) return -ENODEV; if (!try_module_get(client->dev.driver->owner)) { i2c_unregister_device(client); return -ENODEV; } adap->fe_adap[0].fe = m88ds3103_pdata.get_dvb_frontend(client); i2c_adapter = m88ds3103_pdata.get_i2c_adapter(client); state->i2c_client_demod = client; /* attach tuner */ ts2020_config.fe = adap->fe_adap[0].fe; memset(&board_info, 0, sizeof(board_info)); strlcpy(board_info.type, "ts2022", I2C_NAME_SIZE); board_info.addr = 0x60; board_info.platform_data = &ts2020_config; request_module("ts2020"); client = i2c_new_device(i2c_adapter, &board_info); if (client == NULL || client->dev.driver == NULL) { dvb_frontend_detach(adap->fe_adap[0].fe); return -ENODEV; } if (!try_module_get(client->dev.driver->owner)) { i2c_unregister_device(client); dvb_frontend_detach(adap->fe_adap[0].fe); return -ENODEV; } /* delegate signal strength measurement to tuner */ adap->fe_adap[0].fe->ops.read_signal_strength = adap->fe_adap[0].fe->ops.tuner_ops.get_rf_strength; state->i2c_client_tuner = client; /* hook fe: need to resync the slave fifo when signal locks */ state->fe_read_status = adap->fe_adap[0].fe->ops.read_status; adap->fe_adap[0].fe->ops.read_status = tt_s2_4600_read_status; state->last_lock = 0; return 0; } static int dw2102_tuner_attach(struct dvb_usb_adapter *adap) { dvb_attach(dvb_pll_attach, adap->fe_adap[0].fe, 0x60, &adap->dev->i2c_adap, DVB_PLL_OPERA1); return 0; } static int dw3101_tuner_attach(struct dvb_usb_adapter *adap) { dvb_attach(dvb_pll_attach, adap->fe_adap[0].fe, 0x60, &adap->dev->i2c_adap, DVB_PLL_TUA6034); return 0; } static int dw2102_rc_query(struct dvb_usb_device *d) { u8 key[2]; struct i2c_msg msg = { .addr = DW2102_RC_QUERY, .flags = I2C_M_RD, .buf = key, .len = 2 }; if (d->props.i2c_algo->master_xfer(&d->i2c_adap, &msg, 1) == 1) { if (msg.buf[0] != 0xff) { deb_rc("%s: rc code: %x, %x\n", __func__, key[0], key[1]); rc_keydown(d->rc_dev, RC_PROTO_UNKNOWN, key[0], 0); } } return 0; } static int prof_rc_query(struct dvb_usb_device *d) { u8 key[2]; struct i2c_msg msg = { .addr = DW2102_RC_QUERY, .flags = I2C_M_RD, .buf = key, .len = 2 }; if (d->props.i2c_algo->master_xfer(&d->i2c_adap, &msg, 1) == 1) { if (msg.buf[0] != 0xff) { deb_rc("%s: rc code: %x, %x\n", __func__, key[0], key[1]); rc_keydown(d->rc_dev, RC_PROTO_UNKNOWN, key[0] ^ 0xff, 0); } } return 0; } static int su3000_rc_query(struct dvb_usb_device *d) { u8 key[2]; struct i2c_msg msg = { .addr = DW2102_RC_QUERY, .flags = I2C_M_RD, .buf = key, .len = 2 }; if (d->props.i2c_algo->master_xfer(&d->i2c_adap, &msg, 1) == 1) { if (msg.buf[0] != 0xff) { deb_rc("%s: rc code: %x, %x\n", __func__, key[0], key[1]); rc_keydown(d->rc_dev, RC_PROTO_RC5, RC_SCANCODE_RC5(key[1], key[0]), 0); } } return 0; } enum dw2102_table_entry { CYPRESS_DW2102, CYPRESS_DW2101, CYPRESS_DW2104, TEVII_S650, TERRATEC_CINERGY_S, CYPRESS_DW3101, TEVII_S630, PROF_1100, TEVII_S660, PROF_7500, GENIATECH_SU3000, TERRATEC_CINERGY_S2, TEVII_S480_1, TEVII_S480_2, X3M_SPC1400HD, TEVII_S421, TEVII_S632, TERRATEC_CINERGY_S2_R2, TERRATEC_CINERGY_S2_R3, TERRATEC_CINERGY_S2_R4, GOTVIEW_SAT_HD, GENIATECH_T220, TECHNOTREND_S2_4600, TEVII_S482_1, TEVII_S482_2, TERRATEC_CINERGY_S2_BOX, TEVII_S662 }; static struct usb_device_id dw2102_table[] = { [CYPRESS_DW2102] = {USB_DEVICE(USB_VID_CYPRESS, USB_PID_DW2102)}, [CYPRESS_DW2101] = {USB_DEVICE(USB_VID_CYPRESS, 0x2101)}, [CYPRESS_DW2104] = {USB_DEVICE(USB_VID_CYPRESS, USB_PID_DW2104)}, [TEVII_S650] = {USB_DEVICE(0x9022, USB_PID_TEVII_S650)}, [TERRATEC_CINERGY_S] = {USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_S)}, [CYPRESS_DW3101] = {USB_DEVICE(USB_VID_CYPRESS, USB_PID_DW3101)}, [TEVII_S630] = {USB_DEVICE(0x9022, USB_PID_TEVII_S630)}, [PROF_1100] = {USB_DEVICE(0x3011, USB_PID_PROF_1100)}, [TEVII_S660] = {USB_DEVICE(0x9022, USB_PID_TEVII_S660)}, [PROF_7500] = {USB_DEVICE(0x3034, 0x7500)}, [GENIATECH_SU3000] = {USB_DEVICE(0x1f4d, 0x3000)}, [TERRATEC_CINERGY_S2] = {USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_S2_R1)}, [TEVII_S480_1] = {USB_DEVICE(0x9022, USB_PID_TEVII_S480_1)}, [TEVII_S480_2] = {USB_DEVICE(0x9022, USB_PID_TEVII_S480_2)}, [X3M_SPC1400HD] = {USB_DEVICE(0x1f4d, 0x3100)}, [TEVII_S421] = {USB_DEVICE(0x9022, USB_PID_TEVII_S421)}, [TEVII_S632] = {USB_DEVICE(0x9022, USB_PID_TEVII_S632)}, [TERRATEC_CINERGY_S2_R2] = {USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_S2_R2)}, [TERRATEC_CINERGY_S2_R3] = {USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_S2_R3)}, [TERRATEC_CINERGY_S2_R4] = {USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_S2_R4)}, [GOTVIEW_SAT_HD] = {USB_DEVICE(0x1FE1, USB_PID_GOTVIEW_SAT_HD)}, [GENIATECH_T220] = {USB_DEVICE(0x1f4d, 0xD220)}, [TECHNOTREND_S2_4600] = {USB_DEVICE(USB_VID_TECHNOTREND, USB_PID_TECHNOTREND_CONNECT_S2_4600)}, [TEVII_S482_1] = {USB_DEVICE(0x9022, 0xd483)}, [TEVII_S482_2] = {USB_DEVICE(0x9022, 0xd484)}, [TERRATEC_CINERGY_S2_BOX] = {USB_DEVICE(USB_VID_TERRATEC, 0x0105)}, [TEVII_S662] = {USB_DEVICE(0x9022, USB_PID_TEVII_S662)}, { } }; MODULE_DEVICE_TABLE(usb, dw2102_table); static int dw2102_load_firmware(struct usb_device *dev, const struct firmware *frmwr) { u8 *b, *p; int ret = 0, i; u8 reset; u8 reset16[] = {0, 0, 0, 0, 0, 0, 0}; const struct firmware *fw; switch (le16_to_cpu(dev->descriptor.idProduct)) { case 0x2101: ret = request_firmware(&fw, DW2101_FIRMWARE, &dev->dev); if (ret != 0) { err(err_str, DW2101_FIRMWARE); return ret; } break; default: fw = frmwr; break; } info("start downloading DW210X firmware"); p = kmalloc(fw->size, GFP_KERNEL); reset = 1; /*stop the CPU*/ dw210x_op_rw(dev, 0xa0, 0x7f92, 0, &reset, 1, DW210X_WRITE_MSG); dw210x_op_rw(dev, 0xa0, 0xe600, 0, &reset, 1, DW210X_WRITE_MSG); if (p != NULL) { memcpy(p, fw->data, fw->size); for (i = 0; i < fw->size; i += 0x40) { b = (u8 *) p + i; if (dw210x_op_rw(dev, 0xa0, i, 0, b , 0x40, DW210X_WRITE_MSG) != 0x40) { err("error while transferring firmware"); ret = -EINVAL; break; } } /* restart the CPU */ reset = 0; if (ret || dw210x_op_rw(dev, 0xa0, 0x7f92, 0, &reset, 1, DW210X_WRITE_MSG) != 1) { err("could not restart the USB controller CPU."); ret = -EINVAL; } if (ret || dw210x_op_rw(dev, 0xa0, 0xe600, 0, &reset, 1, DW210X_WRITE_MSG) != 1) { err("could not restart the USB controller CPU."); ret = -EINVAL; } /* init registers */ switch (le16_to_cpu(dev->descriptor.idProduct)) { case USB_PID_TEVII_S650: dw2104_properties.rc.core.rc_codes = RC_MAP_TEVII_NEC; /* fall through */ case USB_PID_DW2104: reset = 1; dw210x_op_rw(dev, 0xc4, 0x0000, 0, &reset, 1, DW210X_WRITE_MSG); /* fall through */ case USB_PID_DW3101: reset = 0; dw210x_op_rw(dev, 0xbf, 0x0040, 0, &reset, 0, DW210X_WRITE_MSG); break; case USB_PID_TERRATEC_CINERGY_S: case USB_PID_DW2102: dw210x_op_rw(dev, 0xbf, 0x0040, 0, &reset, 0, DW210X_WRITE_MSG); dw210x_op_rw(dev, 0xb9, 0x0000, 0, &reset16[0], 2, DW210X_READ_MSG); /* check STV0299 frontend */ dw210x_op_rw(dev, 0xb5, 0, 0, &reset16[0], 2, DW210X_READ_MSG); if ((reset16[0] == 0xa1) || (reset16[0] == 0x80)) { dw2102_properties.i2c_algo = &dw2102_i2c_algo; dw2102_properties.adapter->fe[0].tuner_attach = &dw2102_tuner_attach; break; } else { /* check STV0288 frontend */ reset16[0] = 0xd0; reset16[1] = 1; reset16[2] = 0; dw210x_op_rw(dev, 0xc2, 0, 0, &reset16[0], 3, DW210X_WRITE_MSG); dw210x_op_rw(dev, 0xc3, 0xd1, 0, &reset16[0], 3, DW210X_READ_MSG); if (reset16[2] == 0x11) { dw2102_properties.i2c_algo = &dw2102_earda_i2c_algo; break; } } /* fall through */ case 0x2101: dw210x_op_rw(dev, 0xbc, 0x0030, 0, &reset16[0], 2, DW210X_READ_MSG); dw210x_op_rw(dev, 0xba, 0x0000, 0, &reset16[0], 7, DW210X_READ_MSG); dw210x_op_rw(dev, 0xba, 0x0000, 0, &reset16[0], 7, DW210X_READ_MSG); dw210x_op_rw(dev, 0xb9, 0x0000, 0, &reset16[0], 2, DW210X_READ_MSG); break; } msleep(100); kfree(p); } if (le16_to_cpu(dev->descriptor.idProduct) == 0x2101) release_firmware(fw); return ret; } static struct dvb_usb_device_properties dw2102_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = DW2102_FIRMWARE, .no_reconnect = 1, .i2c_algo = &dw2102_serit_i2c_algo, .rc.core = { .rc_interval = 150, .rc_codes = RC_MAP_DM1105_NEC, .module_name = "dw2102", .allowed_protos = RC_PROTO_BIT_NEC, .rc_query = dw2102_rc_query, }, .generic_bulk_ctrl_endpoint = 0x81, /* parameter for the MPEG2-data transfer */ .num_adapters = 1, .download_firmware = dw2102_load_firmware, .read_mac_address = dw210x_read_mac_address, .adapter = { { .num_frontends = 1, .fe = {{ .frontend_attach = dw2102_frontend_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 4096, } } }, }}, } }, .num_device_descs = 3, .devices = { {"DVBWorld DVB-S 2102 USB2.0", {&dw2102_table[CYPRESS_DW2102], NULL}, {NULL}, }, {"DVBWorld DVB-S 2101 USB2.0", {&dw2102_table[CYPRESS_DW2101], NULL}, {NULL}, }, {"TerraTec Cinergy S USB", {&dw2102_table[TERRATEC_CINERGY_S], NULL}, {NULL}, }, } }; static struct dvb_usb_device_properties dw2104_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = DW2104_FIRMWARE, .no_reconnect = 1, .i2c_algo = &dw2104_i2c_algo, .rc.core = { .rc_interval = 150, .rc_codes = RC_MAP_DM1105_NEC, .module_name = "dw2102", .allowed_protos = RC_PROTO_BIT_NEC, .rc_query = dw2102_rc_query, }, .generic_bulk_ctrl_endpoint = 0x81, /* parameter for the MPEG2-data transfer */ .num_adapters = 1, .download_firmware = dw2102_load_firmware, .read_mac_address = dw210x_read_mac_address, .adapter = { { .num_frontends = 1, .fe = {{ .frontend_attach = dw2104_frontend_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 4096, } } }, }}, } }, .num_device_descs = 2, .devices = { { "DVBWorld DW2104 USB2.0", {&dw2102_table[CYPRESS_DW2104], NULL}, {NULL}, }, { "TeVii S650 USB2.0", {&dw2102_table[TEVII_S650], NULL}, {NULL}, }, } }; static struct dvb_usb_device_properties dw3101_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .firmware = DW3101_FIRMWARE, .no_reconnect = 1, .i2c_algo = &dw3101_i2c_algo, .rc.core = { .rc_interval = 150, .rc_codes = RC_MAP_DM1105_NEC, .module_name = "dw2102", .allowed_protos = RC_PROTO_BIT_NEC, .rc_query = dw2102_rc_query, }, .generic_bulk_ctrl_endpoint = 0x81, /* parameter for the MPEG2-data transfer */ .num_adapters = 1, .download_firmware = dw2102_load_firmware, .read_mac_address = dw210x_read_mac_address, .adapter = { { .num_frontends = 1, .fe = {{ .frontend_attach = dw3101_frontend_attach, .tuner_attach = dw3101_tuner_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 4096, } } }, }}, } }, .num_device_descs = 1, .devices = { { "DVBWorld DVB-C 3101 USB2.0", {&dw2102_table[CYPRESS_DW3101], NULL}, {NULL}, }, } }; static struct dvb_usb_device_properties s6x0_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .size_of_priv = sizeof(struct dw2102_state), .firmware = S630_FIRMWARE, .no_reconnect = 1, .i2c_algo = &s6x0_i2c_algo, .rc.core = { .rc_interval = 150, .rc_codes = RC_MAP_TEVII_NEC, .module_name = "dw2102", .allowed_protos = RC_PROTO_BIT_NEC, .rc_query = dw2102_rc_query, }, .generic_bulk_ctrl_endpoint = 0x81, .num_adapters = 1, .download_firmware = dw2102_load_firmware, .read_mac_address = s6x0_read_mac_address, .adapter = { { .num_frontends = 1, .fe = {{ .frontend_attach = zl100313_frontend_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 4096, } } }, }}, } }, .num_device_descs = 1, .devices = { {"TeVii S630 USB", {&dw2102_table[TEVII_S630], NULL}, {NULL}, }, } }; static struct dvb_usb_device_properties *p1100; static const struct dvb_usb_device_description d1100 = { "Prof 1100 USB ", {&dw2102_table[PROF_1100], NULL}, {NULL}, }; static struct dvb_usb_device_properties *s660; static const struct dvb_usb_device_description d660 = { "TeVii S660 USB", {&dw2102_table[TEVII_S660], NULL}, {NULL}, }; static const struct dvb_usb_device_description d480_1 = { "TeVii S480.1 USB", {&dw2102_table[TEVII_S480_1], NULL}, {NULL}, }; static const struct dvb_usb_device_description d480_2 = { "TeVii S480.2 USB", {&dw2102_table[TEVII_S480_2], NULL}, {NULL}, }; static struct dvb_usb_device_properties *p7500; static const struct dvb_usb_device_description d7500 = { "Prof 7500 USB DVB-S2", {&dw2102_table[PROF_7500], NULL}, {NULL}, }; static struct dvb_usb_device_properties *s421; static const struct dvb_usb_device_description d421 = { "TeVii S421 PCI", {&dw2102_table[TEVII_S421], NULL}, {NULL}, }; static const struct dvb_usb_device_description d632 = { "TeVii S632 USB", {&dw2102_table[TEVII_S632], NULL}, {NULL}, }; static struct dvb_usb_device_properties su3000_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .size_of_priv = sizeof(struct dw2102_state), .power_ctrl = su3000_power_ctrl, .num_adapters = 1, .identify_state = su3000_identify_state, .i2c_algo = &su3000_i2c_algo, .rc.core = { .rc_interval = 150, .rc_codes = RC_MAP_SU3000, .module_name = "dw2102", .allowed_protos = RC_PROTO_BIT_RC5, .rc_query = su3000_rc_query, }, .read_mac_address = su3000_read_mac_address, .generic_bulk_ctrl_endpoint = 0x01, .adapter = { { .num_frontends = 1, .fe = {{ .streaming_ctrl = su3000_streaming_ctrl, .frontend_attach = su3000_frontend_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 4096, } } } }}, } }, .num_device_descs = 6, .devices = { { "SU3000HD DVB-S USB2.0", { &dw2102_table[GENIATECH_SU3000], NULL }, { NULL }, }, { "Terratec Cinergy S2 USB HD", { &dw2102_table[TERRATEC_CINERGY_S2], NULL }, { NULL }, }, { "X3M TV SPC1400HD PCI", { &dw2102_table[X3M_SPC1400HD], NULL }, { NULL }, }, { "Terratec Cinergy S2 USB HD Rev.2", { &dw2102_table[TERRATEC_CINERGY_S2_R2], NULL }, { NULL }, }, { "Terratec Cinergy S2 USB HD Rev.3", { &dw2102_table[TERRATEC_CINERGY_S2_R3], NULL }, { NULL }, }, { "GOTVIEW Satellite HD", { &dw2102_table[GOTVIEW_SAT_HD], NULL }, { NULL }, }, } }; static struct dvb_usb_device_properties t220_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .size_of_priv = sizeof(struct dw2102_state), .power_ctrl = su3000_power_ctrl, .num_adapters = 1, .identify_state = su3000_identify_state, .i2c_algo = &su3000_i2c_algo, .rc.core = { .rc_interval = 150, .rc_codes = RC_MAP_SU3000, .module_name = "dw2102", .allowed_protos = RC_PROTO_BIT_RC5, .rc_query = su3000_rc_query, }, .read_mac_address = su3000_read_mac_address, .generic_bulk_ctrl_endpoint = 0x01, .adapter = { { .num_frontends = 1, .fe = { { .streaming_ctrl = su3000_streaming_ctrl, .frontend_attach = t220_frontend_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 4096, } } } } }, } }, .num_device_descs = 1, .devices = { { "Geniatech T220 DVB-T/T2 USB2.0", { &dw2102_table[GENIATECH_T220], NULL }, { NULL }, }, } }; static struct dvb_usb_device_properties tt_s2_4600_properties = { .caps = DVB_USB_IS_AN_I2C_ADAPTER, .usb_ctrl = DEVICE_SPECIFIC, .size_of_priv = sizeof(struct dw2102_state), .power_ctrl = su3000_power_ctrl, .num_adapters = 1, .identify_state = su3000_identify_state, .i2c_algo = &su3000_i2c_algo, .rc.core = { .rc_interval = 250, .rc_codes = RC_MAP_TT_1500, .module_name = "dw2102", .allowed_protos = RC_PROTO_BIT_RC5, .rc_query = su3000_rc_query, }, .read_mac_address = su3000_read_mac_address, .generic_bulk_ctrl_endpoint = 0x01, .adapter = { { .num_frontends = 1, .fe = {{ .streaming_ctrl = su3000_streaming_ctrl, .frontend_attach = tt_s2_4600_frontend_attach, .stream = { .type = USB_BULK, .count = 8, .endpoint = 0x82, .u = { .bulk = { .buffersize = 4096, } } } } }, } }, .num_device_descs = 5, .devices = { { "TechnoTrend TT-connect S2-4600", { &dw2102_table[TECHNOTREND_S2_4600], NULL }, { NULL }, }, { "TeVii S482 (tuner 1)", { &dw2102_table[TEVII_S482_1], NULL }, { NULL }, }, { "TeVii S482 (tuner 2)", { &dw2102_table[TEVII_S482_2], NULL }, { NULL }, }, { "Terratec Cinergy S2 USB BOX", { &dw2102_table[TERRATEC_CINERGY_S2_BOX], NULL }, { NULL }, }, { "TeVii S662", { &dw2102_table[TEVII_S662], NULL }, { NULL }, }, } }; static int dw2102_probe(struct usb_interface *intf, const struct usb_device_id *id) { int retval = -ENOMEM; p1100 = kmemdup(&s6x0_properties, sizeof(struct dvb_usb_device_properties), GFP_KERNEL); if (!p1100) goto err0; /* copy default structure */ /* fill only different fields */ p1100->firmware = P1100_FIRMWARE; p1100->devices[0] = d1100; p1100->rc.core.rc_query = prof_rc_query; p1100->rc.core.rc_codes = RC_MAP_TBS_NEC; p1100->adapter->fe[0].frontend_attach = stv0288_frontend_attach; s660 = kmemdup(&s6x0_properties, sizeof(struct dvb_usb_device_properties), GFP_KERNEL); if (!s660) goto err1; s660->firmware = S660_FIRMWARE; s660->num_device_descs = 3; s660->devices[0] = d660; s660->devices[1] = d480_1; s660->devices[2] = d480_2; s660->adapter->fe[0].frontend_attach = ds3000_frontend_attach; p7500 = kmemdup(&s6x0_properties, sizeof(struct dvb_usb_device_properties), GFP_KERNEL); if (!p7500) goto err2; p7500->firmware = P7500_FIRMWARE; p7500->devices[0] = d7500; p7500->rc.core.rc_query = prof_rc_query; p7500->rc.core.rc_codes = RC_MAP_TBS_NEC; p7500->adapter->fe[0].frontend_attach = prof_7500_frontend_attach; s421 = kmemdup(&su3000_properties, sizeof(struct dvb_usb_device_properties), GFP_KERNEL); if (!s421) goto err3; s421->num_device_descs = 2; s421->devices[0] = d421; s421->devices[1] = d632; s421->adapter->fe[0].frontend_attach = m88rs2000_frontend_attach; if (0 == dvb_usb_device_init(intf, &dw2102_properties, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, &dw2104_properties, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, &dw3101_properties, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, &s6x0_properties, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, p1100, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, s660, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, p7500, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, s421, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, &su3000_properties, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, &t220_properties, THIS_MODULE, NULL, adapter_nr) || 0 == dvb_usb_device_init(intf, &tt_s2_4600_properties, THIS_MODULE, NULL, adapter_nr)) return 0; retval = -ENODEV; kfree(s421); err3: kfree(p7500); err2: kfree(s660); err1: kfree(p1100); err0: return retval; } static void dw2102_disconnect(struct usb_interface *intf) { struct dvb_usb_device *d = usb_get_intfdata(intf); struct dw2102_state *st = (struct dw2102_state *)d->priv; struct i2c_client *client; /* remove I2C client for tuner */ client = st->i2c_client_tuner; if (client) { module_put(client->dev.driver->owner); i2c_unregister_device(client); } /* remove I2C client for demodulator */ client = st->i2c_client_demod; if (client) { module_put(client->dev.driver->owner); i2c_unregister_device(client); } dvb_usb_device_exit(intf); } static struct usb_driver dw2102_driver = { .name = "dw2102", .probe = dw2102_probe, .disconnect = dw2102_disconnect, .id_table = dw2102_table, }; module_usb_driver(dw2102_driver); MODULE_AUTHOR("Igor M. Liplianin (c) liplianin@me.by"); MODULE_DESCRIPTION("Driver for DVBWorld DVB-S 2101, 2102, DVB-S2 2104, DVB-C 3101 USB2.0, TeVii S421, S480, S482, S600, S630, S632, S650, TeVii S660, S662, Prof 1100, 7500 USB2.0, Geniatech SU3000, T220, TechnoTrend S2-4600, Terratec Cinergy S2 devices"); MODULE_VERSION("0.1"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(DW2101_FIRMWARE); MODULE_FIRMWARE(DW2102_FIRMWARE); MODULE_FIRMWARE(DW2104_FIRMWARE); MODULE_FIRMWARE(DW3101_FIRMWARE); MODULE_FIRMWARE(S630_FIRMWARE); MODULE_FIRMWARE(S660_FIRMWARE); MODULE_FIRMWARE(P1100_FIRMWARE); MODULE_FIRMWARE(P7500_FIRMWARE);