/* * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver * * Copyright (c) 2013 Texas Instruments Inc. * David Griego, * Dale Farnsworth, * Archit Taneja, * * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. * Pawel Osciak, * Marek Szyprowski, * * Based on the virtual v4l2-mem2mem example device * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vpdma.h" #include "vpdma_priv.h" #include "vpe_regs.h" #include "sc.h" #include "csc.h" #define VPE_MODULE_NAME "vpe" /* minimum and maximum frame sizes */ #define MIN_W 32 #define MIN_H 32 #define MAX_W 2048 #define MAX_H 1184 /* required alignments */ #define S_ALIGN 0 /* multiple of 1 */ #define H_ALIGN 1 /* multiple of 2 */ /* flags that indicate a format can be used for capture/output */ #define VPE_FMT_TYPE_CAPTURE (1 << 0) #define VPE_FMT_TYPE_OUTPUT (1 << 1) /* used as plane indices */ #define VPE_MAX_PLANES 2 #define VPE_LUMA 0 #define VPE_CHROMA 1 /* per m2m context info */ #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */ #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */ /* * each VPE context can need up to 3 config descriptors, 7 input descriptors, * 3 output descriptors, and 10 control descriptors */ #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \ 13 * VPDMA_CFD_CTD_DESC_SIZE) #define vpe_dbg(vpedev, fmt, arg...) \ dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg) #define vpe_err(vpedev, fmt, arg...) \ dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg) struct vpe_us_coeffs { unsigned short anchor_fid0_c0; unsigned short anchor_fid0_c1; unsigned short anchor_fid0_c2; unsigned short anchor_fid0_c3; unsigned short interp_fid0_c0; unsigned short interp_fid0_c1; unsigned short interp_fid0_c2; unsigned short interp_fid0_c3; unsigned short anchor_fid1_c0; unsigned short anchor_fid1_c1; unsigned short anchor_fid1_c2; unsigned short anchor_fid1_c3; unsigned short interp_fid1_c0; unsigned short interp_fid1_c1; unsigned short interp_fid1_c2; unsigned short interp_fid1_c3; }; /* * Default upsampler coefficients */ static const struct vpe_us_coeffs us_coeffs[] = { { /* Coefficients for progressive input */ 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8, 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8, }, { /* Coefficients for Top Field Interlaced input */ 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3, /* Coefficients for Bottom Field Interlaced input */ 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9, }, }; /* * the following registers are for configuring some of the parameters of the * motion and edge detection blocks inside DEI, these generally remain the same, * these could be passed later via userspace if some one needs to tweak these. */ struct vpe_dei_regs { unsigned long mdt_spacial_freq_thr_reg; /* VPE_DEI_REG2 */ unsigned long edi_config_reg; /* VPE_DEI_REG3 */ unsigned long edi_lut_reg0; /* VPE_DEI_REG4 */ unsigned long edi_lut_reg1; /* VPE_DEI_REG5 */ unsigned long edi_lut_reg2; /* VPE_DEI_REG6 */ unsigned long edi_lut_reg3; /* VPE_DEI_REG7 */ }; /* * default expert DEI register values, unlikely to be modified. */ static const struct vpe_dei_regs dei_regs = { .mdt_spacial_freq_thr_reg = 0x020C0804u, .edi_config_reg = 0x0118100Cu, .edi_lut_reg0 = 0x08040200u, .edi_lut_reg1 = 0x1010100Cu, .edi_lut_reg2 = 0x10101010u, .edi_lut_reg3 = 0x10101010u, }; /* * The port_data structure contains per-port data. */ struct vpe_port_data { enum vpdma_channel channel; /* VPDMA channel */ u8 vb_index; /* input frame f, f-1, f-2 index */ u8 vb_part; /* plane index for co-panar formats */ }; /* * Define indices into the port_data tables */ #define VPE_PORT_LUMA1_IN 0 #define VPE_PORT_CHROMA1_IN 1 #define VPE_PORT_LUMA2_IN 2 #define VPE_PORT_CHROMA2_IN 3 #define VPE_PORT_LUMA3_IN 4 #define VPE_PORT_CHROMA3_IN 5 #define VPE_PORT_MV_IN 6 #define VPE_PORT_MV_OUT 7 #define VPE_PORT_LUMA_OUT 8 #define VPE_PORT_CHROMA_OUT 9 #define VPE_PORT_RGB_OUT 10 static const struct vpe_port_data port_data[11] = { [VPE_PORT_LUMA1_IN] = { .channel = VPE_CHAN_LUMA1_IN, .vb_index = 0, .vb_part = VPE_LUMA, }, [VPE_PORT_CHROMA1_IN] = { .channel = VPE_CHAN_CHROMA1_IN, .vb_index = 0, .vb_part = VPE_CHROMA, }, [VPE_PORT_LUMA2_IN] = { .channel = VPE_CHAN_LUMA2_IN, .vb_index = 1, .vb_part = VPE_LUMA, }, [VPE_PORT_CHROMA2_IN] = { .channel = VPE_CHAN_CHROMA2_IN, .vb_index = 1, .vb_part = VPE_CHROMA, }, [VPE_PORT_LUMA3_IN] = { .channel = VPE_CHAN_LUMA3_IN, .vb_index = 2, .vb_part = VPE_LUMA, }, [VPE_PORT_CHROMA3_IN] = { .channel = VPE_CHAN_CHROMA3_IN, .vb_index = 2, .vb_part = VPE_CHROMA, }, [VPE_PORT_MV_IN] = { .channel = VPE_CHAN_MV_IN, }, [VPE_PORT_MV_OUT] = { .channel = VPE_CHAN_MV_OUT, }, [VPE_PORT_LUMA_OUT] = { .channel = VPE_CHAN_LUMA_OUT, .vb_part = VPE_LUMA, }, [VPE_PORT_CHROMA_OUT] = { .channel = VPE_CHAN_CHROMA_OUT, .vb_part = VPE_CHROMA, }, [VPE_PORT_RGB_OUT] = { .channel = VPE_CHAN_RGB_OUT, .vb_part = VPE_LUMA, }, }; /* driver info for each of the supported video formats */ struct vpe_fmt { char *name; /* human-readable name */ u32 fourcc; /* standard format identifier */ u8 types; /* CAPTURE and/or OUTPUT */ u8 coplanar; /* set for unpacked Luma and Chroma */ /* vpdma format info for each plane */ struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES]; }; static struct vpe_fmt vpe_formats[] = { { .name = "NV16 YUV 422 co-planar", .fourcc = V4L2_PIX_FMT_NV16, .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, .coplanar = 1, .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444], &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444], }, }, { .name = "NV12 YUV 420 co-planar", .fourcc = V4L2_PIX_FMT_NV12, .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, .coplanar = 1, .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420], &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420], }, }, { .name = "YUYV 422 packed", .fourcc = V4L2_PIX_FMT_YUYV, .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, .coplanar = 0, .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422], }, }, { .name = "UYVY 422 packed", .fourcc = V4L2_PIX_FMT_UYVY, .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, .coplanar = 0, .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422], }, }, { .name = "RGB888 packed", .fourcc = V4L2_PIX_FMT_RGB24, .types = VPE_FMT_TYPE_CAPTURE, .coplanar = 0, .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24], }, }, { .name = "ARGB32", .fourcc = V4L2_PIX_FMT_RGB32, .types = VPE_FMT_TYPE_CAPTURE, .coplanar = 0, .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32], }, }, { .name = "BGR888 packed", .fourcc = V4L2_PIX_FMT_BGR24, .types = VPE_FMT_TYPE_CAPTURE, .coplanar = 0, .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24], }, }, { .name = "ABGR32", .fourcc = V4L2_PIX_FMT_BGR32, .types = VPE_FMT_TYPE_CAPTURE, .coplanar = 0, .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32], }, }, { .name = "RGB565", .fourcc = V4L2_PIX_FMT_RGB565, .types = VPE_FMT_TYPE_CAPTURE, .coplanar = 0, .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565], }, }, { .name = "RGB5551", .fourcc = V4L2_PIX_FMT_RGB555, .types = VPE_FMT_TYPE_CAPTURE, .coplanar = 0, .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551], }, }, }; /* * per-queue, driver-specific private data. * there is one source queue and one destination queue for each m2m context. */ struct vpe_q_data { unsigned int width; /* frame width */ unsigned int height; /* frame height */ unsigned int bytesperline[VPE_MAX_PLANES]; /* bytes per line in memory */ enum v4l2_colorspace colorspace; enum v4l2_field field; /* supported field value */ unsigned int flags; unsigned int sizeimage[VPE_MAX_PLANES]; /* image size in memory */ struct v4l2_rect c_rect; /* crop/compose rectangle */ struct vpe_fmt *fmt; /* format info */ }; /* vpe_q_data flag bits */ #define Q_DATA_FRAME_1D BIT(0) #define Q_DATA_MODE_TILED BIT(1) #define Q_DATA_INTERLACED_ALTERNATE BIT(2) #define Q_DATA_INTERLACED_SEQ_TB BIT(3) #define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \ Q_DATA_INTERLACED_SEQ_TB) enum { Q_DATA_SRC = 0, Q_DATA_DST = 1, }; /* find our format description corresponding to the passed v4l2_format */ static struct vpe_fmt *find_format(struct v4l2_format *f) { struct vpe_fmt *fmt; unsigned int k; for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) { fmt = &vpe_formats[k]; if (fmt->fourcc == f->fmt.pix.pixelformat) return fmt; } return NULL; } /* * there is one vpe_dev structure in the driver, it is shared by * all instances. */ struct vpe_dev { struct v4l2_device v4l2_dev; struct video_device vfd; struct v4l2_m2m_dev *m2m_dev; atomic_t num_instances; /* count of driver instances */ dma_addr_t loaded_mmrs; /* shadow mmrs in device */ struct mutex dev_mutex; spinlock_t lock; int irq; void __iomem *base; struct resource *res; struct vpdma_data vpdma_data; struct vpdma_data *vpdma; /* vpdma data handle */ struct sc_data *sc; /* scaler data handle */ struct csc_data *csc; /* csc data handle */ }; /* * There is one vpe_ctx structure for each m2m context. */ struct vpe_ctx { struct v4l2_fh fh; struct vpe_dev *dev; struct v4l2_ctrl_handler hdl; unsigned int field; /* current field */ unsigned int sequence; /* current frame/field seq */ unsigned int aborting; /* abort after next irq */ unsigned int bufs_per_job; /* input buffers per batch */ unsigned int bufs_completed; /* bufs done in this batch */ struct vpe_q_data q_data[2]; /* src & dst queue data */ struct vb2_v4l2_buffer *src_vbs[VPE_MAX_SRC_BUFS]; struct vb2_v4l2_buffer *dst_vb; dma_addr_t mv_buf_dma[2]; /* dma addrs of motion vector in/out bufs */ void *mv_buf[2]; /* virtual addrs of motion vector bufs */ size_t mv_buf_size; /* current motion vector buffer size */ struct vpdma_buf mmr_adb; /* shadow reg addr/data block */ struct vpdma_buf sc_coeff_h; /* h coeff buffer */ struct vpdma_buf sc_coeff_v; /* v coeff buffer */ struct vpdma_desc_list desc_list; /* DMA descriptor list */ bool deinterlacing; /* using de-interlacer */ bool load_mmrs; /* have new shadow reg values */ unsigned int src_mv_buf_selector; }; /* * M2M devices get 2 queues. * Return the queue given the type. */ static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx, enum v4l2_buf_type type) { switch (type) { case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE: case V4L2_BUF_TYPE_VIDEO_OUTPUT: return &ctx->q_data[Q_DATA_SRC]; case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE: case V4L2_BUF_TYPE_VIDEO_CAPTURE: return &ctx->q_data[Q_DATA_DST]; default: return NULL; } return NULL; } static u32 read_reg(struct vpe_dev *dev, int offset) { return ioread32(dev->base + offset); } static void write_reg(struct vpe_dev *dev, int offset, u32 value) { iowrite32(value, dev->base + offset); } /* register field read/write helpers */ static int get_field(u32 value, u32 mask, int shift) { return (value & (mask << shift)) >> shift; } static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift) { return get_field(read_reg(dev, offset), mask, shift); } static void write_field(u32 *valp, u32 field, u32 mask, int shift) { u32 val = *valp; val &= ~(mask << shift); val |= (field & mask) << shift; *valp = val; } static void write_field_reg(struct vpe_dev *dev, int offset, u32 field, u32 mask, int shift) { u32 val = read_reg(dev, offset); write_field(&val, field, mask, shift); write_reg(dev, offset, val); } /* * DMA address/data block for the shadow registers */ struct vpe_mmr_adb { struct vpdma_adb_hdr out_fmt_hdr; u32 out_fmt_reg[1]; u32 out_fmt_pad[3]; struct vpdma_adb_hdr us1_hdr; u32 us1_regs[8]; struct vpdma_adb_hdr us2_hdr; u32 us2_regs[8]; struct vpdma_adb_hdr us3_hdr; u32 us3_regs[8]; struct vpdma_adb_hdr dei_hdr; u32 dei_regs[8]; struct vpdma_adb_hdr sc_hdr0; u32 sc_regs0[7]; u32 sc_pad0[1]; struct vpdma_adb_hdr sc_hdr8; u32 sc_regs8[6]; u32 sc_pad8[2]; struct vpdma_adb_hdr sc_hdr17; u32 sc_regs17[9]; u32 sc_pad17[3]; struct vpdma_adb_hdr csc_hdr; u32 csc_regs[6]; u32 csc_pad[2]; }; #define GET_OFFSET_TOP(ctx, obj, reg) \ ((obj)->res->start - ctx->dev->res->start + reg) #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \ VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a) /* * Set the headers for all of the address/data block structures. */ static void init_adb_hdrs(struct vpe_ctx *ctx) { VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT); VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0); VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0); VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0); VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE); VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0, GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0)); VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8, GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8)); VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17, GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17)); VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs, GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00)); }; /* * Allocate or re-allocate the motion vector DMA buffers * There are two buffers, one for input and one for output. * However, the roles are reversed after each field is processed. * In other words, after each field is processed, the previous * output (dst) MV buffer becomes the new input (src) MV buffer. */ static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size) { struct device *dev = ctx->dev->v4l2_dev.dev; if (ctx->mv_buf_size == size) return 0; if (ctx->mv_buf[0]) dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0], ctx->mv_buf_dma[0]); if (ctx->mv_buf[1]) dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1], ctx->mv_buf_dma[1]); if (size == 0) return 0; ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0], GFP_KERNEL); if (!ctx->mv_buf[0]) { vpe_err(ctx->dev, "failed to allocate motion vector buffer\n"); return -ENOMEM; } ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1], GFP_KERNEL); if (!ctx->mv_buf[1]) { vpe_err(ctx->dev, "failed to allocate motion vector buffer\n"); dma_free_coherent(dev, size, ctx->mv_buf[0], ctx->mv_buf_dma[0]); return -ENOMEM; } ctx->mv_buf_size = size; ctx->src_mv_buf_selector = 0; return 0; } static void free_mv_buffers(struct vpe_ctx *ctx) { realloc_mv_buffers(ctx, 0); } /* * While de-interlacing, we keep the two most recent input buffers * around. This function frees those two buffers when we have * finished processing the current stream. */ static void free_vbs(struct vpe_ctx *ctx) { struct vpe_dev *dev = ctx->dev; unsigned long flags; if (ctx->src_vbs[2] == NULL) return; spin_lock_irqsave(&dev->lock, flags); if (ctx->src_vbs[2]) { v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE); if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2])) v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE); ctx->src_vbs[2] = NULL; ctx->src_vbs[1] = NULL; } spin_unlock_irqrestore(&dev->lock, flags); } /* * Enable or disable the VPE clocks */ static void vpe_set_clock_enable(struct vpe_dev *dev, bool on) { u32 val = 0; if (on) val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE; write_reg(dev, VPE_CLK_ENABLE, val); } static void vpe_top_reset(struct vpe_dev *dev) { write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK, VPE_DATA_PATH_CLK_RESET_SHIFT); usleep_range(100, 150); write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK, VPE_DATA_PATH_CLK_RESET_SHIFT); } static void vpe_top_vpdma_reset(struct vpe_dev *dev) { write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK, VPE_VPDMA_CLK_RESET_SHIFT); usleep_range(100, 150); write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK, VPE_VPDMA_CLK_RESET_SHIFT); } /* * Load the correct of upsampler coefficients into the shadow MMRs */ static void set_us_coefficients(struct vpe_ctx *ctx) { struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; u32 *us1_reg = &mmr_adb->us1_regs[0]; u32 *us2_reg = &mmr_adb->us2_regs[0]; u32 *us3_reg = &mmr_adb->us3_regs[0]; const unsigned short *cp, *end_cp; cp = &us_coeffs[0].anchor_fid0_c0; if (s_q_data->flags & Q_IS_INTERLACED) /* interlaced */ cp += sizeof(us_coeffs[0]) / sizeof(*cp); end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp); while (cp < end_cp) { write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT); write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT); *us2_reg++ = *us1_reg; *us3_reg++ = *us1_reg++; } ctx->load_mmrs = true; } /* * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs. */ static void set_cfg_modes(struct vpe_ctx *ctx) { struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt; struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; u32 *us1_reg0 = &mmr_adb->us1_regs[0]; u32 *us2_reg0 = &mmr_adb->us2_regs[0]; u32 *us3_reg0 = &mmr_adb->us3_regs[0]; int cfg_mode = 1; /* * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing. * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing. */ if (fmt->fourcc == V4L2_PIX_FMT_NV12) cfg_mode = 0; write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT); write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT); write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT); ctx->load_mmrs = true; } static void set_line_modes(struct vpe_ctx *ctx) { struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt; int line_mode = 1; if (fmt->fourcc == V4L2_PIX_FMT_NV12) line_mode = 0; /* double lines to line buffer */ /* regs for now */ vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN); vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN); vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN); /* frame start for input luma */ vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, VPE_CHAN_LUMA1_IN); vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, VPE_CHAN_LUMA2_IN); vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, VPE_CHAN_LUMA3_IN); /* frame start for input chroma */ vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, VPE_CHAN_CHROMA1_IN); vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, VPE_CHAN_CHROMA2_IN); vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, VPE_CHAN_CHROMA3_IN); /* frame start for MV in client */ vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, VPE_CHAN_MV_IN); } /* * Set the shadow registers that are modified when the source * format changes. */ static void set_src_registers(struct vpe_ctx *ctx) { set_us_coefficients(ctx); } /* * Set the shadow registers that are modified when the destination * format changes. */ static void set_dst_registers(struct vpe_ctx *ctx) { struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace; struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt; u32 val = 0; if (clrspc == V4L2_COLORSPACE_SRGB) { val |= VPE_RGB_OUT_SELECT; vpdma_set_bg_color(ctx->dev->vpdma, (struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff); } else if (fmt->fourcc == V4L2_PIX_FMT_NV16) val |= VPE_COLOR_SEPARATE_422; /* * the source of CHR_DS and CSC is always the scaler, irrespective of * whether it's used or not */ val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER; if (fmt->fourcc != V4L2_PIX_FMT_NV12) val |= VPE_DS_BYPASS; mmr_adb->out_fmt_reg[0] = val; ctx->load_mmrs = true; } /* * Set the de-interlacer shadow register values */ static void set_dei_regs(struct vpe_ctx *ctx) { struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; unsigned int src_h = s_q_data->c_rect.height; unsigned int src_w = s_q_data->c_rect.width; u32 *dei_mmr0 = &mmr_adb->dei_regs[0]; bool deinterlace = true; u32 val = 0; /* * according to TRM, we should set DEI in progressive bypass mode when * the input content is progressive, however, DEI is bypassed correctly * for both progressive and interlace content in interlace bypass mode. * It has been recommended not to use progressive bypass mode. */ if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) { deinterlace = false; val = VPE_DEI_INTERLACE_BYPASS; } src_h = deinterlace ? src_h * 2 : src_h; val |= (src_h << VPE_DEI_HEIGHT_SHIFT) | (src_w << VPE_DEI_WIDTH_SHIFT) | VPE_DEI_FIELD_FLUSH; *dei_mmr0 = val; ctx->load_mmrs = true; } static void set_dei_shadow_registers(struct vpe_ctx *ctx) { struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; u32 *dei_mmr = &mmr_adb->dei_regs[0]; const struct vpe_dei_regs *cur = &dei_regs; dei_mmr[2] = cur->mdt_spacial_freq_thr_reg; dei_mmr[3] = cur->edi_config_reg; dei_mmr[4] = cur->edi_lut_reg0; dei_mmr[5] = cur->edi_lut_reg1; dei_mmr[6] = cur->edi_lut_reg2; dei_mmr[7] = cur->edi_lut_reg3; ctx->load_mmrs = true; } static void config_edi_input_mode(struct vpe_ctx *ctx, int mode) { struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; u32 *edi_config_reg = &mmr_adb->dei_regs[3]; if (mode & 0x2) write_field(edi_config_reg, 1, 1, 2); /* EDI_ENABLE_3D */ if (mode & 0x3) write_field(edi_config_reg, 1, 1, 3); /* EDI_CHROMA_3D */ write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK, VPE_EDI_INP_MODE_SHIFT); ctx->load_mmrs = true; } /* * Set the shadow registers whose values are modified when either the * source or destination format is changed. */ static int set_srcdst_params(struct vpe_ctx *ctx) { struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST]; struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; unsigned int src_w = s_q_data->c_rect.width; unsigned int src_h = s_q_data->c_rect.height; unsigned int dst_w = d_q_data->c_rect.width; unsigned int dst_h = d_q_data->c_rect.height; size_t mv_buf_size; int ret; ctx->sequence = 0; ctx->field = V4L2_FIELD_TOP; if ((s_q_data->flags & Q_IS_INTERLACED) && !(d_q_data->flags & Q_IS_INTERLACED)) { int bytes_per_line; const struct vpdma_data_format *mv = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV]; /* * we make sure that the source image has a 16 byte aligned * stride, we need to do the same for the motion vector buffer * by aligning it's stride to the next 16 byte boundry. this * extra space will not be used by the de-interlacer, but will * ensure that vpdma operates correctly */ bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3, VPDMA_STRIDE_ALIGN); mv_buf_size = bytes_per_line * s_q_data->height; ctx->deinterlacing = true; src_h <<= 1; } else { ctx->deinterlacing = false; mv_buf_size = 0; } free_vbs(ctx); ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL; ret = realloc_mv_buffers(ctx, mv_buf_size); if (ret) return ret; set_cfg_modes(ctx); set_dei_regs(ctx); csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0], s_q_data->colorspace, d_q_data->colorspace); sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w); sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h); sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0], &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0], src_w, src_h, dst_w, dst_h); return 0; } /* * Return the vpe_ctx structure for a given struct file */ static struct vpe_ctx *file2ctx(struct file *file) { return container_of(file->private_data, struct vpe_ctx, fh); } /* * mem2mem callbacks */ /** * job_ready() - check whether an instance is ready to be scheduled to run */ static int job_ready(void *priv) { struct vpe_ctx *ctx = priv; /* * This check is needed as this might be called directly from driver * When called by m2m framework, this will always satisfy, but when * called from vpe_irq, this might fail. (src stream with zero buffers) */ if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0) return 0; return 1; } static void job_abort(void *priv) { struct vpe_ctx *ctx = priv; /* Will cancel the transaction in the next interrupt handler */ ctx->aborting = 1; } /* * Lock access to the device */ static void vpe_lock(void *priv) { struct vpe_ctx *ctx = priv; struct vpe_dev *dev = ctx->dev; mutex_lock(&dev->dev_mutex); } static void vpe_unlock(void *priv) { struct vpe_ctx *ctx = priv; struct vpe_dev *dev = ctx->dev; mutex_unlock(&dev->dev_mutex); } static void vpe_dump_regs(struct vpe_dev *dev) { #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r)) vpe_dbg(dev, "VPE Registers:\n"); DUMPREG(PID); DUMPREG(SYSCONFIG); DUMPREG(INT0_STATUS0_RAW); DUMPREG(INT0_STATUS0); DUMPREG(INT0_ENABLE0); DUMPREG(INT0_STATUS1_RAW); DUMPREG(INT0_STATUS1); DUMPREG(INT0_ENABLE1); DUMPREG(CLK_ENABLE); DUMPREG(CLK_RESET); DUMPREG(CLK_FORMAT_SELECT); DUMPREG(CLK_RANGE_MAP); DUMPREG(US1_R0); DUMPREG(US1_R1); DUMPREG(US1_R2); DUMPREG(US1_R3); DUMPREG(US1_R4); DUMPREG(US1_R5); DUMPREG(US1_R6); DUMPREG(US1_R7); DUMPREG(US2_R0); DUMPREG(US2_R1); DUMPREG(US2_R2); DUMPREG(US2_R3); DUMPREG(US2_R4); DUMPREG(US2_R5); DUMPREG(US2_R6); DUMPREG(US2_R7); DUMPREG(US3_R0); DUMPREG(US3_R1); DUMPREG(US3_R2); DUMPREG(US3_R3); DUMPREG(US3_R4); DUMPREG(US3_R5); DUMPREG(US3_R6); DUMPREG(US3_R7); DUMPREG(DEI_FRAME_SIZE); DUMPREG(MDT_BYPASS); DUMPREG(MDT_SF_THRESHOLD); DUMPREG(EDI_CONFIG); DUMPREG(DEI_EDI_LUT_R0); DUMPREG(DEI_EDI_LUT_R1); DUMPREG(DEI_EDI_LUT_R2); DUMPREG(DEI_EDI_LUT_R3); DUMPREG(DEI_FMD_WINDOW_R0); DUMPREG(DEI_FMD_WINDOW_R1); DUMPREG(DEI_FMD_CONTROL_R0); DUMPREG(DEI_FMD_CONTROL_R1); DUMPREG(DEI_FMD_STATUS_R0); DUMPREG(DEI_FMD_STATUS_R1); DUMPREG(DEI_FMD_STATUS_R2); #undef DUMPREG sc_dump_regs(dev->sc); csc_dump_regs(dev->csc); } static void add_out_dtd(struct vpe_ctx *ctx, int port) { struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST]; const struct vpe_port_data *p_data = &port_data[port]; struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf; struct vpe_fmt *fmt = q_data->fmt; const struct vpdma_data_format *vpdma_fmt; int mv_buf_selector = !ctx->src_mv_buf_selector; dma_addr_t dma_addr; u32 flags = 0; if (port == VPE_PORT_MV_OUT) { vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV]; dma_addr = ctx->mv_buf_dma[mv_buf_selector]; } else { /* to incorporate interleaved formats */ int plane = fmt->coplanar ? p_data->vb_part : 0; vpdma_fmt = fmt->vpdma_fmt[plane]; dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane); if (!dma_addr) { vpe_err(ctx->dev, "acquiring output buffer(%d) dma_addr failed\n", port); return; } } if (q_data->flags & Q_DATA_FRAME_1D) flags |= VPDMA_DATA_FRAME_1D; if (q_data->flags & Q_DATA_MODE_TILED) flags |= VPDMA_DATA_MODE_TILED; vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1, MAX_W, MAX_H); vpdma_add_out_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect, vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1, MAX_OUT_HEIGHT_REG1, p_data->channel, flags); } static void add_in_dtd(struct vpe_ctx *ctx, int port) { struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC]; const struct vpe_port_data *p_data = &port_data[port]; struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf; struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vpe_fmt *fmt = q_data->fmt; const struct vpdma_data_format *vpdma_fmt; int mv_buf_selector = ctx->src_mv_buf_selector; int field = vbuf->field == V4L2_FIELD_BOTTOM; int frame_width, frame_height; dma_addr_t dma_addr; u32 flags = 0; if (port == VPE_PORT_MV_IN) { vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV]; dma_addr = ctx->mv_buf_dma[mv_buf_selector]; } else { /* to incorporate interleaved formats */ int plane = fmt->coplanar ? p_data->vb_part : 0; vpdma_fmt = fmt->vpdma_fmt[plane]; dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane); if (!dma_addr) { vpe_err(ctx->dev, "acquiring input buffer(%d) dma_addr failed\n", port); return; } if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) { /* * Use top or bottom field from same vb alternately * f,f-1,f-2 = TBT when seq is even * f,f-1,f-2 = BTB when seq is odd */ field = (p_data->vb_index + (ctx->sequence % 2)) % 2; if (field) { /* * bottom field of a SEQ_TB buffer * Skip the top field data by */ int height = q_data->height / 2; int bpp = fmt->fourcc == V4L2_PIX_FMT_NV12 ? 1 : (vpdma_fmt->depth >> 3); if (plane) height /= 2; dma_addr += q_data->width * height * bpp; } } } if (q_data->flags & Q_DATA_FRAME_1D) flags |= VPDMA_DATA_FRAME_1D; if (q_data->flags & Q_DATA_MODE_TILED) flags |= VPDMA_DATA_MODE_TILED; frame_width = q_data->c_rect.width; frame_height = q_data->c_rect.height; if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12) frame_height /= 2; vpdma_add_in_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect, vpdma_fmt, dma_addr, p_data->channel, field, flags, frame_width, frame_height, 0, 0); } /* * Enable the expected IRQ sources */ static void enable_irqs(struct vpe_ctx *ctx) { write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE); write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT | VPE_DS1_UV_ERROR_INT); vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true); } static void disable_irqs(struct vpe_ctx *ctx) { write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff); write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff); vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false); } /* device_run() - prepares and starts the device * * This function is only called when both the source and destination * buffers are in place. */ static void device_run(void *priv) { struct vpe_ctx *ctx = priv; struct sc_data *sc = ctx->dev->sc; struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST]; struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; if (ctx->deinterlacing && s_q_data->flags & Q_DATA_INTERLACED_SEQ_TB && ctx->sequence % 2 == 0) { /* When using SEQ_TB buffers, When using it first time, * No need to remove the buffer as the next field is present * in the same buffer. (so that job_ready won't fail) * It will be removed when using bottom field */ ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); WARN_ON(ctx->src_vbs[0] == NULL); } else { ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); WARN_ON(ctx->src_vbs[0] == NULL); } ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); WARN_ON(ctx->dst_vb == NULL); if (ctx->deinterlacing) { if (ctx->src_vbs[2] == NULL) { ctx->src_vbs[2] = ctx->src_vbs[0]; WARN_ON(ctx->src_vbs[2] == NULL); ctx->src_vbs[1] = ctx->src_vbs[0]; WARN_ON(ctx->src_vbs[1] == NULL); } /* * we have output the first 2 frames through line average, we * now switch to EDI de-interlacer */ if (ctx->sequence == 2) config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */ } /* config descriptors */ if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) { vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb); vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb); set_line_modes(ctx); ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr; ctx->load_mmrs = false; } if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr || sc->load_coeff_h) { vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h); vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT, &ctx->sc_coeff_h, 0); sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr; sc->load_coeff_h = false; } if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr || sc->load_coeff_v) { vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v); vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT, &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4); sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr; sc->load_coeff_v = false; } /* output data descriptors */ if (ctx->deinterlacing) add_out_dtd(ctx, VPE_PORT_MV_OUT); if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) { add_out_dtd(ctx, VPE_PORT_RGB_OUT); } else { add_out_dtd(ctx, VPE_PORT_LUMA_OUT); if (d_q_data->fmt->coplanar) add_out_dtd(ctx, VPE_PORT_CHROMA_OUT); } /* input data descriptors */ if (ctx->deinterlacing) { add_in_dtd(ctx, VPE_PORT_LUMA3_IN); add_in_dtd(ctx, VPE_PORT_CHROMA3_IN); add_in_dtd(ctx, VPE_PORT_LUMA2_IN); add_in_dtd(ctx, VPE_PORT_CHROMA2_IN); } add_in_dtd(ctx, VPE_PORT_LUMA1_IN); add_in_dtd(ctx, VPE_PORT_CHROMA1_IN); if (ctx->deinterlacing) add_in_dtd(ctx, VPE_PORT_MV_IN); /* sync on channel control descriptors for input ports */ vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN); vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN); if (ctx->deinterlacing) { vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA2_IN); vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA2_IN); vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA3_IN); vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA3_IN); vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN); } /* sync on channel control descriptors for output ports */ if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) { vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_RGB_OUT); } else { vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA_OUT); if (d_q_data->fmt->coplanar) vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA_OUT); } if (ctx->deinterlacing) vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT); enable_irqs(ctx); vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf); vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0); } static void dei_error(struct vpe_ctx *ctx) { dev_warn(ctx->dev->v4l2_dev.dev, "received DEI error interrupt\n"); } static void ds1_uv_error(struct vpe_ctx *ctx) { dev_warn(ctx->dev->v4l2_dev.dev, "received downsampler error interrupt\n"); } static irqreturn_t vpe_irq(int irq_vpe, void *data) { struct vpe_dev *dev = (struct vpe_dev *)data; struct vpe_ctx *ctx; struct vpe_q_data *d_q_data; struct vb2_v4l2_buffer *s_vb, *d_vb; unsigned long flags; u32 irqst0, irqst1; bool list_complete = false; irqst0 = read_reg(dev, VPE_INT0_STATUS0); if (irqst0) { write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0); vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0); } irqst1 = read_reg(dev, VPE_INT0_STATUS1); if (irqst1) { write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1); vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1); } ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev); if (!ctx) { vpe_err(dev, "instance released before end of transaction\n"); goto handled; } if (irqst1) { if (irqst1 & VPE_DEI_ERROR_INT) { irqst1 &= ~VPE_DEI_ERROR_INT; dei_error(ctx); } if (irqst1 & VPE_DS1_UV_ERROR_INT) { irqst1 &= ~VPE_DS1_UV_ERROR_INT; ds1_uv_error(ctx); } } if (irqst0) { if (irqst0 & VPE_INT0_LIST0_COMPLETE) vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0); irqst0 &= ~(VPE_INT0_LIST0_COMPLETE); list_complete = true; } if (irqst0 | irqst1) { dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n", irqst0, irqst1); } /* * Setup next operation only when list complete IRQ occurs * otherwise, skip the following code */ if (!list_complete) goto handled; disable_irqs(ctx); vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf); vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb); vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h); vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v); vpdma_reset_desc_list(&ctx->desc_list); /* the previous dst mv buffer becomes the next src mv buffer */ ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector; if (ctx->aborting) goto finished; s_vb = ctx->src_vbs[0]; d_vb = ctx->dst_vb; d_vb->flags = s_vb->flags; d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp; if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE) d_vb->timecode = s_vb->timecode; d_vb->sequence = ctx->sequence; d_q_data = &ctx->q_data[Q_DATA_DST]; if (d_q_data->flags & Q_IS_INTERLACED) { d_vb->field = ctx->field; if (ctx->field == V4L2_FIELD_BOTTOM) { ctx->sequence++; ctx->field = V4L2_FIELD_TOP; } else { WARN_ON(ctx->field != V4L2_FIELD_TOP); ctx->field = V4L2_FIELD_BOTTOM; } } else { d_vb->field = V4L2_FIELD_NONE; ctx->sequence++; } if (ctx->deinterlacing) { /* * Allow source buffer to be dequeued only if it won't be used * in the next iteration. All vbs are initialized to first * buffer and we are shifting buffers every iteration, for the * first two iterations, no buffer will be dequeued. * This ensures that driver will keep (n-2)th (n-1)th and (n)th * field when deinterlacing is enabled */ if (ctx->src_vbs[2] != ctx->src_vbs[1]) s_vb = ctx->src_vbs[2]; else s_vb = NULL; } spin_lock_irqsave(&dev->lock, flags); if (s_vb) v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE); v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE); spin_unlock_irqrestore(&dev->lock, flags); if (ctx->deinterlacing) { ctx->src_vbs[2] = ctx->src_vbs[1]; ctx->src_vbs[1] = ctx->src_vbs[0]; } /* * Since the vb2_buf_done has already been called fir therse * buffer we can now NULL them out so that we won't try * to clean out stray pointer later on. */ ctx->src_vbs[0] = NULL; ctx->dst_vb = NULL; ctx->bufs_completed++; if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) { device_run(ctx); goto handled; } finished: vpe_dbg(ctx->dev, "finishing transaction\n"); ctx->bufs_completed = 0; v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx); handled: return IRQ_HANDLED; } /* * video ioctls */ static int vpe_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1); strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", VPE_MODULE_NAME); cap->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING; cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS; return 0; } static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type) { int i, index; struct vpe_fmt *fmt = NULL; index = 0; for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) { if (vpe_formats[i].types & type) { if (index == f->index) { fmt = &vpe_formats[i]; break; } index++; } } if (!fmt) return -EINVAL; strncpy(f->description, fmt->name, sizeof(f->description) - 1); f->pixelformat = fmt->fourcc; return 0; } static int vpe_enum_fmt(struct file *file, void *priv, struct v4l2_fmtdesc *f) { if (V4L2_TYPE_IS_OUTPUT(f->type)) return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT); return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE); } static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp; struct vpe_ctx *ctx = file2ctx(file); struct vb2_queue *vq; struct vpe_q_data *q_data; int i; vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type); if (!vq) return -EINVAL; q_data = get_q_data(ctx, f->type); pix->width = q_data->width; pix->height = q_data->height; pix->pixelformat = q_data->fmt->fourcc; pix->field = q_data->field; if (V4L2_TYPE_IS_OUTPUT(f->type)) { pix->colorspace = q_data->colorspace; } else { struct vpe_q_data *s_q_data; /* get colorspace from the source queue */ s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE); pix->colorspace = s_q_data->colorspace; } pix->num_planes = q_data->fmt->coplanar ? 2 : 1; for (i = 0; i < pix->num_planes; i++) { pix->plane_fmt[i].bytesperline = q_data->bytesperline[i]; pix->plane_fmt[i].sizeimage = q_data->sizeimage[i]; } return 0; } static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f, struct vpe_fmt *fmt, int type) { struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp; struct v4l2_plane_pix_format *plane_fmt; unsigned int w_align; int i, depth, depth_bytes, height; if (!fmt || !(fmt->types & type)) { vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n", pix->pixelformat); return -EINVAL; } if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE && pix->field != V4L2_FIELD_SEQ_TB) pix->field = V4L2_FIELD_NONE; depth = fmt->vpdma_fmt[VPE_LUMA]->depth; /* * the line stride should 16 byte aligned for VPDMA to work, based on * the bytes per pixel, figure out how much the width should be aligned * to make sure line stride is 16 byte aligned */ depth_bytes = depth >> 3; if (depth_bytes == 3) /* * if bpp is 3(as in some RGB formats), the pixel width doesn't * really help in ensuring line stride is 16 byte aligned */ w_align = 4; else /* * for the remainder bpp(4, 2 and 1), the pixel width alignment * can ensure a line stride alignment of 16 bytes. For example, * if bpp is 2, then the line stride can be 16 byte aligned if * the width is 8 byte aligned */ w_align = order_base_2(VPDMA_DESC_ALIGN / depth_bytes); v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align, &pix->height, MIN_H, MAX_H, H_ALIGN, S_ALIGN); pix->num_planes = fmt->coplanar ? 2 : 1; pix->pixelformat = fmt->fourcc; /* * For the actual image parameters, we need to consider the field * height of the image for SEQ_TB buffers. */ if (pix->field == V4L2_FIELD_SEQ_TB) height = pix->height / 2; else height = pix->height; if (!pix->colorspace) { if (fmt->fourcc == V4L2_PIX_FMT_RGB24 || fmt->fourcc == V4L2_PIX_FMT_BGR24 || fmt->fourcc == V4L2_PIX_FMT_RGB32 || fmt->fourcc == V4L2_PIX_FMT_BGR32) { pix->colorspace = V4L2_COLORSPACE_SRGB; } else { if (height > 1280) /* HD */ pix->colorspace = V4L2_COLORSPACE_REC709; else /* SD */ pix->colorspace = V4L2_COLORSPACE_SMPTE170M; } } memset(pix->reserved, 0, sizeof(pix->reserved)); for (i = 0; i < pix->num_planes; i++) { plane_fmt = &pix->plane_fmt[i]; depth = fmt->vpdma_fmt[i]->depth; if (i == VPE_LUMA) plane_fmt->bytesperline = (pix->width * depth) >> 3; else plane_fmt->bytesperline = pix->width; plane_fmt->sizeimage = (pix->height * pix->width * depth) >> 3; memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved)); } return 0; } static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct vpe_ctx *ctx = file2ctx(file); struct vpe_fmt *fmt = find_format(f); if (V4L2_TYPE_IS_OUTPUT(f->type)) return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT); else return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE); } static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f) { struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp; struct v4l2_plane_pix_format *plane_fmt; struct vpe_q_data *q_data; struct vb2_queue *vq; int i; vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type); if (!vq) return -EINVAL; if (vb2_is_busy(vq)) { vpe_err(ctx->dev, "queue busy\n"); return -EBUSY; } q_data = get_q_data(ctx, f->type); if (!q_data) return -EINVAL; q_data->fmt = find_format(f); q_data->width = pix->width; q_data->height = pix->height; q_data->colorspace = pix->colorspace; q_data->field = pix->field; for (i = 0; i < pix->num_planes; i++) { plane_fmt = &pix->plane_fmt[i]; q_data->bytesperline[i] = plane_fmt->bytesperline; q_data->sizeimage[i] = plane_fmt->sizeimage; } q_data->c_rect.left = 0; q_data->c_rect.top = 0; q_data->c_rect.width = q_data->width; q_data->c_rect.height = q_data->height; if (q_data->field == V4L2_FIELD_ALTERNATE) q_data->flags |= Q_DATA_INTERLACED_ALTERNATE; else if (q_data->field == V4L2_FIELD_SEQ_TB) q_data->flags |= Q_DATA_INTERLACED_SEQ_TB; else q_data->flags &= ~Q_IS_INTERLACED; /* the crop height is halved for the case of SEQ_TB buffers */ if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) q_data->c_rect.height /= 2; vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d", f->type, q_data->width, q_data->height, q_data->fmt->fourcc, q_data->bytesperline[VPE_LUMA]); if (q_data->fmt->coplanar) vpe_dbg(ctx->dev, " bpl_uv %d\n", q_data->bytesperline[VPE_CHROMA]); return 0; } static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f) { int ret; struct vpe_ctx *ctx = file2ctx(file); ret = vpe_try_fmt(file, priv, f); if (ret) return ret; ret = __vpe_s_fmt(ctx, f); if (ret) return ret; if (V4L2_TYPE_IS_OUTPUT(f->type)) set_src_registers(ctx); else set_dst_registers(ctx); return set_srcdst_params(ctx); } static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s) { struct vpe_q_data *q_data; int height; if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) && (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)) return -EINVAL; q_data = get_q_data(ctx, s->type); if (!q_data) return -EINVAL; switch (s->target) { case V4L2_SEL_TGT_COMPOSE: /* * COMPOSE target is only valid for capture buffer type, return * error for output buffer type */ if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; break; case V4L2_SEL_TGT_CROP: /* * CROP target is only valid for output buffer type, return * error for capture buffer type */ if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; break; /* * bound and default crop/compose targets are invalid targets to * try/set */ default: return -EINVAL; } /* * For SEQ_TB buffers, crop height should be less than the height of * the field height, not the buffer height */ if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB) height = q_data->height / 2; else height = q_data->height; if (s->r.top < 0 || s->r.left < 0) { vpe_err(ctx->dev, "negative values for top and left\n"); s->r.top = s->r.left = 0; } v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1, &s->r.height, MIN_H, height, H_ALIGN, S_ALIGN); /* adjust left/top if cropping rectangle is out of bounds */ if (s->r.left + s->r.width > q_data->width) s->r.left = q_data->width - s->r.width; if (s->r.top + s->r.height > q_data->height) s->r.top = q_data->height - s->r.height; return 0; } static int vpe_g_selection(struct file *file, void *fh, struct v4l2_selection *s) { struct vpe_ctx *ctx = file2ctx(file); struct vpe_q_data *q_data; bool use_c_rect = false; if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) && (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)) return -EINVAL; q_data = get_q_data(ctx, s->type); if (!q_data) return -EINVAL; switch (s->target) { case V4L2_SEL_TGT_COMPOSE_DEFAULT: case V4L2_SEL_TGT_COMPOSE_BOUNDS: if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; break; case V4L2_SEL_TGT_CROP_BOUNDS: case V4L2_SEL_TGT_CROP_DEFAULT: if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; break; case V4L2_SEL_TGT_COMPOSE: if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; use_c_rect = true; break; case V4L2_SEL_TGT_CROP: if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; use_c_rect = true; break; default: return -EINVAL; } if (use_c_rect) { /* * for CROP/COMPOSE target type, return c_rect params from the * respective buffer type */ s->r = q_data->c_rect; } else { /* * for DEFAULT/BOUNDS target type, return width and height from * S_FMT of the respective buffer type */ s->r.left = 0; s->r.top = 0; s->r.width = q_data->width; s->r.height = q_data->height; } return 0; } static int vpe_s_selection(struct file *file, void *fh, struct v4l2_selection *s) { struct vpe_ctx *ctx = file2ctx(file); struct vpe_q_data *q_data; struct v4l2_selection sel = *s; int ret; ret = __vpe_try_selection(ctx, &sel); if (ret) return ret; q_data = get_q_data(ctx, sel.type); if (!q_data) return -EINVAL; if ((q_data->c_rect.left == sel.r.left) && (q_data->c_rect.top == sel.r.top) && (q_data->c_rect.width == sel.r.width) && (q_data->c_rect.height == sel.r.height)) { vpe_dbg(ctx->dev, "requested crop/compose values are already set\n"); return 0; } q_data->c_rect = sel.r; return set_srcdst_params(ctx); } /* * defines number of buffers/frames a context can process with VPE before * switching to a different context. default value is 1 buffer per context */ #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0) static int vpe_s_ctrl(struct v4l2_ctrl *ctrl) { struct vpe_ctx *ctx = container_of(ctrl->handler, struct vpe_ctx, hdl); switch (ctrl->id) { case V4L2_CID_VPE_BUFS_PER_JOB: ctx->bufs_per_job = ctrl->val; break; default: vpe_err(ctx->dev, "Invalid control\n"); return -EINVAL; } return 0; } static const struct v4l2_ctrl_ops vpe_ctrl_ops = { .s_ctrl = vpe_s_ctrl, }; static const struct v4l2_ioctl_ops vpe_ioctl_ops = { .vidioc_querycap = vpe_querycap, .vidioc_enum_fmt_vid_cap_mplane = vpe_enum_fmt, .vidioc_g_fmt_vid_cap_mplane = vpe_g_fmt, .vidioc_try_fmt_vid_cap_mplane = vpe_try_fmt, .vidioc_s_fmt_vid_cap_mplane = vpe_s_fmt, .vidioc_enum_fmt_vid_out_mplane = vpe_enum_fmt, .vidioc_g_fmt_vid_out_mplane = vpe_g_fmt, .vidioc_try_fmt_vid_out_mplane = vpe_try_fmt, .vidioc_s_fmt_vid_out_mplane = vpe_s_fmt, .vidioc_g_selection = vpe_g_selection, .vidioc_s_selection = vpe_s_selection, .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs, .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, .vidioc_qbuf = v4l2_m2m_ioctl_qbuf, .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf, .vidioc_streamon = v4l2_m2m_ioctl_streamon, .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; /* * Queue operations */ static int vpe_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { int i; struct vpe_ctx *ctx = vb2_get_drv_priv(vq); struct vpe_q_data *q_data; q_data = get_q_data(ctx, vq->type); *nplanes = q_data->fmt->coplanar ? 2 : 1; for (i = 0; i < *nplanes; i++) sizes[i] = q_data->sizeimage[i]; vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers, sizes[VPE_LUMA]); if (q_data->fmt->coplanar) vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]); return 0; } static int vpe_buf_prepare(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct vpe_q_data *q_data; int i, num_planes; vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type); q_data = get_q_data(ctx, vb->vb2_queue->type); num_planes = q_data->fmt->coplanar ? 2 : 1; if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) { if (!(q_data->flags & Q_IS_INTERLACED)) { vbuf->field = V4L2_FIELD_NONE; } else { if (vbuf->field != V4L2_FIELD_TOP && vbuf->field != V4L2_FIELD_BOTTOM && vbuf->field != V4L2_FIELD_SEQ_TB) return -EINVAL; } } for (i = 0; i < num_planes; i++) { if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) { vpe_err(ctx->dev, "data will not fit into plane (%lu < %lu)\n", vb2_plane_size(vb, i), (long) q_data->sizeimage[i]); return -EINVAL; } } for (i = 0; i < num_planes; i++) vb2_set_plane_payload(vb, i, q_data->sizeimage[i]); return 0; } static void vpe_buf_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); } static int vpe_start_streaming(struct vb2_queue *q, unsigned int count) { struct vpe_ctx *ctx = vb2_get_drv_priv(q); if (ctx->deinterlacing) config_edi_input_mode(ctx, 0x0); if (ctx->sequence != 0) set_srcdst_params(ctx); return 0; } static void vpe_stop_streaming(struct vb2_queue *q) { struct vpe_ctx *ctx = vb2_get_drv_priv(q); struct vb2_v4l2_buffer *vb; unsigned long flags; vpe_dump_regs(ctx->dev); vpdma_dump_regs(ctx->dev->vpdma); for (;;) { if (V4L2_TYPE_IS_OUTPUT(q->type)) vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); else vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); if (!vb) break; spin_lock_irqsave(&ctx->dev->lock, flags); v4l2_m2m_buf_done(vb, VB2_BUF_STATE_ERROR); spin_unlock_irqrestore(&ctx->dev->lock, flags); } /* * Cleanup the in-transit vb2 buffers that have been * removed from their respective queue already but for * which procecessing has not been completed yet. */ if (V4L2_TYPE_IS_OUTPUT(q->type)) { spin_lock_irqsave(&ctx->dev->lock, flags); if (ctx->src_vbs[2]) v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_ERROR); if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2])) v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_ERROR); if (ctx->src_vbs[0] && (ctx->src_vbs[0] != ctx->src_vbs[1]) && (ctx->src_vbs[0] != ctx->src_vbs[2])) v4l2_m2m_buf_done(ctx->src_vbs[0], VB2_BUF_STATE_ERROR); ctx->src_vbs[2] = NULL; ctx->src_vbs[1] = NULL; ctx->src_vbs[0] = NULL; spin_unlock_irqrestore(&ctx->dev->lock, flags); } else { if (ctx->dst_vb) { spin_lock_irqsave(&ctx->dev->lock, flags); v4l2_m2m_buf_done(ctx->dst_vb, VB2_BUF_STATE_ERROR); ctx->dst_vb = NULL; spin_unlock_irqrestore(&ctx->dev->lock, flags); } } } static const struct vb2_ops vpe_qops = { .queue_setup = vpe_queue_setup, .buf_prepare = vpe_buf_prepare, .buf_queue = vpe_buf_queue, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, .start_streaming = vpe_start_streaming, .stop_streaming = vpe_stop_streaming, }; static int queue_init(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) { struct vpe_ctx *ctx = priv; struct vpe_dev *dev = ctx->dev; int ret; memset(src_vq, 0, sizeof(*src_vq)); src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; src_vq->io_modes = VB2_MMAP | VB2_DMABUF; src_vq->drv_priv = ctx; src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); src_vq->ops = &vpe_qops; src_vq->mem_ops = &vb2_dma_contig_memops; src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; src_vq->lock = &dev->dev_mutex; src_vq->dev = dev->v4l2_dev.dev; ret = vb2_queue_init(src_vq); if (ret) return ret; memset(dst_vq, 0, sizeof(*dst_vq)); dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; dst_vq->io_modes = VB2_MMAP | VB2_DMABUF; dst_vq->drv_priv = ctx; dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); dst_vq->ops = &vpe_qops; dst_vq->mem_ops = &vb2_dma_contig_memops; dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; dst_vq->lock = &dev->dev_mutex; dst_vq->dev = dev->v4l2_dev.dev; return vb2_queue_init(dst_vq); } static const struct v4l2_ctrl_config vpe_bufs_per_job = { .ops = &vpe_ctrl_ops, .id = V4L2_CID_VPE_BUFS_PER_JOB, .name = "Buffers Per Transaction", .type = V4L2_CTRL_TYPE_INTEGER, .def = VPE_DEF_BUFS_PER_JOB, .min = 1, .max = VIDEO_MAX_FRAME, .step = 1, }; /* * File operations */ static int vpe_open(struct file *file) { struct vpe_dev *dev = video_drvdata(file); struct vpe_q_data *s_q_data; struct v4l2_ctrl_handler *hdl; struct vpe_ctx *ctx; int ret; vpe_dbg(dev, "vpe_open\n"); ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = dev; if (mutex_lock_interruptible(&dev->dev_mutex)) { ret = -ERESTARTSYS; goto free_ctx; } ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE, VPDMA_LIST_TYPE_NORMAL); if (ret != 0) goto unlock; ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb)); if (ret != 0) goto free_desc_list; ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE); if (ret != 0) goto free_mmr_adb; ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE); if (ret != 0) goto free_sc_h; init_adb_hdrs(ctx); v4l2_fh_init(&ctx->fh, video_devdata(file)); file->private_data = &ctx->fh; hdl = &ctx->hdl; v4l2_ctrl_handler_init(hdl, 1); v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL); if (hdl->error) { ret = hdl->error; goto exit_fh; } ctx->fh.ctrl_handler = hdl; v4l2_ctrl_handler_setup(hdl); s_q_data = &ctx->q_data[Q_DATA_SRC]; s_q_data->fmt = &vpe_formats[2]; s_q_data->width = 1920; s_q_data->height = 1080; s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width * s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3; s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] * s_q_data->height); s_q_data->colorspace = V4L2_COLORSPACE_REC709; s_q_data->field = V4L2_FIELD_NONE; s_q_data->c_rect.left = 0; s_q_data->c_rect.top = 0; s_q_data->c_rect.width = s_q_data->width; s_q_data->c_rect.height = s_q_data->height; s_q_data->flags = 0; ctx->q_data[Q_DATA_DST] = *s_q_data; set_dei_shadow_registers(ctx); set_src_registers(ctx); set_dst_registers(ctx); ret = set_srcdst_params(ctx); if (ret) goto exit_fh; ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init); if (IS_ERR(ctx->fh.m2m_ctx)) { ret = PTR_ERR(ctx->fh.m2m_ctx); goto exit_fh; } v4l2_fh_add(&ctx->fh); /* * for now, just report the creation of the first instance, we can later * optimize the driver to enable or disable clocks when the first * instance is created or the last instance released */ if (atomic_inc_return(&dev->num_instances) == 1) vpe_dbg(dev, "first instance created\n"); ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB; ctx->load_mmrs = true; vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n", ctx, ctx->fh.m2m_ctx); mutex_unlock(&dev->dev_mutex); return 0; exit_fh: v4l2_ctrl_handler_free(hdl); v4l2_fh_exit(&ctx->fh); vpdma_free_desc_buf(&ctx->sc_coeff_v); free_sc_h: vpdma_free_desc_buf(&ctx->sc_coeff_h); free_mmr_adb: vpdma_free_desc_buf(&ctx->mmr_adb); free_desc_list: vpdma_free_desc_list(&ctx->desc_list); unlock: mutex_unlock(&dev->dev_mutex); free_ctx: kfree(ctx); return ret; } static int vpe_release(struct file *file) { struct vpe_dev *dev = video_drvdata(file); struct vpe_ctx *ctx = file2ctx(file); vpe_dbg(dev, "releasing instance %p\n", ctx); mutex_lock(&dev->dev_mutex); free_mv_buffers(ctx); vpdma_free_desc_list(&ctx->desc_list); vpdma_free_desc_buf(&ctx->mmr_adb); vpdma_free_desc_buf(&ctx->sc_coeff_v); vpdma_free_desc_buf(&ctx->sc_coeff_h); v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); v4l2_ctrl_handler_free(&ctx->hdl); v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); kfree(ctx); /* * for now, just report the release of the last instance, we can later * optimize the driver to enable or disable clocks when the first * instance is created or the last instance released */ if (atomic_dec_return(&dev->num_instances) == 0) vpe_dbg(dev, "last instance released\n"); mutex_unlock(&dev->dev_mutex); return 0; } static const struct v4l2_file_operations vpe_fops = { .owner = THIS_MODULE, .open = vpe_open, .release = vpe_release, .poll = v4l2_m2m_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = v4l2_m2m_fop_mmap, }; static struct video_device vpe_videodev = { .name = VPE_MODULE_NAME, .fops = &vpe_fops, .ioctl_ops = &vpe_ioctl_ops, .minor = -1, .release = video_device_release_empty, .vfl_dir = VFL_DIR_M2M, }; static struct v4l2_m2m_ops m2m_ops = { .device_run = device_run, .job_ready = job_ready, .job_abort = job_abort, .lock = vpe_lock, .unlock = vpe_unlock, }; static int vpe_runtime_get(struct platform_device *pdev) { int r; dev_dbg(&pdev->dev, "vpe_runtime_get\n"); r = pm_runtime_get_sync(&pdev->dev); WARN_ON(r < 0); return r < 0 ? r : 0; } static void vpe_runtime_put(struct platform_device *pdev) { int r; dev_dbg(&pdev->dev, "vpe_runtime_put\n"); r = pm_runtime_put_sync(&pdev->dev); WARN_ON(r < 0 && r != -ENOSYS); } static void vpe_fw_cb(struct platform_device *pdev) { struct vpe_dev *dev = platform_get_drvdata(pdev); struct video_device *vfd; int ret; vfd = &dev->vfd; *vfd = vpe_videodev; vfd->lock = &dev->dev_mutex; vfd->v4l2_dev = &dev->v4l2_dev; ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0); if (ret) { vpe_err(dev, "Failed to register video device\n"); vpe_set_clock_enable(dev, 0); vpe_runtime_put(pdev); pm_runtime_disable(&pdev->dev); v4l2_m2m_release(dev->m2m_dev); v4l2_device_unregister(&dev->v4l2_dev); return; } video_set_drvdata(vfd, dev); snprintf(vfd->name, sizeof(vfd->name), "%s", vpe_videodev.name); dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n", vfd->num); } static int vpe_probe(struct platform_device *pdev) { struct vpe_dev *dev; int ret, irq, func; dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; spin_lock_init(&dev->lock); ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev); if (ret) return ret; atomic_set(&dev->num_instances, 0); mutex_init(&dev->dev_mutex); dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpe_top"); /* * HACK: we get resource info from device tree in the form of a list of * VPE sub blocks, the driver currently uses only the base of vpe_top * for register access, the driver should be changed later to access * registers based on the sub block base addresses */ dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K); if (!dev->base) { ret = -ENOMEM; goto v4l2_dev_unreg; } irq = platform_get_irq(pdev, 0); ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME, dev); if (ret) goto v4l2_dev_unreg; platform_set_drvdata(pdev, dev); dev->m2m_dev = v4l2_m2m_init(&m2m_ops); if (IS_ERR(dev->m2m_dev)) { vpe_err(dev, "Failed to init mem2mem device\n"); ret = PTR_ERR(dev->m2m_dev); goto v4l2_dev_unreg; } pm_runtime_enable(&pdev->dev); ret = vpe_runtime_get(pdev); if (ret) goto rel_m2m; /* Perform clk enable followed by reset */ vpe_set_clock_enable(dev, 1); vpe_top_reset(dev); func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK, VPE_PID_FUNC_SHIFT); vpe_dbg(dev, "VPE PID function %x\n", func); vpe_top_vpdma_reset(dev); dev->sc = sc_create(pdev); if (IS_ERR(dev->sc)) { ret = PTR_ERR(dev->sc); goto runtime_put; } dev->csc = csc_create(pdev); if (IS_ERR(dev->csc)) { ret = PTR_ERR(dev->csc); goto runtime_put; } dev->vpdma = &dev->vpdma_data; ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb); if (ret) goto runtime_put; return 0; runtime_put: vpe_runtime_put(pdev); rel_m2m: pm_runtime_disable(&pdev->dev); v4l2_m2m_release(dev->m2m_dev); v4l2_dev_unreg: v4l2_device_unregister(&dev->v4l2_dev); return ret; } static int vpe_remove(struct platform_device *pdev) { struct vpe_dev *dev = platform_get_drvdata(pdev); v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME); v4l2_m2m_release(dev->m2m_dev); video_unregister_device(&dev->vfd); v4l2_device_unregister(&dev->v4l2_dev); vpe_set_clock_enable(dev, 0); vpe_runtime_put(pdev); pm_runtime_disable(&pdev->dev); return 0; } #if defined(CONFIG_OF) static const struct of_device_id vpe_of_match[] = { { .compatible = "ti,vpe", }, {}, }; MODULE_DEVICE_TABLE(of, vpe_of_match); #endif static struct platform_driver vpe_pdrv = { .probe = vpe_probe, .remove = vpe_remove, .driver = { .name = VPE_MODULE_NAME, .of_match_table = of_match_ptr(vpe_of_match), }, }; module_platform_driver(vpe_pdrv); MODULE_DESCRIPTION("TI VPE driver"); MODULE_AUTHOR("Dale Farnsworth, "); MODULE_LICENSE("GPL");