/* * * Support for CX23885 analog audio capture * * (c) 2008 Mijhail Moreyra * Adapted from cx88-alsa.c * (c) 2009 Steven Toth * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "cx23885.h" #include "cx23885-reg.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AUDIO_SRAM_CHANNEL SRAM_CH07 #define dprintk(level, fmt, arg...) do { \ if (audio_debug + 1 > level) \ printk(KERN_DEBUG pr_fmt("%s: alsa: " fmt), \ chip->dev->name, ##arg); \ } while(0) /**************************************************************************** Module global static vars ****************************************************************************/ static unsigned int disable_analog_audio; module_param(disable_analog_audio, int, 0644); MODULE_PARM_DESC(disable_analog_audio, "disable analog audio ALSA driver"); static unsigned int audio_debug; module_param(audio_debug, int, 0644); MODULE_PARM_DESC(audio_debug, "enable debug messages [analog audio]"); /**************************************************************************** Board specific funtions ****************************************************************************/ /* Constants taken from cx88-reg.h */ #define AUD_INT_DN_RISCI1 (1 << 0) #define AUD_INT_UP_RISCI1 (1 << 1) #define AUD_INT_RDS_DN_RISCI1 (1 << 2) #define AUD_INT_DN_RISCI2 (1 << 4) /* yes, 3 is skipped */ #define AUD_INT_UP_RISCI2 (1 << 5) #define AUD_INT_RDS_DN_RISCI2 (1 << 6) #define AUD_INT_DN_SYNC (1 << 12) #define AUD_INT_UP_SYNC (1 << 13) #define AUD_INT_RDS_DN_SYNC (1 << 14) #define AUD_INT_OPC_ERR (1 << 16) #define AUD_INT_BER_IRQ (1 << 20) #define AUD_INT_MCHG_IRQ (1 << 21) #define GP_COUNT_CONTROL_RESET 0x3 static int cx23885_alsa_dma_init(struct cx23885_audio_dev *chip, int nr_pages) { struct cx23885_audio_buffer *buf = chip->buf; struct page *pg; int i; buf->vaddr = vmalloc_32(nr_pages << PAGE_SHIFT); if (NULL == buf->vaddr) { dprintk(1, "vmalloc_32(%d pages) failed\n", nr_pages); return -ENOMEM; } dprintk(1, "vmalloc is at addr %p, size=%d\n", buf->vaddr, nr_pages << PAGE_SHIFT); memset(buf->vaddr, 0, nr_pages << PAGE_SHIFT); buf->nr_pages = nr_pages; buf->sglist = vzalloc(buf->nr_pages * sizeof(*buf->sglist)); if (NULL == buf->sglist) goto vzalloc_err; sg_init_table(buf->sglist, buf->nr_pages); for (i = 0; i < buf->nr_pages; i++) { pg = vmalloc_to_page(buf->vaddr + i * PAGE_SIZE); if (NULL == pg) goto vmalloc_to_page_err; sg_set_page(&buf->sglist[i], pg, PAGE_SIZE, 0); } return 0; vmalloc_to_page_err: vfree(buf->sglist); buf->sglist = NULL; vzalloc_err: vfree(buf->vaddr); buf->vaddr = NULL; return -ENOMEM; } static int cx23885_alsa_dma_map(struct cx23885_audio_dev *dev) { struct cx23885_audio_buffer *buf = dev->buf; buf->sglen = dma_map_sg(&dev->pci->dev, buf->sglist, buf->nr_pages, PCI_DMA_FROMDEVICE); if (0 == buf->sglen) { pr_warn("%s: cx23885_alsa_map_sg failed\n", __func__); return -ENOMEM; } return 0; } static int cx23885_alsa_dma_unmap(struct cx23885_audio_dev *dev) { struct cx23885_audio_buffer *buf = dev->buf; if (!buf->sglen) return 0; dma_unmap_sg(&dev->pci->dev, buf->sglist, buf->sglen, PCI_DMA_FROMDEVICE); buf->sglen = 0; return 0; } static int cx23885_alsa_dma_free(struct cx23885_audio_buffer *buf) { vfree(buf->sglist); buf->sglist = NULL; vfree(buf->vaddr); buf->vaddr = NULL; return 0; } /* * BOARD Specific: Sets audio DMA */ static int cx23885_start_audio_dma(struct cx23885_audio_dev *chip) { struct cx23885_audio_buffer *buf = chip->buf; struct cx23885_dev *dev = chip->dev; struct sram_channel *audio_ch = &dev->sram_channels[AUDIO_SRAM_CHANNEL]; dprintk(1, "%s()\n", __func__); /* Make sure RISC/FIFO are off before changing FIFO/RISC settings */ cx_clear(AUD_INT_DMA_CTL, 0x11); /* setup fifo + format - out channel */ cx23885_sram_channel_setup(chip->dev, audio_ch, buf->bpl, buf->risc.dma); /* sets bpl size */ cx_write(AUD_INT_A_LNGTH, buf->bpl); /* This is required to get good audio (1 seems to be ok) */ cx_write(AUD_INT_A_MODE, 1); /* reset counter */ cx_write(AUD_INT_A_GPCNT_CTL, GP_COUNT_CONTROL_RESET); atomic_set(&chip->count, 0); dprintk(1, "Start audio DMA, %d B/line, %d lines/FIFO, %d periods, %d byte buffer\n", buf->bpl, cx_read(audio_ch->cmds_start+12)>>1, chip->num_periods, buf->bpl * chip->num_periods); /* Enables corresponding bits at AUD_INT_STAT */ cx_write(AUDIO_INT_INT_MSK, AUD_INT_OPC_ERR | AUD_INT_DN_SYNC | AUD_INT_DN_RISCI1); /* Clean any pending interrupt bits already set */ cx_write(AUDIO_INT_INT_STAT, ~0); /* enable audio irqs */ cx_set(PCI_INT_MSK, chip->dev->pci_irqmask | PCI_MSK_AUD_INT); /* start dma */ cx_set(DEV_CNTRL2, (1<<5)); /* Enables Risc Processor */ cx_set(AUD_INT_DMA_CTL, 0x11); /* audio downstream FIFO and RISC enable */ if (audio_debug) cx23885_sram_channel_dump(chip->dev, audio_ch); return 0; } /* * BOARD Specific: Resets audio DMA */ static int cx23885_stop_audio_dma(struct cx23885_audio_dev *chip) { struct cx23885_dev *dev = chip->dev; dprintk(1, "Stopping audio DMA\n"); /* stop dma */ cx_clear(AUD_INT_DMA_CTL, 0x11); /* disable irqs */ cx_clear(PCI_INT_MSK, PCI_MSK_AUD_INT); cx_clear(AUDIO_INT_INT_MSK, AUD_INT_OPC_ERR | AUD_INT_DN_SYNC | AUD_INT_DN_RISCI1); if (audio_debug) cx23885_sram_channel_dump(chip->dev, &dev->sram_channels[AUDIO_SRAM_CHANNEL]); return 0; } /* * BOARD Specific: Handles audio IRQ */ int cx23885_audio_irq(struct cx23885_dev *dev, u32 status, u32 mask) { struct cx23885_audio_dev *chip = dev->audio_dev; if (0 == (status & mask)) return 0; cx_write(AUDIO_INT_INT_STAT, status); /* risc op code error */ if (status & AUD_INT_OPC_ERR) { pr_warn("%s/1: Audio risc op code error\n", dev->name); cx_clear(AUD_INT_DMA_CTL, 0x11); cx23885_sram_channel_dump(dev, &dev->sram_channels[AUDIO_SRAM_CHANNEL]); } if (status & AUD_INT_DN_SYNC) { dprintk(1, "Downstream sync error\n"); cx_write(AUD_INT_A_GPCNT_CTL, GP_COUNT_CONTROL_RESET); return 1; } /* risc1 downstream */ if (status & AUD_INT_DN_RISCI1) { atomic_set(&chip->count, cx_read(AUD_INT_A_GPCNT)); snd_pcm_period_elapsed(chip->substream); } /* FIXME: Any other status should deserve a special handling? */ return 1; } static int dsp_buffer_free(struct cx23885_audio_dev *chip) { struct cx23885_riscmem *risc; BUG_ON(!chip->dma_size); dprintk(2, "Freeing buffer\n"); cx23885_alsa_dma_unmap(chip); cx23885_alsa_dma_free(chip->buf); risc = &chip->buf->risc; pci_free_consistent(chip->pci, risc->size, risc->cpu, risc->dma); kfree(chip->buf); chip->buf = NULL; chip->dma_size = 0; return 0; } /**************************************************************************** ALSA PCM Interface ****************************************************************************/ /* * Digital hardware definition */ #define DEFAULT_FIFO_SIZE 4096 static const struct snd_pcm_hardware snd_cx23885_digital_hw = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID, .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, /* Analog audio output will be full of clicks and pops if there are not exactly four lines in the SRAM FIFO buffer. */ .period_bytes_min = DEFAULT_FIFO_SIZE/4, .period_bytes_max = DEFAULT_FIFO_SIZE/4, .periods_min = 1, .periods_max = 1024, .buffer_bytes_max = (1024*1024), }; /* * audio pcm capture open callback */ static int snd_cx23885_pcm_open(struct snd_pcm_substream *substream) { struct cx23885_audio_dev *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err; if (!chip) { pr_err("BUG: cx23885 can't find device struct. Can't proceed with open\n"); return -ENODEV; } err = snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) goto _error; chip->substream = substream; runtime->hw = snd_cx23885_digital_hw; if (chip->dev->sram_channels[AUDIO_SRAM_CHANNEL].fifo_size != DEFAULT_FIFO_SIZE) { unsigned int bpl = chip->dev-> sram_channels[AUDIO_SRAM_CHANNEL].fifo_size / 4; bpl &= ~7; /* must be multiple of 8 */ runtime->hw.period_bytes_min = bpl; runtime->hw.period_bytes_max = bpl; } return 0; _error: dprintk(1, "Error opening PCM!\n"); return err; } /* * audio close callback */ static int snd_cx23885_close(struct snd_pcm_substream *substream) { return 0; } /* * hw_params callback */ static int snd_cx23885_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct cx23885_audio_dev *chip = snd_pcm_substream_chip(substream); struct cx23885_audio_buffer *buf; int ret; if (substream->runtime->dma_area) { dsp_buffer_free(chip); substream->runtime->dma_area = NULL; } chip->period_size = params_period_bytes(hw_params); chip->num_periods = params_periods(hw_params); chip->dma_size = chip->period_size * params_periods(hw_params); BUG_ON(!chip->dma_size); BUG_ON(chip->num_periods & (chip->num_periods-1)); buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (NULL == buf) return -ENOMEM; buf->bpl = chip->period_size; chip->buf = buf; ret = cx23885_alsa_dma_init(chip, (PAGE_ALIGN(chip->dma_size) >> PAGE_SHIFT)); if (ret < 0) goto error; ret = cx23885_alsa_dma_map(chip); if (ret < 0) goto error; ret = cx23885_risc_databuffer(chip->pci, &buf->risc, buf->sglist, chip->period_size, chip->num_periods, 1); if (ret < 0) goto error; /* Loop back to start of program */ buf->risc.jmp[0] = cpu_to_le32(RISC_JUMP|RISC_IRQ1|RISC_CNT_INC); buf->risc.jmp[1] = cpu_to_le32(buf->risc.dma); buf->risc.jmp[2] = cpu_to_le32(0); /* bits 63-32 */ substream->runtime->dma_area = chip->buf->vaddr; substream->runtime->dma_bytes = chip->dma_size; substream->runtime->dma_addr = 0; return 0; error: kfree(buf); chip->buf = NULL; return ret; } /* * hw free callback */ static int snd_cx23885_hw_free(struct snd_pcm_substream *substream) { struct cx23885_audio_dev *chip = snd_pcm_substream_chip(substream); if (substream->runtime->dma_area) { dsp_buffer_free(chip); substream->runtime->dma_area = NULL; } return 0; } /* * prepare callback */ static int snd_cx23885_prepare(struct snd_pcm_substream *substream) { return 0; } /* * trigger callback */ static int snd_cx23885_card_trigger(struct snd_pcm_substream *substream, int cmd) { struct cx23885_audio_dev *chip = snd_pcm_substream_chip(substream); int err; /* Local interrupts are already disabled by ALSA */ spin_lock(&chip->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: err = cx23885_start_audio_dma(chip); break; case SNDRV_PCM_TRIGGER_STOP: err = cx23885_stop_audio_dma(chip); break; default: err = -EINVAL; break; } spin_unlock(&chip->lock); return err; } /* * pointer callback */ static snd_pcm_uframes_t snd_cx23885_pointer( struct snd_pcm_substream *substream) { struct cx23885_audio_dev *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; u16 count; count = atomic_read(&chip->count); return runtime->period_size * (count & (runtime->periods-1)); } /* * page callback (needed for mmap) */ static struct page *snd_cx23885_page(struct snd_pcm_substream *substream, unsigned long offset) { void *pageptr = substream->runtime->dma_area + offset; return vmalloc_to_page(pageptr); } /* * operators */ static const struct snd_pcm_ops snd_cx23885_pcm_ops = { .open = snd_cx23885_pcm_open, .close = snd_cx23885_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_cx23885_hw_params, .hw_free = snd_cx23885_hw_free, .prepare = snd_cx23885_prepare, .trigger = snd_cx23885_card_trigger, .pointer = snd_cx23885_pointer, .page = snd_cx23885_page, }; /* * create a PCM device */ static int snd_cx23885_pcm(struct cx23885_audio_dev *chip, int device, char *name) { int err; struct snd_pcm *pcm; err = snd_pcm_new(chip->card, name, device, 0, 1, &pcm); if (err < 0) return err; pcm->private_data = chip; strcpy(pcm->name, name); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cx23885_pcm_ops); return 0; } /**************************************************************************** Basic Flow for Sound Devices ****************************************************************************/ /* * Alsa Constructor - Component probe */ struct cx23885_audio_dev *cx23885_audio_register(struct cx23885_dev *dev) { struct snd_card *card; struct cx23885_audio_dev *chip; int err; if (disable_analog_audio) return NULL; if (dev->sram_channels[AUDIO_SRAM_CHANNEL].cmds_start == 0) { pr_warn("%s(): Missing SRAM channel configuration for analog TV Audio\n", __func__); return NULL; } err = snd_card_new(&dev->pci->dev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1, THIS_MODULE, sizeof(struct cx23885_audio_dev), &card); if (err < 0) goto error; chip = (struct cx23885_audio_dev *) card->private_data; chip->dev = dev; chip->pci = dev->pci; chip->card = card; spin_lock_init(&chip->lock); err = snd_cx23885_pcm(chip, 0, "CX23885 Digital"); if (err < 0) goto error; strcpy(card->driver, "CX23885"); sprintf(card->shortname, "Conexant CX23885"); sprintf(card->longname, "%s at %s", card->shortname, dev->name); err = snd_card_register(card); if (err < 0) goto error; dprintk(0, "registered ALSA audio device\n"); return chip; error: snd_card_free(card); pr_err("%s(): Failed to register analog audio adapter\n", __func__); return NULL; } /* * ALSA destructor */ void cx23885_audio_unregister(struct cx23885_dev *dev) { struct cx23885_audio_dev *chip = dev->audio_dev; snd_card_free(chip->card); }