// SPDX-License-Identifier: GPL-2.0-only /* * drivers/media/i2c/smiapp/smiapp-regs.c * * Generic driver for SMIA/SMIA++ compliant camera modules * * Copyright (C) 2011--2012 Nokia Corporation * Contact: Sakari Ailus */ #include #include #include "smiapp.h" #include "smiapp-regs.h" static uint32_t float_to_u32_mul_1000000(struct i2c_client *client, uint32_t phloat) { int32_t exp; uint64_t man; if (phloat >= 0x80000000) { dev_err(&client->dev, "this is a negative number\n"); return 0; } if (phloat == 0x7f800000) return ~0; /* Inf. */ if ((phloat & 0x7f800000) == 0x7f800000) { dev_err(&client->dev, "NaN or other special number\n"); return 0; } /* Valid cases begin here */ if (phloat == 0) return 0; /* Valid zero */ if (phloat > 0x4f800000) return ~0; /* larger than 4294967295 */ /* * Unbias exponent (note how phloat is now guaranteed to * have 0 in the high bit) */ exp = ((int32_t)phloat >> 23) - 127; /* Extract mantissa, add missing '1' bit and it's in MHz */ man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL; if (exp < 0) man >>= -exp; else man <<= exp; man >>= 23; /* Remove mantissa bias */ return man & 0xffffffff; } /* * Read a 8/16/32-bit i2c register. The value is returned in 'val'. * Returns zero if successful, or non-zero otherwise. */ static int ____smiapp_read(struct smiapp_sensor *sensor, u16 reg, u16 len, u32 *val) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); struct i2c_msg msg; unsigned char data[4]; u16 offset = reg; int r; msg.addr = client->addr; msg.flags = 0; msg.len = 2; msg.buf = data; /* high byte goes out first */ data[0] = (u8) (offset >> 8); data[1] = (u8) offset; r = i2c_transfer(client->adapter, &msg, 1); if (r != 1) { if (r >= 0) r = -EBUSY; goto err; } msg.len = len; msg.flags = I2C_M_RD; r = i2c_transfer(client->adapter, &msg, 1); if (r != 1) { if (r >= 0) r = -EBUSY; goto err; } *val = 0; /* high byte comes first */ switch (len) { case SMIAPP_REG_32BIT: *val = (data[0] << 24) + (data[1] << 16) + (data[2] << 8) + data[3]; break; case SMIAPP_REG_16BIT: *val = (data[0] << 8) + data[1]; break; case SMIAPP_REG_8BIT: *val = data[0]; break; default: BUG(); } return 0; err: dev_err(&client->dev, "read from offset 0x%x error %d\n", offset, r); return r; } /* Read a register using 8-bit access only. */ static int ____smiapp_read_8only(struct smiapp_sensor *sensor, u16 reg, u16 len, u32 *val) { unsigned int i; int rval; *val = 0; for (i = 0; i < len; i++) { u32 val8; rval = ____smiapp_read(sensor, reg + i, 1, &val8); if (rval < 0) return rval; *val |= val8 << ((len - i - 1) << 3); } return 0; } /* * Read a 8/16/32-bit i2c register. The value is returned in 'val'. * Returns zero if successful, or non-zero otherwise. */ static int __smiapp_read(struct smiapp_sensor *sensor, u32 reg, u32 *val, bool only8) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); u8 len = SMIAPP_REG_WIDTH(reg); int rval; if (len != SMIAPP_REG_8BIT && len != SMIAPP_REG_16BIT && len != SMIAPP_REG_32BIT) return -EINVAL; if (len == SMIAPP_REG_8BIT || !only8) rval = ____smiapp_read(sensor, SMIAPP_REG_ADDR(reg), len, val); else rval = ____smiapp_read_8only(sensor, SMIAPP_REG_ADDR(reg), len, val); if (rval < 0) return rval; if (reg & SMIAPP_REG_FLAG_FLOAT) *val = float_to_u32_mul_1000000(client, *val); return 0; } int smiapp_read_no_quirk(struct smiapp_sensor *sensor, u32 reg, u32 *val) { return __smiapp_read( sensor, reg, val, smiapp_needs_quirk(sensor, SMIAPP_QUIRK_FLAG_8BIT_READ_ONLY)); } static int smiapp_read_quirk(struct smiapp_sensor *sensor, u32 reg, u32 *val, bool force8) { int rval; *val = 0; rval = smiapp_call_quirk(sensor, reg_access, false, ®, val); if (rval == -ENOIOCTLCMD) return 0; if (rval < 0) return rval; if (force8) return __smiapp_read(sensor, reg, val, true); return smiapp_read_no_quirk(sensor, reg, val); } int smiapp_read(struct smiapp_sensor *sensor, u32 reg, u32 *val) { return smiapp_read_quirk(sensor, reg, val, false); } int smiapp_read_8only(struct smiapp_sensor *sensor, u32 reg, u32 *val) { return smiapp_read_quirk(sensor, reg, val, true); } int smiapp_write_no_quirk(struct smiapp_sensor *sensor, u32 reg, u32 val) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); struct i2c_msg msg; unsigned char data[6]; unsigned int retries; u8 flags = SMIAPP_REG_FLAGS(reg); u8 len = SMIAPP_REG_WIDTH(reg); u16 offset = SMIAPP_REG_ADDR(reg); int r; if ((len != SMIAPP_REG_8BIT && len != SMIAPP_REG_16BIT && len != SMIAPP_REG_32BIT) || flags) return -EINVAL; msg.addr = client->addr; msg.flags = 0; /* Write */ msg.len = 2 + len; msg.buf = data; /* high byte goes out first */ data[0] = (u8) (reg >> 8); data[1] = (u8) (reg & 0xff); switch (len) { case SMIAPP_REG_8BIT: data[2] = val; break; case SMIAPP_REG_16BIT: data[2] = val >> 8; data[3] = val; break; case SMIAPP_REG_32BIT: data[2] = val >> 24; data[3] = val >> 16; data[4] = val >> 8; data[5] = val; break; default: BUG(); } for (retries = 0; retries < 5; retries++) { /* * Due to unknown reason sensor stops responding. This * loop is a temporaty solution until the root cause * is found. */ r = i2c_transfer(client->adapter, &msg, 1); if (r == 1) { if (retries) dev_err(&client->dev, "sensor i2c stall encountered. retries: %d\n", retries); return 0; } usleep_range(2000, 2000); } dev_err(&client->dev, "wrote 0x%x to offset 0x%x error %d\n", val, offset, r); return r; } /* * Write to a 8/16-bit register. * Returns zero if successful, or non-zero otherwise. */ int smiapp_write(struct smiapp_sensor *sensor, u32 reg, u32 val) { int rval; rval = smiapp_call_quirk(sensor, reg_access, true, ®, &val); if (rval == -ENOIOCTLCMD) return 0; if (rval < 0) return rval; return smiapp_write_no_quirk(sensor, reg, val); }