// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "repair.h" #include #include #include "logger.h" #include "memory-alloc.h" #include "permassert.h" #include "block-map.h" #include "completion.h" #include "constants.h" #include "encodings.h" #include "int-map.h" #include "io-submitter.h" #include "recovery-journal.h" #include "slab-depot.h" #include "types.h" #include "vdo.h" #include "wait-queue.h" /* * An explicitly numbered block mapping. Numbering the mappings allows them to be sorted by logical * block number during repair while still preserving the relative order of journal entries with * the same logical block number. */ struct numbered_block_mapping { struct block_map_slot block_map_slot; struct block_map_entry block_map_entry; /* A serial number to use during replay */ u32 number; } __packed; /* * The absolute position of an entry in the recovery journal, including the sector number and the * entry number within the sector. */ struct recovery_point { /* Block sequence number */ sequence_number_t sequence_number; /* Sector number */ u8 sector_count; /* Entry number */ journal_entry_count_t entry_count; /* Whether or not the increment portion of the current entry has been applied */ bool increment_applied; }; struct repair_completion { /* The completion header */ struct vdo_completion completion; /* A buffer to hold the data read off disk */ char *journal_data; /* For loading the journal */ data_vio_count_t vio_count; data_vio_count_t vios_complete; struct vio *vios; /* The number of entries to be applied to the block map */ size_t block_map_entry_count; /* The sequence number of the first valid block for block map recovery */ sequence_number_t block_map_head; /* The sequence number of the first valid block for slab journal replay */ sequence_number_t slab_journal_head; /* The sequence number of the last valid block of the journal (if known) */ sequence_number_t tail; /* * The highest sequence number of the journal. During recovery (vs read-only rebuild), not * the same as the tail, since the tail ignores blocks after the first hole. */ sequence_number_t highest_tail; /* The number of logical blocks currently known to be in use */ block_count_t logical_blocks_used; /* The number of block map data blocks known to be allocated */ block_count_t block_map_data_blocks; /* These fields are for playing the journal into the block map */ /* The entry data for the block map recovery */ struct numbered_block_mapping *entries; /* The number of entries in the entry array */ size_t entry_count; /* number of pending (non-ready) requests*/ page_count_t outstanding; /* number of page completions */ page_count_t page_count; bool launching; /* * a heap wrapping journal_entries. It re-orders and sorts journal entries in ascending LBN * order, then original journal order. This permits efficient iteration over the journal * entries in order. */ struct min_heap replay_heap; /* Fields tracking progress through the journal entries. */ struct numbered_block_mapping *current_entry; struct numbered_block_mapping *current_unfetched_entry; /* Current requested page's PBN */ physical_block_number_t pbn; /* These fields are only used during recovery. */ /* A location just beyond the last valid entry of the journal */ struct recovery_point tail_recovery_point; /* The location of the next recovery journal entry to apply */ struct recovery_point next_recovery_point; /* The journal point to give to the next synthesized decref */ struct journal_point next_journal_point; /* The number of entries played into slab journals */ size_t entries_added_to_slab_journals; /* These fields are only used during read-only rebuild */ page_count_t page_to_fetch; /* the number of leaf pages in the block map */ page_count_t leaf_pages; /* the last slot of the block map */ struct block_map_slot last_slot; /* * The page completions used for playing the journal into the block map, and, during * read-only rebuild, for rebuilding the reference counts from the block map. */ struct vdo_page_completion page_completions[]; }; /* * This is a min_heap callback function that orders numbered_block_mappings using the * 'block_map_slot' field as the primary key and the mapping 'number' field as the secondary key. * Using the mapping number preserves the journal order of entries for the same slot, allowing us * to sort by slot while still ensuring we replay all entries with the same slot in the exact order * as they appeared in the journal. */ static bool mapping_is_less_than(const void *item1, const void *item2) { const struct numbered_block_mapping *mapping1 = (const struct numbered_block_mapping *) item1; const struct numbered_block_mapping *mapping2 = (const struct numbered_block_mapping *) item2; if (mapping1->block_map_slot.pbn != mapping2->block_map_slot.pbn) return mapping1->block_map_slot.pbn < mapping2->block_map_slot.pbn; if (mapping1->block_map_slot.slot != mapping2->block_map_slot.slot) return mapping1->block_map_slot.slot < mapping2->block_map_slot.slot; if (mapping1->number != mapping2->number) return mapping1->number < mapping2->number; return 0; } static void swap_mappings(void *item1, void *item2) { struct numbered_block_mapping *mapping1 = item1; struct numbered_block_mapping *mapping2 = item2; swap(*mapping1, *mapping2); } static const struct min_heap_callbacks repair_min_heap = { .elem_size = sizeof(struct numbered_block_mapping), .less = mapping_is_less_than, .swp = swap_mappings, }; static struct numbered_block_mapping *sort_next_heap_element(struct repair_completion *repair) { struct min_heap *heap = &repair->replay_heap; struct numbered_block_mapping *last; if (heap->nr == 0) return NULL; /* * Swap the next heap element with the last one on the heap, popping it off the heap, * restore the heap invariant, and return a pointer to the popped element. */ last = &repair->entries[--heap->nr]; swap_mappings(heap->data, last); min_heapify(heap, 0, &repair_min_heap); return last; } /** * as_repair_completion() - Convert a generic completion to a repair_completion. * @completion: The completion to convert. * * Return: The repair_completion. */ static inline struct repair_completion * __must_check as_repair_completion(struct vdo_completion *completion) { vdo_assert_completion_type(completion, VDO_REPAIR_COMPLETION); return container_of(completion, struct repair_completion, completion); } static void prepare_repair_completion(struct repair_completion *repair, vdo_action_fn callback, enum vdo_zone_type zone_type) { struct vdo_completion *completion = &repair->completion; const struct thread_config *thread_config = &completion->vdo->thread_config; thread_id_t thread_id; /* All blockmap access is done on single thread, so use logical zone 0. */ thread_id = ((zone_type == VDO_ZONE_TYPE_LOGICAL) ? thread_config->logical_threads[0] : thread_config->admin_thread); vdo_reset_completion(completion); vdo_set_completion_callback(completion, callback, thread_id); } static void launch_repair_completion(struct repair_completion *repair, vdo_action_fn callback, enum vdo_zone_type zone_type) { prepare_repair_completion(repair, callback, zone_type); vdo_launch_completion(&repair->completion); } static void uninitialize_vios(struct repair_completion *repair) { while (repair->vio_count > 0) free_vio_components(&repair->vios[--repair->vio_count]); vdo_free(vdo_forget(repair->vios)); } static void free_repair_completion(struct repair_completion *repair) { if (repair == NULL) return; /* * We do this here because this function is the only common bottleneck for all clean up * paths. */ repair->completion.vdo->block_map->zones[0].page_cache.rebuilding = false; uninitialize_vios(repair); vdo_free(vdo_forget(repair->journal_data)); vdo_free(vdo_forget(repair->entries)); vdo_free(repair); } static void finish_repair(struct vdo_completion *completion) { struct vdo_completion *parent = completion->parent; struct vdo *vdo = completion->vdo; struct repair_completion *repair = as_repair_completion(completion); vdo_assert_on_admin_thread(vdo, __func__); if (vdo->load_state != VDO_REBUILD_FOR_UPGRADE) vdo->states.vdo.complete_recoveries++; vdo_initialize_recovery_journal_post_repair(vdo->recovery_journal, vdo->states.vdo.complete_recoveries, repair->highest_tail, repair->logical_blocks_used, repair->block_map_data_blocks); free_repair_completion(vdo_forget(repair)); if (vdo_state_requires_read_only_rebuild(vdo->load_state)) { uds_log_info("Read-only rebuild complete"); vdo_launch_completion(parent); return; } /* FIXME: shouldn't this say either "recovery" or "repair"? */ uds_log_info("Rebuild complete"); /* * Now that we've freed the repair completion and its vast array of journal entries, we * can allocate refcounts. */ vdo_continue_completion(parent, vdo_allocate_reference_counters(vdo->depot)); } /** * abort_repair() - Handle a repair error. * @completion: The repair completion. */ static void abort_repair(struct vdo_completion *completion) { struct vdo_completion *parent = completion->parent; int result = completion->result; struct repair_completion *repair = as_repair_completion(completion); if (vdo_state_requires_read_only_rebuild(completion->vdo->load_state)) uds_log_info("Read-only rebuild aborted"); else uds_log_warning("Recovery aborted"); free_repair_completion(vdo_forget(repair)); vdo_continue_completion(parent, result); } /** * abort_on_error() - Abort a repair if there is an error. * @result: The result to check. * @repair: The repair completion. * * Return: true if the result was an error. */ static bool __must_check abort_on_error(int result, struct repair_completion *repair) { if (result == VDO_SUCCESS) return false; vdo_fail_completion(&repair->completion, result); return true; } /** * drain_slab_depot() - Flush out all dirty refcounts blocks now that they have been rebuilt or * recovered. */ static void drain_slab_depot(struct vdo_completion *completion) { struct vdo *vdo = completion->vdo; struct repair_completion *repair = as_repair_completion(completion); const struct admin_state_code *operation; vdo_assert_on_admin_thread(vdo, __func__); prepare_repair_completion(repair, finish_repair, VDO_ZONE_TYPE_ADMIN); if (vdo_state_requires_read_only_rebuild(vdo->load_state)) { uds_log_info("Saving rebuilt state"); operation = VDO_ADMIN_STATE_REBUILDING; } else { uds_log_info("Replayed %zu journal entries into slab journals", repair->entries_added_to_slab_journals); operation = VDO_ADMIN_STATE_RECOVERING; } vdo_drain_slab_depot(vdo->depot, operation, completion); } /** * flush_block_map_updates() - Flush the block map now that all the reference counts are rebuilt. * @completion: The repair completion. * * This callback is registered in finish_if_done(). */ static void flush_block_map_updates(struct vdo_completion *completion) { vdo_assert_on_admin_thread(completion->vdo, __func__); uds_log_info("Flushing block map changes"); prepare_repair_completion(as_repair_completion(completion), drain_slab_depot, VDO_ZONE_TYPE_ADMIN); vdo_drain_block_map(completion->vdo->block_map, VDO_ADMIN_STATE_RECOVERING, completion); } static bool fetch_page(struct repair_completion *repair, struct vdo_completion *completion); /** * handle_page_load_error() - Handle an error loading a page. * @completion: The vdo_page_completion. */ static void handle_page_load_error(struct vdo_completion *completion) { struct repair_completion *repair = completion->parent; repair->outstanding--; vdo_set_completion_result(&repair->completion, completion->result); vdo_release_page_completion(completion); fetch_page(repair, completion); } /** * unmap_entry() - Unmap an invalid entry and indicate that its page must be written out. * @page: The page containing the entries * @completion: The page_completion for writing the page * @slot: The slot to unmap */ static void unmap_entry(struct block_map_page *page, struct vdo_completion *completion, slot_number_t slot) { page->entries[slot] = UNMAPPED_BLOCK_MAP_ENTRY; vdo_request_page_write(completion); } /** * remove_out_of_bounds_entries() - Unmap entries which outside the logical space. * @page: The page containing the entries * @completion: The page_completion for writing the page * @start: The first slot to check */ static void remove_out_of_bounds_entries(struct block_map_page *page, struct vdo_completion *completion, slot_number_t start) { slot_number_t slot; for (slot = start; slot < VDO_BLOCK_MAP_ENTRIES_PER_PAGE; slot++) { struct data_location mapping = vdo_unpack_block_map_entry(&page->entries[slot]); if (vdo_is_mapped_location(&mapping)) unmap_entry(page, completion, slot); } } /** * process_slot() - Update the reference counts for a single entry. * @page: The page containing the entries * @completion: The page_completion for writing the page * @slot: The slot to check * * Return: true if the entry was a valid mapping */ static bool process_slot(struct block_map_page *page, struct vdo_completion *completion, slot_number_t slot) { struct slab_depot *depot = completion->vdo->depot; int result; struct data_location mapping = vdo_unpack_block_map_entry(&page->entries[slot]); if (!vdo_is_valid_location(&mapping)) { /* This entry is invalid, so remove it from the page. */ unmap_entry(page, completion, slot); return false; } if (!vdo_is_mapped_location(&mapping)) return false; if (mapping.pbn == VDO_ZERO_BLOCK) return true; if (!vdo_is_physical_data_block(depot, mapping.pbn)) { /* * This is a nonsense mapping. Remove it from the map so we're at least consistent * and mark the page dirty. */ unmap_entry(page, completion, slot); return false; } result = vdo_adjust_reference_count_for_rebuild(depot, mapping.pbn, VDO_JOURNAL_DATA_REMAPPING); if (result == VDO_SUCCESS) return true; uds_log_error_strerror(result, "Could not adjust reference count for PBN %llu, slot %u mapped to PBN %llu", (unsigned long long) vdo_get_block_map_page_pbn(page), slot, (unsigned long long) mapping.pbn); unmap_entry(page, completion, slot); return false; } /** * rebuild_reference_counts_from_page() - Rebuild reference counts from a block map page. * @repair: The repair completion. * @completion: The page completion holding the page. */ static void rebuild_reference_counts_from_page(struct repair_completion *repair, struct vdo_completion *completion) { slot_number_t slot, last_slot; struct block_map_page *page; int result; result = vdo_get_cached_page(completion, &page); if (result != VDO_SUCCESS) { vdo_set_completion_result(&repair->completion, result); return; } if (!page->header.initialized) return; /* Remove any bogus entries which exist beyond the end of the logical space. */ if (vdo_get_block_map_page_pbn(page) == repair->last_slot.pbn) { last_slot = repair->last_slot.slot; remove_out_of_bounds_entries(page, completion, last_slot); } else { last_slot = VDO_BLOCK_MAP_ENTRIES_PER_PAGE; } /* Inform the slab depot of all entries on this page. */ for (slot = 0; slot < last_slot; slot++) { if (process_slot(page, completion, slot)) repair->logical_blocks_used++; } } /** * page_loaded() - Process a page which has just been loaded. * @completion: The vdo_page_completion for the fetched page. * * This callback is registered by fetch_page(). */ static void page_loaded(struct vdo_completion *completion) { struct repair_completion *repair = completion->parent; repair->outstanding--; rebuild_reference_counts_from_page(repair, completion); vdo_release_page_completion(completion); /* Advance progress to the next page, and fetch the next page we haven't yet requested. */ fetch_page(repair, completion); } static physical_block_number_t get_pbn_to_fetch(struct repair_completion *repair, struct block_map *block_map) { physical_block_number_t pbn = VDO_ZERO_BLOCK; if (repair->completion.result != VDO_SUCCESS) return VDO_ZERO_BLOCK; while ((pbn == VDO_ZERO_BLOCK) && (repair->page_to_fetch < repair->leaf_pages)) pbn = vdo_find_block_map_page_pbn(block_map, repair->page_to_fetch++); if (vdo_is_physical_data_block(repair->completion.vdo->depot, pbn)) return pbn; vdo_set_completion_result(&repair->completion, VDO_BAD_MAPPING); return VDO_ZERO_BLOCK; } /** * fetch_page() - Fetch a page from the block map. * @repair: The repair_completion. * @completion: The page completion to use. * * Return true if the rebuild is complete */ static bool fetch_page(struct repair_completion *repair, struct vdo_completion *completion) { struct vdo_page_completion *page_completion = (struct vdo_page_completion *) completion; struct block_map *block_map = repair->completion.vdo->block_map; physical_block_number_t pbn = get_pbn_to_fetch(repair, block_map); if (pbn != VDO_ZERO_BLOCK) { repair->outstanding++; /* * We must set the requeue flag here to ensure that we don't blow the stack if all * the requested pages are already in the cache or get load errors. */ vdo_get_page(page_completion, &block_map->zones[0], pbn, true, repair, page_loaded, handle_page_load_error, true); } if (repair->outstanding > 0) return false; launch_repair_completion(repair, flush_block_map_updates, VDO_ZONE_TYPE_ADMIN); return true; } /** * rebuild_from_leaves() - Rebuild reference counts from the leaf block map pages. * @completion: The repair completion. * * Rebuilds reference counts from the leaf block map pages now that reference counts have been * rebuilt from the interior tree pages (which have been loaded in the process). This callback is * registered in rebuild_reference_counts(). */ static void rebuild_from_leaves(struct vdo_completion *completion) { page_count_t i; struct repair_completion *repair = as_repair_completion(completion); struct block_map *map = completion->vdo->block_map; repair->logical_blocks_used = 0; /* * The PBN calculation doesn't work until the tree pages have been loaded, so we can't set * this value at the start of repair. */ repair->leaf_pages = vdo_compute_block_map_page_count(map->entry_count); repair->last_slot = (struct block_map_slot) { .slot = map->entry_count % VDO_BLOCK_MAP_ENTRIES_PER_PAGE, .pbn = vdo_find_block_map_page_pbn(map, repair->leaf_pages - 1), }; if (repair->last_slot.slot == 0) repair->last_slot.slot = VDO_BLOCK_MAP_ENTRIES_PER_PAGE; for (i = 0; i < repair->page_count; i++) { if (fetch_page(repair, &repair->page_completions[i].completion)) { /* * The rebuild has already moved on, so it isn't safe nor is there a need * to launch any more fetches. */ return; } } } /** * process_entry() - Process a single entry from the block map tree. * @pbn: A pbn which holds a block map tree page. * @completion: The parent completion of the traversal. * * Implements vdo_entry_callback_fn. * * Return: VDO_SUCCESS or an error. */ static int process_entry(physical_block_number_t pbn, struct vdo_completion *completion) { struct repair_completion *repair = as_repair_completion(completion); struct slab_depot *depot = completion->vdo->depot; int result; if ((pbn == VDO_ZERO_BLOCK) || !vdo_is_physical_data_block(depot, pbn)) { return uds_log_error_strerror(VDO_BAD_CONFIGURATION, "PBN %llu out of range", (unsigned long long) pbn); } result = vdo_adjust_reference_count_for_rebuild(depot, pbn, VDO_JOURNAL_BLOCK_MAP_REMAPPING); if (result != VDO_SUCCESS) { return uds_log_error_strerror(result, "Could not adjust reference count for block map tree PBN %llu", (unsigned long long) pbn); } repair->block_map_data_blocks++; return VDO_SUCCESS; } static void rebuild_reference_counts(struct vdo_completion *completion) { struct repair_completion *repair = as_repair_completion(completion); struct vdo *vdo = completion->vdo; struct vdo_page_cache *cache = &vdo->block_map->zones[0].page_cache; /* We must allocate ref_counts before we can rebuild them. */ if (abort_on_error(vdo_allocate_reference_counters(vdo->depot), repair)) return; /* * Completion chaining from page cache hits can lead to stack overflow during the rebuild, * so clear out the cache before this rebuild phase. */ if (abort_on_error(vdo_invalidate_page_cache(cache), repair)) return; prepare_repair_completion(repair, rebuild_from_leaves, VDO_ZONE_TYPE_LOGICAL); vdo_traverse_forest(vdo->block_map, process_entry, completion); } /** * increment_recovery_point() - Move the given recovery point forward by one entry. */ static void increment_recovery_point(struct recovery_point *point) { if (++point->entry_count < RECOVERY_JOURNAL_ENTRIES_PER_SECTOR) return; point->entry_count = 0; if (point->sector_count < (VDO_SECTORS_PER_BLOCK - 1)) { point->sector_count++; return; } point->sequence_number++; point->sector_count = 1; } /** * advance_points() - Advance the current recovery and journal points. * @repair: The repair_completion whose points are to be advanced. * @entries_per_block: The number of entries in a recovery journal block. */ static void advance_points(struct repair_completion *repair, journal_entry_count_t entries_per_block) { if (!repair->next_recovery_point.increment_applied) { repair->next_recovery_point.increment_applied = true; return; } increment_recovery_point(&repair->next_recovery_point); vdo_advance_journal_point(&repair->next_journal_point, entries_per_block); repair->next_recovery_point.increment_applied = false; } /** * before_recovery_point() - Check whether the first point precedes the second point. * @first: The first recovery point. * @second: The second recovery point. * * Return: true if the first point precedes the second point. */ static bool __must_check before_recovery_point(const struct recovery_point *first, const struct recovery_point *second) { if (first->sequence_number < second->sequence_number) return true; if (first->sequence_number > second->sequence_number) return false; if (first->sector_count < second->sector_count) return true; return ((first->sector_count == second->sector_count) && (first->entry_count < second->entry_count)); } static struct packed_journal_sector * __must_check get_sector(struct recovery_journal *journal, char *journal_data, sequence_number_t sequence, u8 sector_number) { off_t offset; offset = ((vdo_get_recovery_journal_block_number(journal, sequence) * VDO_BLOCK_SIZE) + (VDO_SECTOR_SIZE * sector_number)); return (struct packed_journal_sector *) (journal_data + offset); } /** * get_entry() - Unpack the recovery journal entry associated with the given recovery point. * @repair: The repair completion. * @point: The recovery point. * * Return: The unpacked contents of the matching recovery journal entry. */ static struct recovery_journal_entry get_entry(const struct repair_completion *repair, const struct recovery_point *point) { struct packed_journal_sector *sector; sector = get_sector(repair->completion.vdo->recovery_journal, repair->journal_data, point->sequence_number, point->sector_count); return vdo_unpack_recovery_journal_entry(§or->entries[point->entry_count]); } /** * validate_recovery_journal_entry() - Validate a recovery journal entry. * @vdo: The vdo. * @entry: The entry to validate. * * Return: VDO_SUCCESS or an error. */ static int validate_recovery_journal_entry(const struct vdo *vdo, const struct recovery_journal_entry *entry) { if ((entry->slot.pbn >= vdo->states.vdo.config.physical_blocks) || (entry->slot.slot >= VDO_BLOCK_MAP_ENTRIES_PER_PAGE) || !vdo_is_valid_location(&entry->mapping) || !vdo_is_valid_location(&entry->unmapping) || !vdo_is_physical_data_block(vdo->depot, entry->mapping.pbn) || !vdo_is_physical_data_block(vdo->depot, entry->unmapping.pbn)) { return uds_log_error_strerror(VDO_CORRUPT_JOURNAL, "Invalid entry: %s (%llu, %u) from %llu to %llu is not within bounds", vdo_get_journal_operation_name(entry->operation), (unsigned long long) entry->slot.pbn, entry->slot.slot, (unsigned long long) entry->unmapping.pbn, (unsigned long long) entry->mapping.pbn); } if ((entry->operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) && (vdo_is_state_compressed(entry->mapping.state) || (entry->mapping.pbn == VDO_ZERO_BLOCK) || (entry->unmapping.state != VDO_MAPPING_STATE_UNMAPPED) || (entry->unmapping.pbn != VDO_ZERO_BLOCK))) { return uds_log_error_strerror(VDO_CORRUPT_JOURNAL, "Invalid entry: %s (%llu, %u) from %llu to %llu is not a valid tree mapping", vdo_get_journal_operation_name(entry->operation), (unsigned long long) entry->slot.pbn, entry->slot.slot, (unsigned long long) entry->unmapping.pbn, (unsigned long long) entry->mapping.pbn); } return VDO_SUCCESS; } /** * add_slab_journal_entries() - Replay recovery journal entries into the slab journals of the * allocator currently being recovered. * @completion: The allocator completion. * * Waits for slab journal tailblock space when necessary. This method is its own callback. */ static void add_slab_journal_entries(struct vdo_completion *completion) { struct recovery_point *recovery_point; struct repair_completion *repair = completion->parent; struct vdo *vdo = completion->vdo; struct recovery_journal *journal = vdo->recovery_journal; struct block_allocator *allocator = vdo_as_block_allocator(completion); /* Get ready in case we need to enqueue again. */ vdo_prepare_completion(completion, add_slab_journal_entries, vdo_notify_slab_journals_are_recovered, completion->callback_thread_id, repair); for (recovery_point = &repair->next_recovery_point; before_recovery_point(recovery_point, &repair->tail_recovery_point); advance_points(repair, journal->entries_per_block)) { int result; physical_block_number_t pbn; struct vdo_slab *slab; struct recovery_journal_entry entry = get_entry(repair, recovery_point); bool increment = !repair->next_recovery_point.increment_applied; if (increment) { result = validate_recovery_journal_entry(vdo, &entry); if (result != VDO_SUCCESS) { vdo_enter_read_only_mode(vdo, result); vdo_fail_completion(completion, result); return; } pbn = entry.mapping.pbn; } else { pbn = entry.unmapping.pbn; } if (pbn == VDO_ZERO_BLOCK) continue; slab = vdo_get_slab(vdo->depot, pbn); if (slab->allocator != allocator) continue; if (!vdo_attempt_replay_into_slab(slab, pbn, entry.operation, increment, &repair->next_journal_point, completion)) return; repair->entries_added_to_slab_journals++; } vdo_notify_slab_journals_are_recovered(completion); } /** * vdo_replay_into_slab_journals() - Replay recovery journal entries in the slab journals of slabs * owned by a given block_allocator. * @allocator: The allocator whose slab journals are to be recovered. * @context: The slab depot load context supplied by a recovery when it loads the depot. */ void vdo_replay_into_slab_journals(struct block_allocator *allocator, void *context) { struct vdo_completion *completion = &allocator->completion; struct repair_completion *repair = context; struct vdo *vdo = completion->vdo; vdo_assert_on_physical_zone_thread(vdo, allocator->zone_number, __func__); if (repair->entry_count == 0) { /* there's nothing to replay */ repair->logical_blocks_used = vdo->recovery_journal->logical_blocks_used; repair->block_map_data_blocks = vdo->recovery_journal->block_map_data_blocks; vdo_notify_slab_journals_are_recovered(completion); return; } repair->next_recovery_point = (struct recovery_point) { .sequence_number = repair->slab_journal_head, .sector_count = 1, .entry_count = 0, }; repair->next_journal_point = (struct journal_point) { .sequence_number = repair->slab_journal_head, .entry_count = 0, }; uds_log_info("Replaying entries into slab journals for zone %u", allocator->zone_number); completion->parent = repair; add_slab_journal_entries(completion); } static void load_slab_depot(struct vdo_completion *completion) { struct repair_completion *repair = as_repair_completion(completion); const struct admin_state_code *operation; vdo_assert_on_admin_thread(completion->vdo, __func__); if (vdo_state_requires_read_only_rebuild(completion->vdo->load_state)) { prepare_repair_completion(repair, rebuild_reference_counts, VDO_ZONE_TYPE_LOGICAL); operation = VDO_ADMIN_STATE_LOADING_FOR_REBUILD; } else { prepare_repair_completion(repair, drain_slab_depot, VDO_ZONE_TYPE_ADMIN); operation = VDO_ADMIN_STATE_LOADING_FOR_RECOVERY; } vdo_load_slab_depot(completion->vdo->depot, operation, completion, repair); } static void flush_block_map(struct vdo_completion *completion) { struct repair_completion *repair = as_repair_completion(completion); const struct admin_state_code *operation; vdo_assert_on_admin_thread(completion->vdo, __func__); uds_log_info("Flushing block map changes"); prepare_repair_completion(repair, load_slab_depot, VDO_ZONE_TYPE_ADMIN); operation = (vdo_state_requires_read_only_rebuild(completion->vdo->load_state) ? VDO_ADMIN_STATE_REBUILDING : VDO_ADMIN_STATE_RECOVERING); vdo_drain_block_map(completion->vdo->block_map, operation, completion); } static bool finish_if_done(struct repair_completion *repair) { /* Pages are still being launched or there is still work to do */ if (repair->launching || (repair->outstanding > 0)) return false; if (repair->completion.result != VDO_SUCCESS) { page_count_t i; for (i = 0; i < repair->page_count; i++) { struct vdo_page_completion *page_completion = &repair->page_completions[i]; if (page_completion->ready) vdo_release_page_completion(&page_completion->completion); } vdo_launch_completion(&repair->completion); return true; } if (repair->current_entry >= repair->entries) return false; launch_repair_completion(repair, flush_block_map, VDO_ZONE_TYPE_ADMIN); return true; } static void abort_block_map_recovery(struct repair_completion *repair, int result) { vdo_set_completion_result(&repair->completion, result); finish_if_done(repair); } /** * find_entry_starting_next_page() - Find the first journal entry after a given entry which is not * on the same block map page. * @current_entry: The entry to search from. * @needs_sort: Whether sorting is needed to proceed. * * Return: Pointer to the first later journal entry on a different block map page, or a pointer to * just before the journal entries if no subsequent entry is on a different block map page. */ static struct numbered_block_mapping * find_entry_starting_next_page(struct repair_completion *repair, struct numbered_block_mapping *current_entry, bool needs_sort) { size_t current_page; /* If current_entry is invalid, return immediately. */ if (current_entry < repair->entries) return current_entry; current_page = current_entry->block_map_slot.pbn; /* Decrement current_entry until it's out of bounds or on a different page. */ while ((current_entry >= repair->entries) && (current_entry->block_map_slot.pbn == current_page)) { if (needs_sort) { struct numbered_block_mapping *just_sorted_entry = sort_next_heap_element(repair); ASSERT_LOG_ONLY(just_sorted_entry < current_entry, "heap is returning elements in an unexpected order"); } current_entry--; } return current_entry; } /* * Apply a range of journal entries [starting_entry, ending_entry) journal * entries to a block map page. */ static void apply_journal_entries_to_page(struct block_map_page *page, struct numbered_block_mapping *starting_entry, struct numbered_block_mapping *ending_entry) { struct numbered_block_mapping *current_entry = starting_entry; while (current_entry != ending_entry) { page->entries[current_entry->block_map_slot.slot] = current_entry->block_map_entry; current_entry--; } } static void recover_ready_pages(struct repair_completion *repair, struct vdo_completion *completion); static void block_map_page_loaded(struct vdo_completion *completion) { struct repair_completion *repair = as_repair_completion(completion->parent); repair->outstanding--; if (!repair->launching) recover_ready_pages(repair, completion); } static void handle_block_map_page_load_error(struct vdo_completion *completion) { struct repair_completion *repair = as_repair_completion(completion->parent); repair->outstanding--; abort_block_map_recovery(repair, completion->result); } static void fetch_block_map_page(struct repair_completion *repair, struct vdo_completion *completion) { physical_block_number_t pbn; if (repair->current_unfetched_entry < repair->entries) /* Nothing left to fetch. */ return; /* Fetch the next page we haven't yet requested. */ pbn = repair->current_unfetched_entry->block_map_slot.pbn; repair->current_unfetched_entry = find_entry_starting_next_page(repair, repair->current_unfetched_entry, true); repair->outstanding++; vdo_get_page(((struct vdo_page_completion *) completion), &repair->completion.vdo->block_map->zones[0], pbn, true, &repair->completion, block_map_page_loaded, handle_block_map_page_load_error, false); } static struct vdo_page_completion *get_next_page_completion(struct repair_completion *repair, struct vdo_page_completion *completion) { completion++; if (completion == (&repair->page_completions[repair->page_count])) completion = &repair->page_completions[0]; return completion; } static void recover_ready_pages(struct repair_completion *repair, struct vdo_completion *completion) { struct vdo_page_completion *page_completion = (struct vdo_page_completion *) completion; if (finish_if_done(repair)) return; if (repair->pbn != page_completion->pbn) return; while (page_completion->ready) { struct numbered_block_mapping *start_of_next_page; struct block_map_page *page; int result; result = vdo_get_cached_page(completion, &page); if (result != VDO_SUCCESS) { abort_block_map_recovery(repair, result); return; } start_of_next_page = find_entry_starting_next_page(repair, repair->current_entry, false); apply_journal_entries_to_page(page, repair->current_entry, start_of_next_page); repair->current_entry = start_of_next_page; vdo_request_page_write(completion); vdo_release_page_completion(completion); if (finish_if_done(repair)) return; repair->pbn = repair->current_entry->block_map_slot.pbn; fetch_block_map_page(repair, completion); page_completion = get_next_page_completion(repair, page_completion); completion = &page_completion->completion; } } static void recover_block_map(struct vdo_completion *completion) { struct repair_completion *repair = as_repair_completion(completion); struct vdo *vdo = completion->vdo; struct numbered_block_mapping *first_sorted_entry; page_count_t i; vdo_assert_on_logical_zone_thread(vdo, 0, __func__); /* Suppress block map errors. */ vdo->block_map->zones[0].page_cache.rebuilding = vdo_state_requires_read_only_rebuild(vdo->load_state); if (repair->block_map_entry_count == 0) { uds_log_info("Replaying 0 recovery entries into block map"); vdo_free(vdo_forget(repair->journal_data)); launch_repair_completion(repair, load_slab_depot, VDO_ZONE_TYPE_ADMIN); return; } /* * Organize the journal entries into a binary heap so we can iterate over them in sorted * order incrementally, avoiding an expensive sort call. */ repair->replay_heap = (struct min_heap) { .data = repair->entries, .nr = repair->block_map_entry_count, .size = repair->block_map_entry_count, }; min_heapify_all(&repair->replay_heap, &repair_min_heap); uds_log_info("Replaying %zu recovery entries into block map", repair->block_map_entry_count); repair->current_entry = &repair->entries[repair->block_map_entry_count - 1]; first_sorted_entry = sort_next_heap_element(repair); ASSERT_LOG_ONLY(first_sorted_entry == repair->current_entry, "heap is returning elements in an unexpected order"); /* Prevent any page from being processed until all pages have been launched. */ repair->launching = true; repair->pbn = repair->current_entry->block_map_slot.pbn; repair->current_unfetched_entry = repair->current_entry; for (i = 0; i < repair->page_count; i++) { if (repair->current_unfetched_entry < repair->entries) break; fetch_block_map_page(repair, &repair->page_completions[i].completion); } repair->launching = false; /* Process any ready pages. */ recover_ready_pages(repair, &repair->page_completions[0].completion); } /** * get_recovery_journal_block_header() - Get the block header for a block at a position in the * journal data and unpack it. * @journal: The recovery journal. * @data: The recovery journal data. * @sequence: The sequence number. * * Return: The unpacked header. */ static struct recovery_block_header __must_check get_recovery_journal_block_header(struct recovery_journal *journal, char *data, sequence_number_t sequence) { physical_block_number_t pbn = vdo_get_recovery_journal_block_number(journal, sequence); char *header = &data[pbn * VDO_BLOCK_SIZE]; return vdo_unpack_recovery_block_header((struct packed_journal_header *) header); } /** * is_valid_recovery_journal_block() - Determine whether the given header describes a valid block * for the given journal. * @journal: The journal to use. * @header: The unpacked block header to check. * @old_ok: Whether an old format header is valid. * * A block is not valid if it is unformatted, or if it is older than the last successful recovery * or reformat. * * Return: True if the header is valid. */ static bool __must_check is_valid_recovery_journal_block(const struct recovery_journal *journal, const struct recovery_block_header *header, bool old_ok) { if ((header->nonce != journal->nonce) || (header->recovery_count != journal->recovery_count)) return false; if (header->metadata_type == VDO_METADATA_RECOVERY_JOURNAL_2) return (header->entry_count <= journal->entries_per_block); return (old_ok && (header->metadata_type == VDO_METADATA_RECOVERY_JOURNAL) && (header->entry_count <= RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK)); } /** * is_exact_recovery_journal_block() - Determine whether the given header describes the exact block * indicated. * @journal: The journal to use. * @header: The unpacked block header to check. * @sequence: The expected sequence number. * @type: The expected metadata type. * * Return: True if the block matches. */ static bool __must_check is_exact_recovery_journal_block(const struct recovery_journal *journal, const struct recovery_block_header *header, sequence_number_t sequence, enum vdo_metadata_type type) { return ((header->metadata_type == type) && (header->sequence_number == sequence) && (is_valid_recovery_journal_block(journal, header, true))); } /** * find_recovery_journal_head_and_tail() - Find the tail and head of the journal. * * Return: True if there were valid journal blocks. */ static bool find_recovery_journal_head_and_tail(struct repair_completion *repair) { struct recovery_journal *journal = repair->completion.vdo->recovery_journal; bool found_entries = false; physical_block_number_t i; /* * Ensure that we don't replay old entries since we know the tail recorded in the super * block must be a lower bound. Not doing so can result in extra data loss by setting the * tail too early. */ repair->highest_tail = journal->tail; for (i = 0; i < journal->size; i++) { struct recovery_block_header header = get_recovery_journal_block_header(journal, repair->journal_data, i); if (!is_valid_recovery_journal_block(journal, &header, true)) { /* This block is old or incorrectly formatted */ continue; } if (vdo_get_recovery_journal_block_number(journal, header.sequence_number) != i) { /* This block is in the wrong location */ continue; } if (header.sequence_number >= repair->highest_tail) { found_entries = true; repair->highest_tail = header.sequence_number; } if (!found_entries) continue; if (header.block_map_head > repair->block_map_head) repair->block_map_head = header.block_map_head; if (header.slab_journal_head > repair->slab_journal_head) repair->slab_journal_head = header.slab_journal_head; } return found_entries; } /** * unpack_entry() - Unpack a recovery journal entry in either format. * @vdo: The vdo. * @packed: The entry to unpack. * @format: The expected format of the entry. * @entry: The unpacked entry. * * Return: true if the entry should be applied.3 */ static bool unpack_entry(struct vdo *vdo, char *packed, enum vdo_metadata_type format, struct recovery_journal_entry *entry) { if (format == VDO_METADATA_RECOVERY_JOURNAL_2) { struct packed_recovery_journal_entry *packed_entry = (struct packed_recovery_journal_entry *) packed; *entry = vdo_unpack_recovery_journal_entry(packed_entry); } else { physical_block_number_t low32, high4; struct packed_recovery_journal_entry_1 *packed_entry = (struct packed_recovery_journal_entry_1 *) packed; if (packed_entry->operation == VDO_JOURNAL_DATA_INCREMENT) entry->operation = VDO_JOURNAL_DATA_REMAPPING; else if (packed_entry->operation == VDO_JOURNAL_BLOCK_MAP_INCREMENT) entry->operation = VDO_JOURNAL_BLOCK_MAP_REMAPPING; else return false; low32 = __le32_to_cpu(packed_entry->pbn_low_word); high4 = packed_entry->pbn_high_nibble; entry->slot = (struct block_map_slot) { .pbn = ((high4 << 32) | low32), .slot = (packed_entry->slot_low | (packed_entry->slot_high << 6)), }; entry->mapping = vdo_unpack_block_map_entry(&packed_entry->block_map_entry); entry->unmapping = (struct data_location) { .pbn = VDO_ZERO_BLOCK, .state = VDO_MAPPING_STATE_UNMAPPED, }; } return (validate_recovery_journal_entry(vdo, entry) == VDO_SUCCESS); } /** * append_sector_entries() - Append an array of recovery journal entries from a journal block * sector to the array of numbered mappings in the repair completion, * numbering each entry in the order they are appended. * @repair: The repair completion. * @entries: The entries in the sector. * @format: The format of the sector. * @entry_count: The number of entries to append. */ static void append_sector_entries(struct repair_completion *repair, char *entries, enum vdo_metadata_type format, journal_entry_count_t entry_count) { journal_entry_count_t i; struct vdo *vdo = repair->completion.vdo; off_t increment = ((format == VDO_METADATA_RECOVERY_JOURNAL_2) ? sizeof(struct packed_recovery_journal_entry) : sizeof(struct packed_recovery_journal_entry_1)); for (i = 0; i < entry_count; i++, entries += increment) { struct recovery_journal_entry entry; if (!unpack_entry(vdo, entries, format, &entry)) /* When recovering from read-only mode, ignore damaged entries. */ continue; repair->entries[repair->block_map_entry_count] = (struct numbered_block_mapping) { .block_map_slot = entry.slot, .block_map_entry = vdo_pack_block_map_entry(entry.mapping.pbn, entry.mapping.state), .number = repair->block_map_entry_count, }; repair->block_map_entry_count++; } } static journal_entry_count_t entries_per_sector(enum vdo_metadata_type format, u8 sector_number) { if (format == VDO_METADATA_RECOVERY_JOURNAL_2) return RECOVERY_JOURNAL_ENTRIES_PER_SECTOR; return ((sector_number == (VDO_SECTORS_PER_BLOCK - 1)) ? RECOVERY_JOURNAL_1_ENTRIES_IN_LAST_SECTOR : RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR); } static void extract_entries_from_block(struct repair_completion *repair, struct recovery_journal *journal, sequence_number_t sequence, enum vdo_metadata_type format, journal_entry_count_t entries) { sector_count_t i; struct recovery_block_header header = get_recovery_journal_block_header(journal, repair->journal_data, sequence); if (!is_exact_recovery_journal_block(journal, &header, sequence, format)) { /* This block is invalid, so skip it. */ return; } entries = min(entries, header.entry_count); for (i = 1; i < VDO_SECTORS_PER_BLOCK; i++) { struct packed_journal_sector *sector = get_sector(journal, repair->journal_data, sequence, i); journal_entry_count_t sector_entries = min(entries, entries_per_sector(format, i)); if (vdo_is_valid_recovery_journal_sector(&header, sector, i)) { /* Only extract as many as the block header calls for. */ append_sector_entries(repair, (char *) sector->entries, format, min_t(journal_entry_count_t, sector->entry_count, sector_entries)); } /* * Even if the sector wasn't full, count it as full when counting up to the * entry count the block header claims. */ entries -= sector_entries; } } static int parse_journal_for_rebuild(struct repair_completion *repair) { int result; sequence_number_t i; block_count_t count; enum vdo_metadata_type format; struct vdo *vdo = repair->completion.vdo; struct recovery_journal *journal = vdo->recovery_journal; journal_entry_count_t entries_per_block = journal->entries_per_block; format = get_recovery_journal_block_header(journal, repair->journal_data, repair->highest_tail).metadata_type; if (format == VDO_METADATA_RECOVERY_JOURNAL) entries_per_block = RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK; /* * Allocate an array of numbered_block_mapping structures large enough to transcribe every * packed_recovery_journal_entry from every valid journal block. */ count = ((repair->highest_tail - repair->block_map_head + 1) * entries_per_block); result = vdo_allocate(count, struct numbered_block_mapping, __func__, &repair->entries); if (result != VDO_SUCCESS) return result; for (i = repair->block_map_head; i <= repair->highest_tail; i++) extract_entries_from_block(repair, journal, i, format, entries_per_block); return VDO_SUCCESS; } static int validate_heads(struct repair_completion *repair) { /* Both reap heads must be behind the tail. */ if ((repair->block_map_head <= repair->tail) && (repair->slab_journal_head <= repair->tail)) return VDO_SUCCESS; return uds_log_error_strerror(VDO_CORRUPT_JOURNAL, "Journal tail too early. block map head: %llu, slab journal head: %llu, tail: %llu", (unsigned long long) repair->block_map_head, (unsigned long long) repair->slab_journal_head, (unsigned long long) repair->tail); } /** * extract_new_mappings() - Find all valid new mappings to be applied to the block map. * * The mappings are extracted from the journal and stored in a sortable array so that all of the * mappings to be applied to a given block map page can be done in a single page fetch. */ static int extract_new_mappings(struct repair_completion *repair) { int result; struct vdo *vdo = repair->completion.vdo; struct recovery_point recovery_point = { .sequence_number = repair->block_map_head, .sector_count = 1, .entry_count = 0, }; /* * Allocate an array of numbered_block_mapping structs just large enough to transcribe * every packed_recovery_journal_entry from every valid journal block. */ result = vdo_allocate(repair->entry_count, struct numbered_block_mapping, __func__, &repair->entries); if (result != VDO_SUCCESS) return result; for (; before_recovery_point(&recovery_point, &repair->tail_recovery_point); increment_recovery_point(&recovery_point)) { struct recovery_journal_entry entry = get_entry(repair, &recovery_point); result = validate_recovery_journal_entry(vdo, &entry); if (result != VDO_SUCCESS) { vdo_enter_read_only_mode(vdo, result); return result; } repair->entries[repair->block_map_entry_count] = (struct numbered_block_mapping) { .block_map_slot = entry.slot, .block_map_entry = vdo_pack_block_map_entry(entry.mapping.pbn, entry.mapping.state), .number = repair->block_map_entry_count, }; repair->block_map_entry_count++; } result = ASSERT((repair->block_map_entry_count <= repair->entry_count), "approximate entry count is an upper bound"); if (result != VDO_SUCCESS) vdo_enter_read_only_mode(vdo, result); return result; } /** * compute_usages() - Compute the lbns in use and block map data blocks counts from the tail of * the journal. */ static noinline int compute_usages(struct repair_completion *repair) { /* * This function is declared noinline to avoid a spurious valgrind error regarding the * following structure being uninitialized. */ struct recovery_point recovery_point = { .sequence_number = repair->tail, .sector_count = 1, .entry_count = 0, }; struct vdo *vdo = repair->completion.vdo; struct recovery_journal *journal = vdo->recovery_journal; struct recovery_block_header header = get_recovery_journal_block_header(journal, repair->journal_data, repair->tail); repair->logical_blocks_used = header.logical_blocks_used; repair->block_map_data_blocks = header.block_map_data_blocks; for (; before_recovery_point(&recovery_point, &repair->tail_recovery_point); increment_recovery_point(&recovery_point)) { struct recovery_journal_entry entry = get_entry(repair, &recovery_point); int result; result = validate_recovery_journal_entry(vdo, &entry); if (result != VDO_SUCCESS) { vdo_enter_read_only_mode(vdo, result); return result; } if (entry.operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) { repair->block_map_data_blocks++; continue; } if (vdo_is_mapped_location(&entry.mapping)) repair->logical_blocks_used++; if (vdo_is_mapped_location(&entry.unmapping)) repair->logical_blocks_used--; } return VDO_SUCCESS; } static int parse_journal_for_recovery(struct repair_completion *repair) { int result; sequence_number_t i, head; bool found_entries = false; struct recovery_journal *journal = repair->completion.vdo->recovery_journal; head = min(repair->block_map_head, repair->slab_journal_head); for (i = head; i <= repair->highest_tail; i++) { struct recovery_block_header header; journal_entry_count_t block_entries; u8 j; repair->tail = i; repair->tail_recovery_point = (struct recovery_point) { .sequence_number = i, .sector_count = 0, .entry_count = 0, }; header = get_recovery_journal_block_header(journal, repair->journal_data, i); if (header.metadata_type == VDO_METADATA_RECOVERY_JOURNAL) { /* This is an old format block, so we need to upgrade */ uds_log_error_strerror(VDO_UNSUPPORTED_VERSION, "Recovery journal is in the old format, a read-only rebuild is required."); vdo_enter_read_only_mode(repair->completion.vdo, VDO_UNSUPPORTED_VERSION); return VDO_UNSUPPORTED_VERSION; } if (!is_exact_recovery_journal_block(journal, &header, i, VDO_METADATA_RECOVERY_JOURNAL_2)) { /* A bad block header was found so this must be the end of the journal. */ break; } block_entries = header.entry_count; /* Examine each sector in turn to determine the last valid sector. */ for (j = 1; j < VDO_SECTORS_PER_BLOCK; j++) { struct packed_journal_sector *sector = get_sector(journal, repair->journal_data, i, j); journal_entry_count_t sector_entries = min_t(journal_entry_count_t, sector->entry_count, block_entries); /* A bad sector means that this block was torn. */ if (!vdo_is_valid_recovery_journal_sector(&header, sector, j)) break; if (sector_entries > 0) { found_entries = true; repair->tail_recovery_point.sector_count++; repair->tail_recovery_point.entry_count = sector_entries; block_entries -= sector_entries; repair->entry_count += sector_entries; } /* If this sector is short, the later sectors can't matter. */ if ((sector_entries < RECOVERY_JOURNAL_ENTRIES_PER_SECTOR) || (block_entries == 0)) break; } /* If this block was not filled, or if it tore, no later block can matter. */ if ((header.entry_count != journal->entries_per_block) || (block_entries > 0)) break; } if (!found_entries) return validate_heads(repair); /* Set the tail to the last valid tail block, if there is one. */ if (repair->tail_recovery_point.sector_count == 0) repair->tail--; result = validate_heads(repair); if (result != VDO_SUCCESS) return result; uds_log_info("Highest-numbered recovery journal block has sequence number %llu, and the highest-numbered usable block is %llu", (unsigned long long) repair->highest_tail, (unsigned long long) repair->tail); result = extract_new_mappings(repair); if (result != VDO_SUCCESS) return result; return compute_usages(repair); } static int parse_journal(struct repair_completion *repair) { if (!find_recovery_journal_head_and_tail(repair)) return VDO_SUCCESS; return (vdo_state_requires_read_only_rebuild(repair->completion.vdo->load_state) ? parse_journal_for_rebuild(repair) : parse_journal_for_recovery(repair)); } static void finish_journal_load(struct vdo_completion *completion) { struct repair_completion *repair = completion->parent; if (++repair->vios_complete != repair->vio_count) return; uds_log_info("Finished reading recovery journal"); uninitialize_vios(repair); prepare_repair_completion(repair, recover_block_map, VDO_ZONE_TYPE_LOGICAL); vdo_continue_completion(&repair->completion, parse_journal(repair)); } static void handle_journal_load_error(struct vdo_completion *completion) { struct repair_completion *repair = completion->parent; /* Preserve the error */ vdo_set_completion_result(&repair->completion, completion->result); vio_record_metadata_io_error(as_vio(completion)); completion->callback(completion); } static void read_journal_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct vdo *vdo = vio->completion.vdo; continue_vio_after_io(vio, finish_journal_load, vdo->thread_config.admin_thread); } /** * vdo_repair() - Load the recovery journal and then recover or rebuild a vdo. * @parent: The completion to notify when the operation is complete */ void vdo_repair(struct vdo_completion *parent) { int result; char *ptr; struct repair_completion *repair; struct vdo *vdo = parent->vdo; struct recovery_journal *journal = vdo->recovery_journal; physical_block_number_t pbn = journal->origin; block_count_t remaining = journal->size; block_count_t vio_count = DIV_ROUND_UP(remaining, MAX_BLOCKS_PER_VIO); page_count_t page_count = min_t(page_count_t, vdo->device_config->cache_size >> 1, MAXIMUM_SIMULTANEOUS_VDO_BLOCK_MAP_RESTORATION_READS); vdo_assert_on_admin_thread(vdo, __func__); if (vdo->load_state == VDO_FORCE_REBUILD) { uds_log_warning("Rebuilding reference counts to clear read-only mode"); vdo->states.vdo.read_only_recoveries++; } else if (vdo->load_state == VDO_REBUILD_FOR_UPGRADE) { uds_log_warning("Rebuilding reference counts for upgrade"); } else { uds_log_warning("Device was dirty, rebuilding reference counts"); } result = vdo_allocate_extended(struct repair_completion, page_count, struct vdo_page_completion, __func__, &repair); if (result != VDO_SUCCESS) { vdo_fail_completion(parent, result); return; } vdo_initialize_completion(&repair->completion, vdo, VDO_REPAIR_COMPLETION); repair->completion.error_handler = abort_repair; repair->completion.parent = parent; prepare_repair_completion(repair, finish_repair, VDO_ZONE_TYPE_ADMIN); repair->page_count = page_count; result = vdo_allocate(remaining * VDO_BLOCK_SIZE, char, __func__, &repair->journal_data); if (abort_on_error(result, repair)) return; result = vdo_allocate(vio_count, struct vio, __func__, &repair->vios); if (abort_on_error(result, repair)) return; ptr = repair->journal_data; for (repair->vio_count = 0; repair->vio_count < vio_count; repair->vio_count++) { block_count_t blocks = min_t(block_count_t, remaining, MAX_BLOCKS_PER_VIO); result = allocate_vio_components(vdo, VIO_TYPE_RECOVERY_JOURNAL, VIO_PRIORITY_METADATA, repair, blocks, ptr, &repair->vios[repair->vio_count]); if (abort_on_error(result, repair)) return; ptr += (blocks * VDO_BLOCK_SIZE); remaining -= blocks; } for (vio_count = 0; vio_count < repair->vio_count; vio_count++, pbn += MAX_BLOCKS_PER_VIO) { vdo_submit_metadata_vio(&repair->vios[vio_count], pbn, read_journal_endio, handle_journal_load_error, REQ_OP_READ); } }