/* * Copyright (C) 2010-2011 Neil Brown * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved. * * This file is released under the GPL. */ #include <linux/slab.h> #include <linux/module.h> #include "md.h" #include "raid1.h" #include "raid5.h" #include "bitmap.h" #include <linux/device-mapper.h> #define DM_MSG_PREFIX "raid" /* * The following flags are used by dm-raid.c to set up the array state. * They must be cleared before md_run is called. */ #define FirstUse 10 /* rdev flag */ struct raid_dev { /* * Two DM devices, one to hold metadata and one to hold the * actual data/parity. The reason for this is to not confuse * ti->len and give more flexibility in altering size and * characteristics. * * While it is possible for this device to be associated * with a different physical device than the data_dev, it * is intended for it to be the same. * |--------- Physical Device ---------| * |- meta_dev -|------ data_dev ------| */ struct dm_dev *meta_dev; struct dm_dev *data_dev; struct md_rdev rdev; }; /* * Flags for rs->print_flags field. */ #define DMPF_SYNC 0x1 #define DMPF_NOSYNC 0x2 #define DMPF_REBUILD 0x4 #define DMPF_DAEMON_SLEEP 0x8 #define DMPF_MIN_RECOVERY_RATE 0x10 #define DMPF_MAX_RECOVERY_RATE 0x20 #define DMPF_MAX_WRITE_BEHIND 0x40 #define DMPF_STRIPE_CACHE 0x80 #define DMPF_REGION_SIZE 0X100 struct raid_set { struct dm_target *ti; uint32_t bitmap_loaded; uint32_t print_flags; struct mddev md; struct raid_type *raid_type; struct dm_target_callbacks callbacks; struct raid_dev dev[0]; }; /* Supported raid types and properties. */ static struct raid_type { const char *name; /* RAID algorithm. */ const char *descr; /* Descriptor text for logging. */ const unsigned parity_devs; /* # of parity devices. */ const unsigned minimal_devs; /* minimal # of devices in set. */ const unsigned level; /* RAID level. */ const unsigned algorithm; /* RAID algorithm. */ } raid_types[] = { {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */}, {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE} }; static struct raid_type *get_raid_type(char *name) { int i; for (i = 0; i < ARRAY_SIZE(raid_types); i++) if (!strcmp(raid_types[i].name, name)) return &raid_types[i]; return NULL; } static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) { unsigned i; struct raid_set *rs; sector_t sectors_per_dev; if (raid_devs <= raid_type->parity_devs) { ti->error = "Insufficient number of devices"; return ERR_PTR(-EINVAL); } sectors_per_dev = ti->len; if ((raid_type->level > 1) && sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) { ti->error = "Target length not divisible by number of data devices"; return ERR_PTR(-EINVAL); } rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); if (!rs) { ti->error = "Cannot allocate raid context"; return ERR_PTR(-ENOMEM); } mddev_init(&rs->md); rs->ti = ti; rs->raid_type = raid_type; rs->md.raid_disks = raid_devs; rs->md.level = raid_type->level; rs->md.new_level = rs->md.level; rs->md.dev_sectors = sectors_per_dev; rs->md.layout = raid_type->algorithm; rs->md.new_layout = rs->md.layout; rs->md.delta_disks = 0; rs->md.recovery_cp = 0; for (i = 0; i < raid_devs; i++) md_rdev_init(&rs->dev[i].rdev); /* * Remaining items to be initialized by further RAID params: * rs->md.persistent * rs->md.external * rs->md.chunk_sectors * rs->md.new_chunk_sectors */ return rs; } static void context_free(struct raid_set *rs) { int i; for (i = 0; i < rs->md.raid_disks; i++) { if (rs->dev[i].meta_dev) dm_put_device(rs->ti, rs->dev[i].meta_dev); if (rs->dev[i].rdev.sb_page) put_page(rs->dev[i].rdev.sb_page); rs->dev[i].rdev.sb_page = NULL; rs->dev[i].rdev.sb_loaded = 0; if (rs->dev[i].data_dev) dm_put_device(rs->ti, rs->dev[i].data_dev); } kfree(rs); } /* * For every device we have two words * <meta_dev>: meta device name or '-' if missing * <data_dev>: data device name or '-' if missing * * The following are permitted: * - - * - <data_dev> * <meta_dev> <data_dev> * * The following is not allowed: * <meta_dev> - * * This code parses those words. If there is a failure, * the caller must use context_free to unwind the operations. */ static int dev_parms(struct raid_set *rs, char **argv) { int i; int rebuild = 0; int metadata_available = 0; int ret = 0; for (i = 0; i < rs->md.raid_disks; i++, argv += 2) { rs->dev[i].rdev.raid_disk = i; rs->dev[i].meta_dev = NULL; rs->dev[i].data_dev = NULL; /* * There are no offsets, since there is a separate device * for data and metadata. */ rs->dev[i].rdev.data_offset = 0; rs->dev[i].rdev.mddev = &rs->md; if (strcmp(argv[0], "-")) { ret = dm_get_device(rs->ti, argv[0], dm_table_get_mode(rs->ti->table), &rs->dev[i].meta_dev); rs->ti->error = "RAID metadata device lookup failure"; if (ret) return ret; rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); if (!rs->dev[i].rdev.sb_page) return -ENOMEM; } if (!strcmp(argv[1], "-")) { if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && (!rs->dev[i].rdev.recovery_offset)) { rs->ti->error = "Drive designated for rebuild not specified"; return -EINVAL; } rs->ti->error = "No data device supplied with metadata device"; if (rs->dev[i].meta_dev) return -EINVAL; continue; } ret = dm_get_device(rs->ti, argv[1], dm_table_get_mode(rs->ti->table), &rs->dev[i].data_dev); if (ret) { rs->ti->error = "RAID device lookup failure"; return ret; } if (rs->dev[i].meta_dev) { metadata_available = 1; rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; } rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; list_add(&rs->dev[i].rdev.same_set, &rs->md.disks); if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) rebuild++; } if (metadata_available) { rs->md.external = 0; rs->md.persistent = 1; rs->md.major_version = 2; } else if (rebuild && !rs->md.recovery_cp) { /* * Without metadata, we will not be able to tell if the array * is in-sync or not - we must assume it is not. Therefore, * it is impossible to rebuild a drive. * * Even if there is metadata, the on-disk information may * indicate that the array is not in-sync and it will then * fail at that time. * * User could specify 'nosync' option if desperate. */ DMERR("Unable to rebuild drive while array is not in-sync"); rs->ti->error = "RAID device lookup failure"; return -EINVAL; } return 0; } /* * validate_region_size * @rs * @region_size: region size in sectors. If 0, pick a size (4MiB default). * * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. * * Returns: 0 on success, -EINVAL on failure. */ static int validate_region_size(struct raid_set *rs, unsigned long region_size) { unsigned long min_region_size = rs->ti->len / (1 << 21); if (!region_size) { /* * Choose a reasonable default. All figures in sectors. */ if (min_region_size > (1 << 13)) { DMINFO("Choosing default region size of %lu sectors", region_size); region_size = min_region_size; } else { DMINFO("Choosing default region size of 4MiB"); region_size = 1 << 13; /* sectors */ } } else { /* * Validate user-supplied value. */ if (region_size > rs->ti->len) { rs->ti->error = "Supplied region size is too large"; return -EINVAL; } if (region_size < min_region_size) { DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", region_size, min_region_size); rs->ti->error = "Supplied region size is too small"; return -EINVAL; } if (!is_power_of_2(region_size)) { rs->ti->error = "Region size is not a power of 2"; return -EINVAL; } if (region_size < rs->md.chunk_sectors) { rs->ti->error = "Region size is smaller than the chunk size"; return -EINVAL; } } /* * Convert sectors to bytes. */ rs->md.bitmap_info.chunksize = (region_size << 9); return 0; } /* * Possible arguments are... * <chunk_size> [optional_args] * * Argument definitions * <chunk_size> The number of sectors per disk that * will form the "stripe" * [[no]sync] Force or prevent recovery of the * entire array * [rebuild <idx>] Rebuild the drive indicated by the index * [daemon_sleep <ms>] Time between bitmap daemon work to * clear bits * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization * [write_mostly <idx>] Indicate a write mostly drive via index * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) * [stripe_cache <sectors>] Stripe cache size for higher RAIDs * [region_size <sectors>] Defines granularity of bitmap */ static int parse_raid_params(struct raid_set *rs, char **argv, unsigned num_raid_params) { unsigned i, rebuild_cnt = 0; unsigned long value, region_size = 0; char *key; /* * First, parse the in-order required arguments * "chunk_size" is the only argument of this type. */ if ((strict_strtoul(argv[0], 10, &value) < 0)) { rs->ti->error = "Bad chunk size"; return -EINVAL; } else if (rs->raid_type->level == 1) { if (value) DMERR("Ignoring chunk size parameter for RAID 1"); value = 0; } else if (!is_power_of_2(value)) { rs->ti->error = "Chunk size must be a power of 2"; return -EINVAL; } else if (value < 8) { rs->ti->error = "Chunk size value is too small"; return -EINVAL; } rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; argv++; num_raid_params--; /* * We set each individual device as In_sync with a completed * 'recovery_offset'. If there has been a device failure or * replacement then one of the following cases applies: * * 1) User specifies 'rebuild'. * - Device is reset when param is read. * 2) A new device is supplied. * - No matching superblock found, resets device. * 3) Device failure was transient and returns on reload. * - Failure noticed, resets device for bitmap replay. * 4) Device hadn't completed recovery after previous failure. * - Superblock is read and overrides recovery_offset. * * What is found in the superblocks of the devices is always * authoritative, unless 'rebuild' or '[no]sync' was specified. */ for (i = 0; i < rs->md.raid_disks; i++) { set_bit(In_sync, &rs->dev[i].rdev.flags); rs->dev[i].rdev.recovery_offset = MaxSector; } /* * Second, parse the unordered optional arguments */ for (i = 0; i < num_raid_params; i++) { if (!strcasecmp(argv[i], "nosync")) { rs->md.recovery_cp = MaxSector; rs->print_flags |= DMPF_NOSYNC; continue; } if (!strcasecmp(argv[i], "sync")) { rs->md.recovery_cp = 0; rs->print_flags |= DMPF_SYNC; continue; } /* The rest of the optional arguments come in key/value pairs */ if ((i + 1) >= num_raid_params) { rs->ti->error = "Wrong number of raid parameters given"; return -EINVAL; } key = argv[i++]; if (strict_strtoul(argv[i], 10, &value) < 0) { rs->ti->error = "Bad numerical argument given in raid params"; return -EINVAL; } if (!strcasecmp(key, "rebuild")) { rebuild_cnt++; if (((rs->raid_type->level != 1) && (rebuild_cnt > rs->raid_type->parity_devs)) || ((rs->raid_type->level == 1) && (rebuild_cnt > (rs->md.raid_disks - 1)))) { rs->ti->error = "Too many rebuild devices specified for given RAID type"; return -EINVAL; } if (value > rs->md.raid_disks) { rs->ti->error = "Invalid rebuild index given"; return -EINVAL; } clear_bit(In_sync, &rs->dev[value].rdev.flags); rs->dev[value].rdev.recovery_offset = 0; rs->print_flags |= DMPF_REBUILD; } else if (!strcasecmp(key, "write_mostly")) { if (rs->raid_type->level != 1) { rs->ti->error = "write_mostly option is only valid for RAID1"; return -EINVAL; } if (value >= rs->md.raid_disks) { rs->ti->error = "Invalid write_mostly drive index given"; return -EINVAL; } set_bit(WriteMostly, &rs->dev[value].rdev.flags); } else if (!strcasecmp(key, "max_write_behind")) { if (rs->raid_type->level != 1) { rs->ti->error = "max_write_behind option is only valid for RAID1"; return -EINVAL; } rs->print_flags |= DMPF_MAX_WRITE_BEHIND; /* * In device-mapper, we specify things in sectors, but * MD records this value in kB */ value /= 2; if (value > COUNTER_MAX) { rs->ti->error = "Max write-behind limit out of range"; return -EINVAL; } rs->md.bitmap_info.max_write_behind = value; } else if (!strcasecmp(key, "daemon_sleep")) { rs->print_flags |= DMPF_DAEMON_SLEEP; if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { rs->ti->error = "daemon sleep period out of range"; return -EINVAL; } rs->md.bitmap_info.daemon_sleep = value; } else if (!strcasecmp(key, "stripe_cache")) { rs->print_flags |= DMPF_STRIPE_CACHE; /* * In device-mapper, we specify things in sectors, but * MD records this value in kB */ value /= 2; if (rs->raid_type->level < 5) { rs->ti->error = "Inappropriate argument: stripe_cache"; return -EINVAL; } if (raid5_set_cache_size(&rs->md, (int)value)) { rs->ti->error = "Bad stripe_cache size"; return -EINVAL; } } else if (!strcasecmp(key, "min_recovery_rate")) { rs->print_flags |= DMPF_MIN_RECOVERY_RATE; if (value > INT_MAX) { rs->ti->error = "min_recovery_rate out of range"; return -EINVAL; } rs->md.sync_speed_min = (int)value; } else if (!strcasecmp(key, "max_recovery_rate")) { rs->print_flags |= DMPF_MAX_RECOVERY_RATE; if (value > INT_MAX) { rs->ti->error = "max_recovery_rate out of range"; return -EINVAL; } rs->md.sync_speed_max = (int)value; } else if (!strcasecmp(key, "region_size")) { rs->print_flags |= DMPF_REGION_SIZE; region_size = value; } else { DMERR("Unable to parse RAID parameter: %s", key); rs->ti->error = "Unable to parse RAID parameters"; return -EINVAL; } } if (validate_region_size(rs, region_size)) return -EINVAL; if (rs->md.chunk_sectors) rs->ti->split_io = rs->md.chunk_sectors; else rs->ti->split_io = region_size; if (rs->md.chunk_sectors) rs->ti->split_io = rs->md.chunk_sectors; else rs->ti->split_io = region_size; /* Assume there are no metadata devices until the drives are parsed */ rs->md.persistent = 0; rs->md.external = 1; return 0; } static void do_table_event(struct work_struct *ws) { struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); dm_table_event(rs->ti->table); } static int raid_is_congested(struct dm_target_callbacks *cb, int bits) { struct raid_set *rs = container_of(cb, struct raid_set, callbacks); if (rs->raid_type->level == 1) return md_raid1_congested(&rs->md, bits); return md_raid5_congested(&rs->md, bits); } /* * This structure is never routinely used by userspace, unlike md superblocks. * Devices with this superblock should only ever be accessed via device-mapper. */ #define DM_RAID_MAGIC 0x64526D44 struct dm_raid_superblock { __le32 magic; /* "DmRd" */ __le32 features; /* Used to indicate possible future changes */ __le32 num_devices; /* Number of devices in this array. (Max 64) */ __le32 array_position; /* The position of this drive in the array */ __le64 events; /* Incremented by md when superblock updated */ __le64 failed_devices; /* Bit field of devices to indicate failures */ /* * This offset tracks the progress of the repair or replacement of * an individual drive. */ __le64 disk_recovery_offset; /* * This offset tracks the progress of the initial array * synchronisation/parity calculation. */ __le64 array_resync_offset; /* * RAID characteristics */ __le32 level; __le32 layout; __le32 stripe_sectors; __u8 pad[452]; /* Round struct to 512 bytes. */ /* Always set to 0 when writing. */ } __packed; static int read_disk_sb(struct md_rdev *rdev, int size) { BUG_ON(!rdev->sb_page); if (rdev->sb_loaded) return 0; if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) { DMERR("Failed to read superblock of device at position %d", rdev->raid_disk); set_bit(Faulty, &rdev->flags); return -EINVAL; } rdev->sb_loaded = 1; return 0; } static void super_sync(struct mddev *mddev, struct md_rdev *rdev) { struct md_rdev *r; uint64_t failed_devices; struct dm_raid_superblock *sb; sb = page_address(rdev->sb_page); failed_devices = le64_to_cpu(sb->failed_devices); rdev_for_each(r, mddev) if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags)) failed_devices |= (1ULL << r->raid_disk); memset(sb, 0, sizeof(*sb)); sb->magic = cpu_to_le32(DM_RAID_MAGIC); sb->features = cpu_to_le32(0); /* No features yet */ sb->num_devices = cpu_to_le32(mddev->raid_disks); sb->array_position = cpu_to_le32(rdev->raid_disk); sb->events = cpu_to_le64(mddev->events); sb->failed_devices = cpu_to_le64(failed_devices); sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); sb->level = cpu_to_le32(mddev->level); sb->layout = cpu_to_le32(mddev->layout); sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); } /* * super_load * * This function creates a superblock if one is not found on the device * and will decide which superblock to use if there's a choice. * * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise */ static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) { int ret; struct dm_raid_superblock *sb; struct dm_raid_superblock *refsb; uint64_t events_sb, events_refsb; rdev->sb_start = 0; rdev->sb_size = sizeof(*sb); ret = read_disk_sb(rdev, rdev->sb_size); if (ret) return ret; sb = page_address(rdev->sb_page); /* * Two cases that we want to write new superblocks and rebuild: * 1) New device (no matching magic number) * 2) Device specified for rebuild (!In_sync w/ offset == 0) */ if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { super_sync(rdev->mddev, rdev); set_bit(FirstUse, &rdev->flags); /* Force writing of superblocks to disk */ set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); /* Any superblock is better than none, choose that if given */ return refdev ? 0 : 1; } if (!refdev) return 1; events_sb = le64_to_cpu(sb->events); refsb = page_address(refdev->sb_page); events_refsb = le64_to_cpu(refsb->events); return (events_sb > events_refsb) ? 1 : 0; } static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev) { int role; struct raid_set *rs = container_of(mddev, struct raid_set, md); uint64_t events_sb; uint64_t failed_devices; struct dm_raid_superblock *sb; uint32_t new_devs = 0; uint32_t rebuilds = 0; struct md_rdev *r; struct dm_raid_superblock *sb2; sb = page_address(rdev->sb_page); events_sb = le64_to_cpu(sb->events); failed_devices = le64_to_cpu(sb->failed_devices); /* * Initialise to 1 if this is a new superblock. */ mddev->events = events_sb ? : 1; /* * Reshaping is not currently allowed */ if ((le32_to_cpu(sb->level) != mddev->level) || (le32_to_cpu(sb->layout) != mddev->layout) || (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) { DMERR("Reshaping arrays not yet supported."); return -EINVAL; } /* We can only change the number of devices in RAID1 right now */ if ((rs->raid_type->level != 1) && (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { DMERR("Reshaping arrays not yet supported."); return -EINVAL; } if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))) mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); /* * During load, we set FirstUse if a new superblock was written. * There are two reasons we might not have a superblock: * 1) The array is brand new - in which case, all of the * devices must have their In_sync bit set. Also, * recovery_cp must be 0, unless forced. * 2) This is a new device being added to an old array * and the new device needs to be rebuilt - in which * case the In_sync bit will /not/ be set and * recovery_cp must be MaxSector. */ rdev_for_each(r, mddev) { if (!test_bit(In_sync, &r->flags)) { DMINFO("Device %d specified for rebuild: " "Clearing superblock", r->raid_disk); rebuilds++; } else if (test_bit(FirstUse, &r->flags)) new_devs++; } if (!rebuilds) { if (new_devs == mddev->raid_disks) { DMINFO("Superblocks created for new array"); set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); } else if (new_devs) { DMERR("New device injected " "into existing array without 'rebuild' " "parameter specified"); return -EINVAL; } } else if (new_devs) { DMERR("'rebuild' devices cannot be " "injected into an array with other first-time devices"); return -EINVAL; } else if (mddev->recovery_cp != MaxSector) { DMERR("'rebuild' specified while array is not in-sync"); return -EINVAL; } /* * Now we set the Faulty bit for those devices that are * recorded in the superblock as failed. */ rdev_for_each(r, mddev) { if (!r->sb_page) continue; sb2 = page_address(r->sb_page); sb2->failed_devices = 0; /* * Check for any device re-ordering. */ if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { role = le32_to_cpu(sb2->array_position); if (role != r->raid_disk) { if (rs->raid_type->level != 1) { rs->ti->error = "Cannot change device " "positions in RAID array"; return -EINVAL; } DMINFO("RAID1 device #%d now at position #%d", role, r->raid_disk); } /* * Partial recovery is performed on * returning failed devices. */ if (failed_devices & (1 << role)) set_bit(Faulty, &r->flags); } } return 0; } static int super_validate(struct mddev *mddev, struct md_rdev *rdev) { struct dm_raid_superblock *sb = page_address(rdev->sb_page); /* * If mddev->events is not set, we know we have not yet initialized * the array. */ if (!mddev->events && super_init_validation(mddev, rdev)) return -EINVAL; mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */ rdev->mddev->bitmap_info.default_offset = 4096 >> 9; if (!test_bit(FirstUse, &rdev->flags)) { rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); if (rdev->recovery_offset != MaxSector) clear_bit(In_sync, &rdev->flags); } /* * If a device comes back, set it as not In_sync and no longer faulty. */ if (test_bit(Faulty, &rdev->flags)) { clear_bit(Faulty, &rdev->flags); clear_bit(In_sync, &rdev->flags); rdev->saved_raid_disk = rdev->raid_disk; rdev->recovery_offset = 0; } clear_bit(FirstUse, &rdev->flags); return 0; } /* * Analyse superblocks and select the freshest. */ static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) { int ret; unsigned redundancy = 0; struct raid_dev *dev; struct md_rdev *rdev, *freshest; struct mddev *mddev = &rs->md; switch (rs->raid_type->level) { case 1: redundancy = rs->md.raid_disks - 1; break; case 4: case 5: case 6: redundancy = rs->raid_type->parity_devs; break; default: ti->error = "Unknown RAID type"; return -EINVAL; } freshest = NULL; rdev_for_each(rdev, mddev) { if (!rdev->meta_bdev) continue; ret = super_load(rdev, freshest); switch (ret) { case 1: freshest = rdev; break; case 0: break; default: dev = container_of(rdev, struct raid_dev, rdev); if (redundancy--) { if (dev->meta_dev) dm_put_device(ti, dev->meta_dev); dev->meta_dev = NULL; rdev->meta_bdev = NULL; if (rdev->sb_page) put_page(rdev->sb_page); rdev->sb_page = NULL; rdev->sb_loaded = 0; /* * We might be able to salvage the data device * even though the meta device has failed. For * now, we behave as though '- -' had been * set for this device in the table. */ if (dev->data_dev) dm_put_device(ti, dev->data_dev); dev->data_dev = NULL; rdev->bdev = NULL; list_del(&rdev->same_set); continue; } ti->error = "Failed to load superblock"; return ret; } } if (!freshest) return 0; /* * Validation of the freshest device provides the source of * validation for the remaining devices. */ ti->error = "Unable to assemble array: Invalid superblocks"; if (super_validate(mddev, freshest)) return -EINVAL; rdev_for_each(rdev, mddev) if ((rdev != freshest) && super_validate(mddev, rdev)) return -EINVAL; return 0; } /* * Construct a RAID4/5/6 mapping: * Args: * <raid_type> <#raid_params> <raid_params> \ * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> } * * <raid_params> varies by <raid_type>. See 'parse_raid_params' for * details on possible <raid_params>. */ static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) { int ret; struct raid_type *rt; unsigned long num_raid_params, num_raid_devs; struct raid_set *rs = NULL; /* Must have at least <raid_type> <#raid_params> */ if (argc < 2) { ti->error = "Too few arguments"; return -EINVAL; } /* raid type */ rt = get_raid_type(argv[0]); if (!rt) { ti->error = "Unrecognised raid_type"; return -EINVAL; } argc--; argv++; /* number of RAID parameters */ if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) { ti->error = "Cannot understand number of RAID parameters"; return -EINVAL; } argc--; argv++; /* Skip over RAID params for now and find out # of devices */ if (num_raid_params + 1 > argc) { ti->error = "Arguments do not agree with counts given"; return -EINVAL; } if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) || (num_raid_devs >= INT_MAX)) { ti->error = "Cannot understand number of raid devices"; return -EINVAL; } rs = context_alloc(ti, rt, (unsigned)num_raid_devs); if (IS_ERR(rs)) return PTR_ERR(rs); ret = parse_raid_params(rs, argv, (unsigned)num_raid_params); if (ret) goto bad; ret = -EINVAL; argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */ argv += num_raid_params + 1; if (argc != (num_raid_devs * 2)) { ti->error = "Supplied RAID devices does not match the count given"; goto bad; } ret = dev_parms(rs, argv); if (ret) goto bad; rs->md.sync_super = super_sync; ret = analyse_superblocks(ti, rs); if (ret) goto bad; INIT_WORK(&rs->md.event_work, do_table_event); ti->private = rs; ti->num_flush_requests = 1; mutex_lock(&rs->md.reconfig_mutex); ret = md_run(&rs->md); rs->md.in_sync = 0; /* Assume already marked dirty */ mutex_unlock(&rs->md.reconfig_mutex); if (ret) { ti->error = "Fail to run raid array"; goto bad; } rs->callbacks.congested_fn = raid_is_congested; dm_table_add_target_callbacks(ti->table, &rs->callbacks); mddev_suspend(&rs->md); return 0; bad: context_free(rs); return ret; } static void raid_dtr(struct dm_target *ti) { struct raid_set *rs = ti->private; list_del_init(&rs->callbacks.list); md_stop(&rs->md); context_free(rs); } static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context) { struct raid_set *rs = ti->private; struct mddev *mddev = &rs->md; mddev->pers->make_request(mddev, bio); return DM_MAPIO_SUBMITTED; } static int raid_status(struct dm_target *ti, status_type_t type, char *result, unsigned maxlen) { struct raid_set *rs = ti->private; unsigned raid_param_cnt = 1; /* at least 1 for chunksize */ unsigned sz = 0; int i, array_in_sync = 0; sector_t sync; switch (type) { case STATUSTYPE_INFO: DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks); if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery)) sync = rs->md.curr_resync_completed; else sync = rs->md.recovery_cp; if (sync >= rs->md.resync_max_sectors) { array_in_sync = 1; sync = rs->md.resync_max_sectors; } else { /* * The array may be doing an initial sync, or it may * be rebuilding individual components. If all the * devices are In_sync, then it is the array that is * being initialized. */ for (i = 0; i < rs->md.raid_disks; i++) if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) array_in_sync = 1; } /* * Status characters: * 'D' = Dead/Failed device * 'a' = Alive but not in-sync * 'A' = Alive and in-sync */ for (i = 0; i < rs->md.raid_disks; i++) { if (test_bit(Faulty, &rs->dev[i].rdev.flags)) DMEMIT("D"); else if (!array_in_sync || !test_bit(In_sync, &rs->dev[i].rdev.flags)) DMEMIT("a"); else DMEMIT("A"); } /* * In-sync ratio: * The in-sync ratio shows the progress of: * - Initializing the array * - Rebuilding a subset of devices of the array * The user can distinguish between the two by referring * to the status characters. */ DMEMIT(" %llu/%llu", (unsigned long long) sync, (unsigned long long) rs->md.resync_max_sectors); break; case STATUSTYPE_TABLE: /* The string you would use to construct this array */ for (i = 0; i < rs->md.raid_disks; i++) { if ((rs->print_flags & DMPF_REBUILD) && rs->dev[i].data_dev && !test_bit(In_sync, &rs->dev[i].rdev.flags)) raid_param_cnt += 2; /* for rebuilds */ if (rs->dev[i].data_dev && test_bit(WriteMostly, &rs->dev[i].rdev.flags)) raid_param_cnt += 2; } raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2); if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)) raid_param_cnt--; DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, rs->md.chunk_sectors); if ((rs->print_flags & DMPF_SYNC) && (rs->md.recovery_cp == MaxSector)) DMEMIT(" sync"); if (rs->print_flags & DMPF_NOSYNC) DMEMIT(" nosync"); for (i = 0; i < rs->md.raid_disks; i++) if ((rs->print_flags & DMPF_REBUILD) && rs->dev[i].data_dev && !test_bit(In_sync, &rs->dev[i].rdev.flags)) DMEMIT(" rebuild %u", i); if (rs->print_flags & DMPF_DAEMON_SLEEP) DMEMIT(" daemon_sleep %lu", rs->md.bitmap_info.daemon_sleep); if (rs->print_flags & DMPF_MIN_RECOVERY_RATE) DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min); if (rs->print_flags & DMPF_MAX_RECOVERY_RATE) DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max); for (i = 0; i < rs->md.raid_disks; i++) if (rs->dev[i].data_dev && test_bit(WriteMostly, &rs->dev[i].rdev.flags)) DMEMIT(" write_mostly %u", i); if (rs->print_flags & DMPF_MAX_WRITE_BEHIND) DMEMIT(" max_write_behind %lu", rs->md.bitmap_info.max_write_behind); if (rs->print_flags & DMPF_STRIPE_CACHE) { struct r5conf *conf = rs->md.private; /* convert from kiB to sectors */ DMEMIT(" stripe_cache %d", conf ? conf->max_nr_stripes * 2 : 0); } if (rs->print_flags & DMPF_REGION_SIZE) DMEMIT(" region_size %lu", rs->md.bitmap_info.chunksize >> 9); DMEMIT(" %d", rs->md.raid_disks); for (i = 0; i < rs->md.raid_disks; i++) { if (rs->dev[i].meta_dev) DMEMIT(" %s", rs->dev[i].meta_dev->name); else DMEMIT(" -"); if (rs->dev[i].data_dev) DMEMIT(" %s", rs->dev[i].data_dev->name); else DMEMIT(" -"); } } return 0; } static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct raid_set *rs = ti->private; unsigned i; int ret = 0; for (i = 0; !ret && i < rs->md.raid_disks; i++) if (rs->dev[i].data_dev) ret = fn(ti, rs->dev[i].data_dev, 0, /* No offset on data devs */ rs->md.dev_sectors, data); return ret; } static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct raid_set *rs = ti->private; unsigned chunk_size = rs->md.chunk_sectors << 9; struct r5conf *conf = rs->md.private; blk_limits_io_min(limits, chunk_size); blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); } static void raid_presuspend(struct dm_target *ti) { struct raid_set *rs = ti->private; md_stop_writes(&rs->md); } static void raid_postsuspend(struct dm_target *ti) { struct raid_set *rs = ti->private; mddev_suspend(&rs->md); } static void raid_resume(struct dm_target *ti) { struct raid_set *rs = ti->private; if (!rs->bitmap_loaded) { bitmap_load(&rs->md); rs->bitmap_loaded = 1; } else md_wakeup_thread(rs->md.thread); mddev_resume(&rs->md); } static struct target_type raid_target = { .name = "raid", .version = {1, 2, 0}, .module = THIS_MODULE, .ctr = raid_ctr, .dtr = raid_dtr, .map = raid_map, .status = raid_status, .iterate_devices = raid_iterate_devices, .io_hints = raid_io_hints, .presuspend = raid_presuspend, .postsuspend = raid_postsuspend, .resume = raid_resume, }; static int __init dm_raid_init(void) { return dm_register_target(&raid_target); } static void __exit dm_raid_exit(void) { dm_unregister_target(&raid_target); } module_init(dm_raid_init); module_exit(dm_raid_exit); MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target"); MODULE_ALIAS("dm-raid4"); MODULE_ALIAS("dm-raid5"); MODULE_ALIAS("dm-raid6"); MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); MODULE_LICENSE("GPL");