// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 CNEX Labs * Initial release: Javier Gonzalez <javier@cnexlabs.com> * Matias Bjorling <matias@cnexlabs.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * pblk-read.c - pblk's read path */ #include "pblk.h" /* * There is no guarantee that the value read from cache has not been updated and * resides at another location in the cache. We guarantee though that if the * value is read from the cache, it belongs to the mapped lba. In order to * guarantee and order between writes and reads are ordered, a flush must be * issued. */ static int pblk_read_from_cache(struct pblk *pblk, struct bio *bio, sector_t lba, struct ppa_addr ppa, int bio_iter, bool advanced_bio) { #ifdef CONFIG_NVM_PBLK_DEBUG /* Callers must ensure that the ppa points to a cache address */ BUG_ON(pblk_ppa_empty(ppa)); BUG_ON(!pblk_addr_in_cache(ppa)); #endif return pblk_rb_copy_to_bio(&pblk->rwb, bio, lba, ppa, bio_iter, advanced_bio); } static void pblk_read_ppalist_rq(struct pblk *pblk, struct nvm_rq *rqd, struct bio *bio, sector_t blba, unsigned long *read_bitmap) { struct pblk_sec_meta *meta_list = rqd->meta_list; struct ppa_addr ppas[NVM_MAX_VLBA]; int nr_secs = rqd->nr_ppas; bool advanced_bio = false; int i, j = 0; pblk_lookup_l2p_seq(pblk, ppas, blba, nr_secs); for (i = 0; i < nr_secs; i++) { struct ppa_addr p = ppas[i]; sector_t lba = blba + i; retry: if (pblk_ppa_empty(p)) { WARN_ON(test_and_set_bit(i, read_bitmap)); meta_list[i].lba = cpu_to_le64(ADDR_EMPTY); if (unlikely(!advanced_bio)) { bio_advance(bio, (i) * PBLK_EXPOSED_PAGE_SIZE); advanced_bio = true; } goto next; } /* Try to read from write buffer. The address is later checked * on the write buffer to prevent retrieving overwritten data. */ if (pblk_addr_in_cache(p)) { if (!pblk_read_from_cache(pblk, bio, lba, p, i, advanced_bio)) { pblk_lookup_l2p_seq(pblk, &p, lba, 1); goto retry; } WARN_ON(test_and_set_bit(i, read_bitmap)); meta_list[i].lba = cpu_to_le64(lba); advanced_bio = true; #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_inc(&pblk->cache_reads); #endif } else { /* Read from media non-cached sectors */ rqd->ppa_list[j++] = p; } next: if (advanced_bio) bio_advance(bio, PBLK_EXPOSED_PAGE_SIZE); } if (pblk_io_aligned(pblk, nr_secs)) rqd->is_seq = 1; #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_add(nr_secs, &pblk->inflight_reads); #endif } static void pblk_read_check_seq(struct pblk *pblk, struct nvm_rq *rqd, sector_t blba) { struct pblk_sec_meta *meta_lba_list = rqd->meta_list; int nr_lbas = rqd->nr_ppas; int i; for (i = 0; i < nr_lbas; i++) { u64 lba = le64_to_cpu(meta_lba_list[i].lba); if (lba == ADDR_EMPTY) continue; if (lba != blba + i) { #ifdef CONFIG_NVM_PBLK_DEBUG struct ppa_addr *ppa_list = nvm_rq_to_ppa_list(rqd); print_ppa(pblk, &ppa_list[i], "seq", i); #endif pblk_err(pblk, "corrupted read LBA (%llu/%llu)\n", lba, (u64)blba + i); WARN_ON(1); } } } /* * There can be holes in the lba list. */ static void pblk_read_check_rand(struct pblk *pblk, struct nvm_rq *rqd, u64 *lba_list, int nr_lbas) { struct pblk_sec_meta *meta_lba_list = rqd->meta_list; int i, j; for (i = 0, j = 0; i < nr_lbas; i++) { u64 lba = lba_list[i]; u64 meta_lba; if (lba == ADDR_EMPTY) continue; meta_lba = le64_to_cpu(meta_lba_list[j].lba); if (lba != meta_lba) { #ifdef CONFIG_NVM_PBLK_DEBUG struct ppa_addr *ppa_list = nvm_rq_to_ppa_list(rqd); print_ppa(pblk, &ppa_list[j], "rnd", j); #endif pblk_err(pblk, "corrupted read LBA (%llu/%llu)\n", meta_lba, lba); WARN_ON(1); } j++; } WARN_ONCE(j != rqd->nr_ppas, "pblk: corrupted random request\n"); } static void pblk_end_user_read(struct bio *bio) { #ifdef CONFIG_NVM_PBLK_DEBUG WARN_ONCE(bio->bi_status, "pblk: corrupted read bio\n"); #endif bio_endio(bio); } static void __pblk_end_io_read(struct pblk *pblk, struct nvm_rq *rqd, bool put_line) { struct nvm_tgt_dev *dev = pblk->dev; struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd); struct bio *int_bio = rqd->bio; unsigned long start_time = r_ctx->start_time; generic_end_io_acct(dev->q, REQ_OP_READ, &pblk->disk->part0, start_time); if (rqd->error) pblk_log_read_err(pblk, rqd); pblk_read_check_seq(pblk, rqd, r_ctx->lba); if (int_bio) bio_put(int_bio); if (put_line) pblk_rq_to_line_put(pblk, rqd); #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_add(rqd->nr_ppas, &pblk->sync_reads); atomic_long_sub(rqd->nr_ppas, &pblk->inflight_reads); #endif pblk_free_rqd(pblk, rqd, PBLK_READ); atomic_dec(&pblk->inflight_io); } static void pblk_end_io_read(struct nvm_rq *rqd) { struct pblk *pblk = rqd->private; struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd); struct bio *bio = (struct bio *)r_ctx->private; pblk_end_user_read(bio); __pblk_end_io_read(pblk, rqd, true); } static void pblk_end_partial_read(struct nvm_rq *rqd) { struct pblk *pblk = rqd->private; struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd); struct pblk_pr_ctx *pr_ctx = r_ctx->private; struct bio *new_bio = rqd->bio; struct bio *bio = pr_ctx->orig_bio; struct bio_vec src_bv, dst_bv; struct pblk_sec_meta *meta_list = rqd->meta_list; int bio_init_idx = pr_ctx->bio_init_idx; unsigned long *read_bitmap = pr_ctx->bitmap; int nr_secs = pr_ctx->orig_nr_secs; int nr_holes = nr_secs - bitmap_weight(read_bitmap, nr_secs); __le64 *lba_list_mem, *lba_list_media; void *src_p, *dst_p; int hole, i; if (unlikely(nr_holes == 1)) { struct ppa_addr ppa; ppa = rqd->ppa_addr; rqd->ppa_list = pr_ctx->ppa_ptr; rqd->dma_ppa_list = pr_ctx->dma_ppa_list; rqd->ppa_list[0] = ppa; } /* Re-use allocated memory for intermediate lbas */ lba_list_mem = (((void *)rqd->ppa_list) + pblk_dma_ppa_size); lba_list_media = (((void *)rqd->ppa_list) + 2 * pblk_dma_ppa_size); for (i = 0; i < nr_secs; i++) { lba_list_media[i] = meta_list[i].lba; meta_list[i].lba = lba_list_mem[i]; } /* Fill the holes in the original bio */ i = 0; hole = find_first_zero_bit(read_bitmap, nr_secs); do { struct pblk_line *line; line = pblk_ppa_to_line(pblk, rqd->ppa_list[i]); kref_put(&line->ref, pblk_line_put); meta_list[hole].lba = lba_list_media[i]; src_bv = new_bio->bi_io_vec[i++]; dst_bv = bio->bi_io_vec[bio_init_idx + hole]; src_p = kmap_atomic(src_bv.bv_page); dst_p = kmap_atomic(dst_bv.bv_page); memcpy(dst_p + dst_bv.bv_offset, src_p + src_bv.bv_offset, PBLK_EXPOSED_PAGE_SIZE); kunmap_atomic(src_p); kunmap_atomic(dst_p); mempool_free(src_bv.bv_page, &pblk->page_bio_pool); hole = find_next_zero_bit(read_bitmap, nr_secs, hole + 1); } while (hole < nr_secs); bio_put(new_bio); kfree(pr_ctx); /* restore original request */ rqd->bio = NULL; rqd->nr_ppas = nr_secs; bio_endio(bio); __pblk_end_io_read(pblk, rqd, false); } static int pblk_setup_partial_read(struct pblk *pblk, struct nvm_rq *rqd, unsigned int bio_init_idx, unsigned long *read_bitmap, int nr_holes) { struct pblk_sec_meta *meta_list = rqd->meta_list; struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd); struct pblk_pr_ctx *pr_ctx; struct bio *new_bio, *bio = r_ctx->private; __le64 *lba_list_mem; int nr_secs = rqd->nr_ppas; int i; /* Re-use allocated memory for intermediate lbas */ lba_list_mem = (((void *)rqd->ppa_list) + pblk_dma_ppa_size); new_bio = bio_alloc(GFP_KERNEL, nr_holes); if (pblk_bio_add_pages(pblk, new_bio, GFP_KERNEL, nr_holes)) goto fail_bio_put; if (nr_holes != new_bio->bi_vcnt) { WARN_ONCE(1, "pblk: malformed bio\n"); goto fail_free_pages; } pr_ctx = kmalloc(sizeof(struct pblk_pr_ctx), GFP_KERNEL); if (!pr_ctx) goto fail_free_pages; for (i = 0; i < nr_secs; i++) lba_list_mem[i] = meta_list[i].lba; new_bio->bi_iter.bi_sector = 0; /* internal bio */ bio_set_op_attrs(new_bio, REQ_OP_READ, 0); rqd->bio = new_bio; rqd->nr_ppas = nr_holes; pr_ctx->ppa_ptr = NULL; pr_ctx->orig_bio = bio; bitmap_copy(pr_ctx->bitmap, read_bitmap, NVM_MAX_VLBA); pr_ctx->bio_init_idx = bio_init_idx; pr_ctx->orig_nr_secs = nr_secs; r_ctx->private = pr_ctx; if (unlikely(nr_holes == 1)) { pr_ctx->ppa_ptr = rqd->ppa_list; pr_ctx->dma_ppa_list = rqd->dma_ppa_list; rqd->ppa_addr = rqd->ppa_list[0]; } return 0; fail_free_pages: pblk_bio_free_pages(pblk, new_bio, 0, new_bio->bi_vcnt); fail_bio_put: bio_put(new_bio); return -ENOMEM; } static int pblk_partial_read_bio(struct pblk *pblk, struct nvm_rq *rqd, unsigned int bio_init_idx, unsigned long *read_bitmap, int nr_secs) { int nr_holes; int ret; nr_holes = nr_secs - bitmap_weight(read_bitmap, nr_secs); if (pblk_setup_partial_read(pblk, rqd, bio_init_idx, read_bitmap, nr_holes)) return NVM_IO_ERR; rqd->end_io = pblk_end_partial_read; ret = pblk_submit_io(pblk, rqd); if (ret) { bio_put(rqd->bio); pblk_err(pblk, "partial read IO submission failed\n"); goto err; } return NVM_IO_OK; err: pblk_err(pblk, "failed to perform partial read\n"); /* Free allocated pages in new bio */ pblk_bio_free_pages(pblk, rqd->bio, 0, rqd->bio->bi_vcnt); __pblk_end_io_read(pblk, rqd, false); return NVM_IO_ERR; } static void pblk_read_rq(struct pblk *pblk, struct nvm_rq *rqd, struct bio *bio, sector_t lba, unsigned long *read_bitmap) { struct pblk_sec_meta *meta_list = rqd->meta_list; struct ppa_addr ppa; pblk_lookup_l2p_seq(pblk, &ppa, lba, 1); #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_inc(&pblk->inflight_reads); #endif retry: if (pblk_ppa_empty(ppa)) { WARN_ON(test_and_set_bit(0, read_bitmap)); meta_list[0].lba = cpu_to_le64(ADDR_EMPTY); return; } /* Try to read from write buffer. The address is later checked on the * write buffer to prevent retrieving overwritten data. */ if (pblk_addr_in_cache(ppa)) { if (!pblk_read_from_cache(pblk, bio, lba, ppa, 0, 1)) { pblk_lookup_l2p_seq(pblk, &ppa, lba, 1); goto retry; } WARN_ON(test_and_set_bit(0, read_bitmap)); meta_list[0].lba = cpu_to_le64(lba); #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_inc(&pblk->cache_reads); #endif } else { rqd->ppa_addr = ppa; } } int pblk_submit_read(struct pblk *pblk, struct bio *bio) { struct nvm_tgt_dev *dev = pblk->dev; struct request_queue *q = dev->q; sector_t blba = pblk_get_lba(bio); unsigned int nr_secs = pblk_get_secs(bio); struct pblk_g_ctx *r_ctx; struct nvm_rq *rqd; unsigned int bio_init_idx; DECLARE_BITMAP(read_bitmap, NVM_MAX_VLBA); int ret = NVM_IO_ERR; generic_start_io_acct(q, REQ_OP_READ, bio_sectors(bio), &pblk->disk->part0); bitmap_zero(read_bitmap, nr_secs); rqd = pblk_alloc_rqd(pblk, PBLK_READ); rqd->opcode = NVM_OP_PREAD; rqd->nr_ppas = nr_secs; rqd->bio = NULL; /* cloned bio if needed */ rqd->private = pblk; rqd->end_io = pblk_end_io_read; r_ctx = nvm_rq_to_pdu(rqd); r_ctx->start_time = jiffies; r_ctx->lba = blba; r_ctx->private = bio; /* original bio */ /* Save the index for this bio's start. This is needed in case * we need to fill a partial read. */ bio_init_idx = pblk_get_bi_idx(bio); if (pblk_alloc_rqd_meta(pblk, rqd)) goto fail_rqd_free; if (nr_secs > 1) pblk_read_ppalist_rq(pblk, rqd, bio, blba, read_bitmap); else pblk_read_rq(pblk, rqd, bio, blba, read_bitmap); if (bitmap_full(read_bitmap, nr_secs)) { atomic_inc(&pblk->inflight_io); __pblk_end_io_read(pblk, rqd, false); return NVM_IO_DONE; } /* All sectors are to be read from the device */ if (bitmap_empty(read_bitmap, rqd->nr_ppas)) { struct bio *int_bio = NULL; /* Clone read bio to deal with read errors internally */ int_bio = bio_clone_fast(bio, GFP_KERNEL, &pblk_bio_set); if (!int_bio) { pblk_err(pblk, "could not clone read bio\n"); goto fail_end_io; } rqd->bio = int_bio; if (pblk_submit_io(pblk, rqd)) { pblk_err(pblk, "read IO submission failed\n"); ret = NVM_IO_ERR; goto fail_end_io; } return NVM_IO_OK; } /* The read bio request could be partially filled by the write buffer, * but there are some holes that need to be read from the drive. */ ret = pblk_partial_read_bio(pblk, rqd, bio_init_idx, read_bitmap, nr_secs); if (ret) goto fail_meta_free; return NVM_IO_OK; fail_meta_free: nvm_dev_dma_free(dev->parent, rqd->meta_list, rqd->dma_meta_list); fail_rqd_free: pblk_free_rqd(pblk, rqd, PBLK_READ); return ret; fail_end_io: __pblk_end_io_read(pblk, rqd, false); return ret; } static int read_ppalist_rq_gc(struct pblk *pblk, struct nvm_rq *rqd, struct pblk_line *line, u64 *lba_list, u64 *paddr_list_gc, unsigned int nr_secs) { struct ppa_addr ppa_list_l2p[NVM_MAX_VLBA]; struct ppa_addr ppa_gc; int valid_secs = 0; int i; pblk_lookup_l2p_rand(pblk, ppa_list_l2p, lba_list, nr_secs); for (i = 0; i < nr_secs; i++) { if (lba_list[i] == ADDR_EMPTY) continue; ppa_gc = addr_to_gen_ppa(pblk, paddr_list_gc[i], line->id); if (!pblk_ppa_comp(ppa_list_l2p[i], ppa_gc)) { paddr_list_gc[i] = lba_list[i] = ADDR_EMPTY; continue; } rqd->ppa_list[valid_secs++] = ppa_list_l2p[i]; } #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_add(valid_secs, &pblk->inflight_reads); #endif return valid_secs; } static int read_rq_gc(struct pblk *pblk, struct nvm_rq *rqd, struct pblk_line *line, sector_t lba, u64 paddr_gc) { struct ppa_addr ppa_l2p, ppa_gc; int valid_secs = 0; if (lba == ADDR_EMPTY) goto out; /* logic error: lba out-of-bounds */ if (lba >= pblk->rl.nr_secs) { WARN(1, "pblk: read lba out of bounds\n"); goto out; } spin_lock(&pblk->trans_lock); ppa_l2p = pblk_trans_map_get(pblk, lba); spin_unlock(&pblk->trans_lock); ppa_gc = addr_to_gen_ppa(pblk, paddr_gc, line->id); if (!pblk_ppa_comp(ppa_l2p, ppa_gc)) goto out; rqd->ppa_addr = ppa_l2p; valid_secs = 1; #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_inc(&pblk->inflight_reads); #endif out: return valid_secs; } int pblk_submit_read_gc(struct pblk *pblk, struct pblk_gc_rq *gc_rq) { struct nvm_tgt_dev *dev = pblk->dev; struct nvm_geo *geo = &dev->geo; struct bio *bio; struct nvm_rq rqd; int data_len; int ret = NVM_IO_OK; memset(&rqd, 0, sizeof(struct nvm_rq)); ret = pblk_alloc_rqd_meta(pblk, &rqd); if (ret) return ret; if (gc_rq->nr_secs > 1) { gc_rq->secs_to_gc = read_ppalist_rq_gc(pblk, &rqd, gc_rq->line, gc_rq->lba_list, gc_rq->paddr_list, gc_rq->nr_secs); if (gc_rq->secs_to_gc == 1) rqd.ppa_addr = rqd.ppa_list[0]; } else { gc_rq->secs_to_gc = read_rq_gc(pblk, &rqd, gc_rq->line, gc_rq->lba_list[0], gc_rq->paddr_list[0]); } if (!(gc_rq->secs_to_gc)) goto out; data_len = (gc_rq->secs_to_gc) * geo->csecs; bio = pblk_bio_map_addr(pblk, gc_rq->data, gc_rq->secs_to_gc, data_len, PBLK_VMALLOC_META, GFP_KERNEL); if (IS_ERR(bio)) { pblk_err(pblk, "could not allocate GC bio (%lu)\n", PTR_ERR(bio)); ret = PTR_ERR(bio); goto err_free_dma; } bio->bi_iter.bi_sector = 0; /* internal bio */ bio_set_op_attrs(bio, REQ_OP_READ, 0); rqd.opcode = NVM_OP_PREAD; rqd.nr_ppas = gc_rq->secs_to_gc; rqd.bio = bio; if (pblk_submit_io_sync(pblk, &rqd)) { ret = -EIO; pblk_err(pblk, "GC read request failed\n"); goto err_free_bio; } pblk_read_check_rand(pblk, &rqd, gc_rq->lba_list, gc_rq->nr_secs); atomic_dec(&pblk->inflight_io); if (rqd.error) { atomic_long_inc(&pblk->read_failed_gc); #ifdef CONFIG_NVM_PBLK_DEBUG pblk_print_failed_rqd(pblk, &rqd, rqd.error); #endif } #ifdef CONFIG_NVM_PBLK_DEBUG atomic_long_add(gc_rq->secs_to_gc, &pblk->sync_reads); atomic_long_add(gc_rq->secs_to_gc, &pblk->recov_gc_reads); atomic_long_sub(gc_rq->secs_to_gc, &pblk->inflight_reads); #endif out: pblk_free_rqd_meta(pblk, &rqd); return ret; err_free_bio: bio_put(bio); err_free_dma: pblk_free_rqd_meta(pblk, &rqd); return ret; }