// SPDX-License-Identifier: GPL-2.0 /* * Support for Versatile FPGA-based IRQ controllers */ #include <linux/bitops.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/irqchip.h> #include <linux/irqchip/versatile-fpga.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <asm/exception.h> #include <asm/mach/irq.h> #define IRQ_STATUS 0x00 #define IRQ_RAW_STATUS 0x04 #define IRQ_ENABLE_SET 0x08 #define IRQ_ENABLE_CLEAR 0x0c #define INT_SOFT_SET 0x10 #define INT_SOFT_CLEAR 0x14 #define FIQ_STATUS 0x20 #define FIQ_RAW_STATUS 0x24 #define FIQ_ENABLE 0x28 #define FIQ_ENABLE_SET 0x28 #define FIQ_ENABLE_CLEAR 0x2C #define PIC_ENABLES 0x20 /* set interrupt pass through bits */ /** * struct fpga_irq_data - irq data container for the FPGA IRQ controller * @base: memory offset in virtual memory * @chip: chip container for this instance * @domain: IRQ domain for this instance * @valid: mask for valid IRQs on this controller * @used_irqs: number of active IRQs on this controller */ struct fpga_irq_data { void __iomem *base; struct irq_chip chip; u32 valid; struct irq_domain *domain; u8 used_irqs; }; /* we cannot allocate memory when the controllers are initially registered */ static struct fpga_irq_data fpga_irq_devices[CONFIG_VERSATILE_FPGA_IRQ_NR]; static int fpga_irq_id; static void fpga_irq_mask(struct irq_data *d) { struct fpga_irq_data *f = irq_data_get_irq_chip_data(d); u32 mask = 1 << d->hwirq; writel(mask, f->base + IRQ_ENABLE_CLEAR); } static void fpga_irq_unmask(struct irq_data *d) { struct fpga_irq_data *f = irq_data_get_irq_chip_data(d); u32 mask = 1 << d->hwirq; writel(mask, f->base + IRQ_ENABLE_SET); } static void fpga_irq_handle(struct irq_desc *desc) { struct fpga_irq_data *f = irq_desc_get_handler_data(desc); u32 status = readl(f->base + IRQ_STATUS); if (status == 0) { do_bad_IRQ(desc); return; } do { unsigned int irq = ffs(status) - 1; status &= ~(1 << irq); generic_handle_irq(irq_find_mapping(f->domain, irq)); } while (status); } /* * Handle each interrupt in a single FPGA IRQ controller. Returns non-zero * if we've handled at least one interrupt. This does a single read of the * status register and handles all interrupts in order from LSB first. */ static int handle_one_fpga(struct fpga_irq_data *f, struct pt_regs *regs) { int handled = 0; int irq; u32 status; while ((status = readl(f->base + IRQ_STATUS))) { irq = ffs(status) - 1; handle_domain_irq(f->domain, irq, regs); handled = 1; } return handled; } /* * Keep iterating over all registered FPGA IRQ controllers until there are * no pending interrupts. */ asmlinkage void __exception_irq_entry fpga_handle_irq(struct pt_regs *regs) { int i, handled; do { for (i = 0, handled = 0; i < fpga_irq_id; ++i) handled |= handle_one_fpga(&fpga_irq_devices[i], regs); } while (handled); } static int fpga_irqdomain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hwirq) { struct fpga_irq_data *f = d->host_data; /* Skip invalid IRQs, only register handlers for the real ones */ if (!(f->valid & BIT(hwirq))) return -EPERM; irq_set_chip_data(irq, f); irq_set_chip_and_handler(irq, &f->chip, handle_level_irq); irq_set_probe(irq); return 0; } static const struct irq_domain_ops fpga_irqdomain_ops = { .map = fpga_irqdomain_map, .xlate = irq_domain_xlate_onetwocell, }; void __init fpga_irq_init(void __iomem *base, const char *name, int irq_start, int parent_irq, u32 valid, struct device_node *node) { struct fpga_irq_data *f; int i; if (fpga_irq_id >= ARRAY_SIZE(fpga_irq_devices)) { pr_err("%s: too few FPGA IRQ controllers, increase CONFIG_VERSATILE_FPGA_IRQ_NR\n", __func__); return; } f = &fpga_irq_devices[fpga_irq_id]; f->base = base; f->chip.name = name; f->chip.irq_ack = fpga_irq_mask; f->chip.irq_mask = fpga_irq_mask; f->chip.irq_unmask = fpga_irq_unmask; f->valid = valid; if (parent_irq != -1) { irq_set_chained_handler_and_data(parent_irq, fpga_irq_handle, f); } /* This will also allocate irq descriptors */ f->domain = irq_domain_add_simple(node, fls(valid), irq_start, &fpga_irqdomain_ops, f); /* This will allocate all valid descriptors in the linear case */ for (i = 0; i < fls(valid); i++) if (valid & BIT(i)) { if (!irq_start) irq_create_mapping(f->domain, i); f->used_irqs++; } pr_info("FPGA IRQ chip %d \"%s\" @ %p, %u irqs", fpga_irq_id, name, base, f->used_irqs); if (parent_irq != -1) pr_cont(", parent IRQ: %d\n", parent_irq); else pr_cont("\n"); fpga_irq_id++; } #ifdef CONFIG_OF int __init fpga_irq_of_init(struct device_node *node, struct device_node *parent) { void __iomem *base; u32 clear_mask; u32 valid_mask; int parent_irq; if (WARN_ON(!node)) return -ENODEV; base = of_iomap(node, 0); WARN(!base, "unable to map fpga irq registers\n"); if (of_property_read_u32(node, "clear-mask", &clear_mask)) clear_mask = 0; if (of_property_read_u32(node, "valid-mask", &valid_mask)) valid_mask = 0; /* Some chips are cascaded from a parent IRQ */ parent_irq = irq_of_parse_and_map(node, 0); if (!parent_irq) { set_handle_irq(fpga_handle_irq); parent_irq = -1; } fpga_irq_init(base, node->name, 0, parent_irq, valid_mask, node); writel(clear_mask, base + IRQ_ENABLE_CLEAR); writel(clear_mask, base + FIQ_ENABLE_CLEAR); /* * On Versatile AB/PB, some secondary interrupts have a direct * pass-thru to the primary controller for IRQs 20 and 22-31 which need * to be enabled. See section 3.10 of the Versatile AB user guide. */ if (of_device_is_compatible(node, "arm,versatile-sic")) writel(0xffd00000, base + PIC_ENABLES); return 0; } IRQCHIP_DECLARE(arm_fpga, "arm,versatile-fpga-irq", fpga_irq_of_init); IRQCHIP_DECLARE(arm_fpga_sic, "arm,versatile-sic", fpga_irq_of_init); IRQCHIP_DECLARE(ox810se_rps, "oxsemi,ox810se-rps-irq", fpga_irq_of_init); #endif