/* * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. * Author: Joerg Roedel <jroedel@suse.de> * Leo Duran <leo.duran@amd.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/ratelimit.h> #include <linux/pci.h> #include <linux/pci-ats.h> #include <linux/bitmap.h> #include <linux/slab.h> #include <linux/debugfs.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/iommu-helper.h> #include <linux/iommu.h> #include <linux/delay.h> #include <linux/amd-iommu.h> #include <linux/notifier.h> #include <linux/export.h> #include <linux/irq.h> #include <linux/msi.h> #include <linux/dma-contiguous.h> #include <linux/irqdomain.h> #include <asm/irq_remapping.h> #include <asm/io_apic.h> #include <asm/apic.h> #include <asm/hw_irq.h> #include <asm/msidef.h> #include <asm/proto.h> #include <asm/iommu.h> #include <asm/gart.h> #include <asm/dma.h> #include "amd_iommu_proto.h" #include "amd_iommu_types.h" #include "irq_remapping.h" #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) #define LOOP_TIMEOUT 100000 /* * This bitmap is used to advertise the page sizes our hardware support * to the IOMMU core, which will then use this information to split * physically contiguous memory regions it is mapping into page sizes * that we support. * * 512GB Pages are not supported due to a hardware bug */ #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38)) static DEFINE_RWLOCK(amd_iommu_devtable_lock); /* List of all available dev_data structures */ static LIST_HEAD(dev_data_list); static DEFINE_SPINLOCK(dev_data_list_lock); LIST_HEAD(ioapic_map); LIST_HEAD(hpet_map); /* * Domain for untranslated devices - only allocated * if iommu=pt passed on kernel cmd line. */ static const struct iommu_ops amd_iommu_ops; static ATOMIC_NOTIFIER_HEAD(ppr_notifier); int amd_iommu_max_glx_val = -1; static struct dma_map_ops amd_iommu_dma_ops; /* * This struct contains device specific data for the IOMMU */ struct iommu_dev_data { struct list_head list; /* For domain->dev_list */ struct list_head dev_data_list; /* For global dev_data_list */ struct list_head alias_list; /* Link alias-groups together */ struct iommu_dev_data *alias_data;/* The alias dev_data */ struct protection_domain *domain; /* Domain the device is bound to */ u16 devid; /* PCI Device ID */ bool iommu_v2; /* Device can make use of IOMMUv2 */ bool passthrough; /* Device is identity mapped */ struct { bool enabled; int qdep; } ats; /* ATS state */ bool pri_tlp; /* PASID TLB required for PPR completions */ u32 errata; /* Bitmap for errata to apply */ }; /* * general struct to manage commands send to an IOMMU */ struct iommu_cmd { u32 data[4]; }; struct kmem_cache *amd_iommu_irq_cache; static void update_domain(struct protection_domain *domain); static int protection_domain_init(struct protection_domain *domain); /**************************************************************************** * * Helper functions * ****************************************************************************/ static struct protection_domain *to_pdomain(struct iommu_domain *dom) { return container_of(dom, struct protection_domain, domain); } static struct iommu_dev_data *alloc_dev_data(u16 devid) { struct iommu_dev_data *dev_data; unsigned long flags; dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); if (!dev_data) return NULL; INIT_LIST_HEAD(&dev_data->alias_list); dev_data->devid = devid; spin_lock_irqsave(&dev_data_list_lock, flags); list_add_tail(&dev_data->dev_data_list, &dev_data_list); spin_unlock_irqrestore(&dev_data_list_lock, flags); return dev_data; } static void free_dev_data(struct iommu_dev_data *dev_data) { unsigned long flags; spin_lock_irqsave(&dev_data_list_lock, flags); list_del(&dev_data->dev_data_list); spin_unlock_irqrestore(&dev_data_list_lock, flags); kfree(dev_data); } static struct iommu_dev_data *search_dev_data(u16 devid) { struct iommu_dev_data *dev_data; unsigned long flags; spin_lock_irqsave(&dev_data_list_lock, flags); list_for_each_entry(dev_data, &dev_data_list, dev_data_list) { if (dev_data->devid == devid) goto out_unlock; } dev_data = NULL; out_unlock: spin_unlock_irqrestore(&dev_data_list_lock, flags); return dev_data; } static struct iommu_dev_data *find_dev_data(u16 devid) { struct iommu_dev_data *dev_data; dev_data = search_dev_data(devid); if (dev_data == NULL) dev_data = alloc_dev_data(devid); return dev_data; } static inline u16 get_device_id(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); return PCI_DEVID(pdev->bus->number, pdev->devfn); } static struct iommu_dev_data *get_dev_data(struct device *dev) { return dev->archdata.iommu; } static bool pci_iommuv2_capable(struct pci_dev *pdev) { static const int caps[] = { PCI_EXT_CAP_ID_ATS, PCI_EXT_CAP_ID_PRI, PCI_EXT_CAP_ID_PASID, }; int i, pos; for (i = 0; i < 3; ++i) { pos = pci_find_ext_capability(pdev, caps[i]); if (pos == 0) return false; } return true; } static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) { struct iommu_dev_data *dev_data; dev_data = get_dev_data(&pdev->dev); return dev_data->errata & (1 << erratum) ? true : false; } /* * This function actually applies the mapping to the page table of the * dma_ops domain. */ static void alloc_unity_mapping(struct dma_ops_domain *dma_dom, struct unity_map_entry *e) { u64 addr; for (addr = e->address_start; addr < e->address_end; addr += PAGE_SIZE) { if (addr < dma_dom->aperture_size) __set_bit(addr >> PAGE_SHIFT, dma_dom->aperture[0]->bitmap); } } /* * Inits the unity mappings required for a specific device */ static void init_unity_mappings_for_device(struct device *dev, struct dma_ops_domain *dma_dom) { struct unity_map_entry *e; u16 devid; devid = get_device_id(dev); list_for_each_entry(e, &amd_iommu_unity_map, list) { if (!(devid >= e->devid_start && devid <= e->devid_end)) continue; alloc_unity_mapping(dma_dom, e); } } /* * This function checks if the driver got a valid device from the caller to * avoid dereferencing invalid pointers. */ static bool check_device(struct device *dev) { u16 devid; if (!dev || !dev->dma_mask) return false; /* No PCI device */ if (!dev_is_pci(dev)) return false; devid = get_device_id(dev); /* Out of our scope? */ if (devid > amd_iommu_last_bdf) return false; if (amd_iommu_rlookup_table[devid] == NULL) return false; return true; } static void init_iommu_group(struct device *dev) { struct dma_ops_domain *dma_domain; struct iommu_domain *domain; struct iommu_group *group; group = iommu_group_get_for_dev(dev); if (IS_ERR(group)) return; domain = iommu_group_default_domain(group); if (!domain) goto out; dma_domain = to_pdomain(domain)->priv; init_unity_mappings_for_device(dev, dma_domain); out: iommu_group_put(group); } static int __last_alias(struct pci_dev *pdev, u16 alias, void *data) { *(u16 *)data = alias; return 0; } static u16 get_alias(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); u16 devid, ivrs_alias, pci_alias; devid = get_device_id(dev); ivrs_alias = amd_iommu_alias_table[devid]; pci_for_each_dma_alias(pdev, __last_alias, &pci_alias); if (ivrs_alias == pci_alias) return ivrs_alias; /* * DMA alias showdown * * The IVRS is fairly reliable in telling us about aliases, but it * can't know about every screwy device. If we don't have an IVRS * reported alias, use the PCI reported alias. In that case we may * still need to initialize the rlookup and dev_table entries if the * alias is to a non-existent device. */ if (ivrs_alias == devid) { if (!amd_iommu_rlookup_table[pci_alias]) { amd_iommu_rlookup_table[pci_alias] = amd_iommu_rlookup_table[devid]; memcpy(amd_iommu_dev_table[pci_alias].data, amd_iommu_dev_table[devid].data, sizeof(amd_iommu_dev_table[pci_alias].data)); } return pci_alias; } pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d " "for device %s[%04x:%04x], kernel reported alias " "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device, PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias), PCI_FUNC(pci_alias)); /* * If we don't have a PCI DMA alias and the IVRS alias is on the same * bus, then the IVRS table may know about a quirk that we don't. */ if (pci_alias == devid && PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) { pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN; pdev->dma_alias_devfn = ivrs_alias & 0xff; pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n", PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias), dev_name(dev)); } return ivrs_alias; } static int iommu_init_device(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct iommu_dev_data *dev_data; u16 alias; if (dev->archdata.iommu) return 0; dev_data = find_dev_data(get_device_id(dev)); if (!dev_data) return -ENOMEM; alias = get_alias(dev); if (alias != dev_data->devid) { struct iommu_dev_data *alias_data; alias_data = find_dev_data(alias); if (alias_data == NULL) { pr_err("AMD-Vi: Warning: Unhandled device %s\n", dev_name(dev)); free_dev_data(dev_data); return -ENOTSUPP; } dev_data->alias_data = alias_data; /* Add device to the alias_list */ list_add(&dev_data->alias_list, &alias_data->alias_list); } if (pci_iommuv2_capable(pdev)) { struct amd_iommu *iommu; iommu = amd_iommu_rlookup_table[dev_data->devid]; dev_data->iommu_v2 = iommu->is_iommu_v2; } dev->archdata.iommu = dev_data; iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev, dev); return 0; } static void iommu_ignore_device(struct device *dev) { u16 devid, alias; devid = get_device_id(dev); alias = amd_iommu_alias_table[devid]; memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry)); amd_iommu_rlookup_table[devid] = NULL; amd_iommu_rlookup_table[alias] = NULL; } static void iommu_uninit_device(struct device *dev) { struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev)); if (!dev_data) return; iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev, dev); iommu_group_remove_device(dev); /* Unlink from alias, it may change if another device is re-plugged */ dev_data->alias_data = NULL; /* Remove dma-ops */ dev->archdata.dma_ops = NULL; /* * We keep dev_data around for unplugged devices and reuse it when the * device is re-plugged - not doing so would introduce a ton of races. */ } #ifdef CONFIG_AMD_IOMMU_STATS /* * Initialization code for statistics collection */ DECLARE_STATS_COUNTER(compl_wait); DECLARE_STATS_COUNTER(cnt_map_single); DECLARE_STATS_COUNTER(cnt_unmap_single); DECLARE_STATS_COUNTER(cnt_map_sg); DECLARE_STATS_COUNTER(cnt_unmap_sg); DECLARE_STATS_COUNTER(cnt_alloc_coherent); DECLARE_STATS_COUNTER(cnt_free_coherent); DECLARE_STATS_COUNTER(cross_page); DECLARE_STATS_COUNTER(domain_flush_single); DECLARE_STATS_COUNTER(domain_flush_all); DECLARE_STATS_COUNTER(alloced_io_mem); DECLARE_STATS_COUNTER(total_map_requests); DECLARE_STATS_COUNTER(complete_ppr); DECLARE_STATS_COUNTER(invalidate_iotlb); DECLARE_STATS_COUNTER(invalidate_iotlb_all); DECLARE_STATS_COUNTER(pri_requests); static struct dentry *stats_dir; static struct dentry *de_fflush; static void amd_iommu_stats_add(struct __iommu_counter *cnt) { if (stats_dir == NULL) return; cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, &cnt->value); } static void amd_iommu_stats_init(void) { stats_dir = debugfs_create_dir("amd-iommu", NULL); if (stats_dir == NULL) return; de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir, &amd_iommu_unmap_flush); amd_iommu_stats_add(&compl_wait); amd_iommu_stats_add(&cnt_map_single); amd_iommu_stats_add(&cnt_unmap_single); amd_iommu_stats_add(&cnt_map_sg); amd_iommu_stats_add(&cnt_unmap_sg); amd_iommu_stats_add(&cnt_alloc_coherent); amd_iommu_stats_add(&cnt_free_coherent); amd_iommu_stats_add(&cross_page); amd_iommu_stats_add(&domain_flush_single); amd_iommu_stats_add(&domain_flush_all); amd_iommu_stats_add(&alloced_io_mem); amd_iommu_stats_add(&total_map_requests); amd_iommu_stats_add(&complete_ppr); amd_iommu_stats_add(&invalidate_iotlb); amd_iommu_stats_add(&invalidate_iotlb_all); amd_iommu_stats_add(&pri_requests); } #endif /**************************************************************************** * * Interrupt handling functions * ****************************************************************************/ static void dump_dte_entry(u16 devid) { int i; for (i = 0; i < 4; ++i) pr_err("AMD-Vi: DTE[%d]: %016llx\n", i, amd_iommu_dev_table[devid].data[i]); } static void dump_command(unsigned long phys_addr) { struct iommu_cmd *cmd = phys_to_virt(phys_addr); int i; for (i = 0; i < 4; ++i) pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); } static void iommu_print_event(struct amd_iommu *iommu, void *__evt) { int type, devid, domid, flags; volatile u32 *event = __evt; int count = 0; u64 address; retry: type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; address = (u64)(((u64)event[3]) << 32) | event[2]; if (type == 0) { /* Did we hit the erratum? */ if (++count == LOOP_TIMEOUT) { pr_err("AMD-Vi: No event written to event log\n"); return; } udelay(1); goto retry; } printk(KERN_ERR "AMD-Vi: Event logged ["); switch (type) { case EVENT_TYPE_ILL_DEV: printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " "address=0x%016llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), address, flags); dump_dte_entry(devid); break; case EVENT_TYPE_IO_FAULT: printk("IO_PAGE_FAULT device=%02x:%02x.%x " "domain=0x%04x address=0x%016llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), domid, address, flags); break; case EVENT_TYPE_DEV_TAB_ERR: printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " "address=0x%016llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), address, flags); break; case EVENT_TYPE_PAGE_TAB_ERR: printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " "domain=0x%04x address=0x%016llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), domid, address, flags); break; case EVENT_TYPE_ILL_CMD: printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); dump_command(address); break; case EVENT_TYPE_CMD_HARD_ERR: printk("COMMAND_HARDWARE_ERROR address=0x%016llx " "flags=0x%04x]\n", address, flags); break; case EVENT_TYPE_IOTLB_INV_TO: printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " "address=0x%016llx]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), address); break; case EVENT_TYPE_INV_DEV_REQ: printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " "address=0x%016llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), address, flags); break; default: printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); } memset(__evt, 0, 4 * sizeof(u32)); } static void iommu_poll_events(struct amd_iommu *iommu) { u32 head, tail; head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); while (head != tail) { iommu_print_event(iommu, iommu->evt_buf + head); head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; } writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); } static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) { struct amd_iommu_fault fault; INC_STATS_COUNTER(pri_requests); if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n"); return; } fault.address = raw[1]; fault.pasid = PPR_PASID(raw[0]); fault.device_id = PPR_DEVID(raw[0]); fault.tag = PPR_TAG(raw[0]); fault.flags = PPR_FLAGS(raw[0]); atomic_notifier_call_chain(&ppr_notifier, 0, &fault); } static void iommu_poll_ppr_log(struct amd_iommu *iommu) { u32 head, tail; if (iommu->ppr_log == NULL) return; head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); while (head != tail) { volatile u64 *raw; u64 entry[2]; int i; raw = (u64 *)(iommu->ppr_log + head); /* * Hardware bug: Interrupt may arrive before the entry is * written to memory. If this happens we need to wait for the * entry to arrive. */ for (i = 0; i < LOOP_TIMEOUT; ++i) { if (PPR_REQ_TYPE(raw[0]) != 0) break; udelay(1); } /* Avoid memcpy function-call overhead */ entry[0] = raw[0]; entry[1] = raw[1]; /* * To detect the hardware bug we need to clear the entry * back to zero. */ raw[0] = raw[1] = 0UL; /* Update head pointer of hardware ring-buffer */ head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); /* Handle PPR entry */ iommu_handle_ppr_entry(iommu, entry); /* Refresh ring-buffer information */ head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); } } irqreturn_t amd_iommu_int_thread(int irq, void *data) { struct amd_iommu *iommu = (struct amd_iommu *) data; u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) { /* Enable EVT and PPR interrupts again */ writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK), iommu->mmio_base + MMIO_STATUS_OFFSET); if (status & MMIO_STATUS_EVT_INT_MASK) { pr_devel("AMD-Vi: Processing IOMMU Event Log\n"); iommu_poll_events(iommu); } if (status & MMIO_STATUS_PPR_INT_MASK) { pr_devel("AMD-Vi: Processing IOMMU PPR Log\n"); iommu_poll_ppr_log(iommu); } /* * Hardware bug: ERBT1312 * When re-enabling interrupt (by writing 1 * to clear the bit), the hardware might also try to set * the interrupt bit in the event status register. * In this scenario, the bit will be set, and disable * subsequent interrupts. * * Workaround: The IOMMU driver should read back the * status register and check if the interrupt bits are cleared. * If not, driver will need to go through the interrupt handler * again and re-clear the bits */ status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); } return IRQ_HANDLED; } irqreturn_t amd_iommu_int_handler(int irq, void *data) { return IRQ_WAKE_THREAD; } /**************************************************************************** * * IOMMU command queuing functions * ****************************************************************************/ static int wait_on_sem(volatile u64 *sem) { int i = 0; while (*sem == 0 && i < LOOP_TIMEOUT) { udelay(1); i += 1; } if (i == LOOP_TIMEOUT) { pr_alert("AMD-Vi: Completion-Wait loop timed out\n"); return -EIO; } return 0; } static void copy_cmd_to_buffer(struct amd_iommu *iommu, struct iommu_cmd *cmd, u32 tail) { u8 *target; target = iommu->cmd_buf + tail; tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; /* Copy command to buffer */ memcpy(target, cmd, sizeof(*cmd)); /* Tell the IOMMU about it */ writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); } static void build_completion_wait(struct iommu_cmd *cmd, u64 address) { WARN_ON(address & 0x7ULL); memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK; cmd->data[1] = upper_32_bits(__pa(address)); cmd->data[2] = 1; CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); } static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) { memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); } static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, size_t size, u16 domid, int pde) { u64 pages; bool s; pages = iommu_num_pages(address, size, PAGE_SIZE); s = false; if (pages > 1) { /* * If we have to flush more than one page, flush all * TLB entries for this domain */ address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; s = true; } address &= PAGE_MASK; memset(cmd, 0, sizeof(*cmd)); cmd->data[1] |= domid; cmd->data[2] = lower_32_bits(address); cmd->data[3] = upper_32_bits(address); CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); if (s) /* size bit - we flush more than one 4kb page */ cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; } static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, u64 address, size_t size) { u64 pages; bool s; pages = iommu_num_pages(address, size, PAGE_SIZE); s = false; if (pages > 1) { /* * If we have to flush more than one page, flush all * TLB entries for this domain */ address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; s = true; } address &= PAGE_MASK; memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; cmd->data[0] |= (qdep & 0xff) << 24; cmd->data[1] = devid; cmd->data[2] = lower_32_bits(address); cmd->data[3] = upper_32_bits(address); CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); if (s) cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; } static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, u64 address, bool size) { memset(cmd, 0, sizeof(*cmd)); address &= ~(0xfffULL); cmd->data[0] = pasid; cmd->data[1] = domid; cmd->data[2] = lower_32_bits(address); cmd->data[3] = upper_32_bits(address); cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; if (size) cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); } static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, int qdep, u64 address, bool size) { memset(cmd, 0, sizeof(*cmd)); address &= ~(0xfffULL); cmd->data[0] = devid; cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; cmd->data[0] |= (qdep & 0xff) << 24; cmd->data[1] = devid; cmd->data[1] |= (pasid & 0xff) << 16; cmd->data[2] = lower_32_bits(address); cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; cmd->data[3] = upper_32_bits(address); if (size) cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); } static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, int status, int tag, bool gn) { memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; if (gn) { cmd->data[1] = pasid; cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; } cmd->data[3] = tag & 0x1ff; cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); } static void build_inv_all(struct iommu_cmd *cmd) { memset(cmd, 0, sizeof(*cmd)); CMD_SET_TYPE(cmd, CMD_INV_ALL); } static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) { memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; CMD_SET_TYPE(cmd, CMD_INV_IRT); } /* * Writes the command to the IOMMUs command buffer and informs the * hardware about the new command. */ static int iommu_queue_command_sync(struct amd_iommu *iommu, struct iommu_cmd *cmd, bool sync) { u32 left, tail, head, next_tail; unsigned long flags; WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED); again: spin_lock_irqsave(&iommu->lock, flags); head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; left = (head - next_tail) % iommu->cmd_buf_size; if (left <= 2) { struct iommu_cmd sync_cmd; volatile u64 sem = 0; int ret; build_completion_wait(&sync_cmd, (u64)&sem); copy_cmd_to_buffer(iommu, &sync_cmd, tail); spin_unlock_irqrestore(&iommu->lock, flags); if ((ret = wait_on_sem(&sem)) != 0) return ret; goto again; } copy_cmd_to_buffer(iommu, cmd, tail); /* We need to sync now to make sure all commands are processed */ iommu->need_sync = sync; spin_unlock_irqrestore(&iommu->lock, flags); return 0; } static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) { return iommu_queue_command_sync(iommu, cmd, true); } /* * This function queues a completion wait command into the command * buffer of an IOMMU */ static int iommu_completion_wait(struct amd_iommu *iommu) { struct iommu_cmd cmd; volatile u64 sem = 0; int ret; if (!iommu->need_sync) return 0; build_completion_wait(&cmd, (u64)&sem); ret = iommu_queue_command_sync(iommu, &cmd, false); if (ret) return ret; return wait_on_sem(&sem); } static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) { struct iommu_cmd cmd; build_inv_dte(&cmd, devid); return iommu_queue_command(iommu, &cmd); } static void iommu_flush_dte_all(struct amd_iommu *iommu) { u32 devid; for (devid = 0; devid <= 0xffff; ++devid) iommu_flush_dte(iommu, devid); iommu_completion_wait(iommu); } /* * This function uses heavy locking and may disable irqs for some time. But * this is no issue because it is only called during resume. */ static void iommu_flush_tlb_all(struct amd_iommu *iommu) { u32 dom_id; for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { struct iommu_cmd cmd; build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, dom_id, 1); iommu_queue_command(iommu, &cmd); } iommu_completion_wait(iommu); } static void iommu_flush_all(struct amd_iommu *iommu) { struct iommu_cmd cmd; build_inv_all(&cmd); iommu_queue_command(iommu, &cmd); iommu_completion_wait(iommu); } static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) { struct iommu_cmd cmd; build_inv_irt(&cmd, devid); iommu_queue_command(iommu, &cmd); } static void iommu_flush_irt_all(struct amd_iommu *iommu) { u32 devid; for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); } void iommu_flush_all_caches(struct amd_iommu *iommu) { if (iommu_feature(iommu, FEATURE_IA)) { iommu_flush_all(iommu); } else { iommu_flush_dte_all(iommu); iommu_flush_irt_all(iommu); iommu_flush_tlb_all(iommu); } } /* * Command send function for flushing on-device TLB */ static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address, size_t size) { struct amd_iommu *iommu; struct iommu_cmd cmd; int qdep; qdep = dev_data->ats.qdep; iommu = amd_iommu_rlookup_table[dev_data->devid]; build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); return iommu_queue_command(iommu, &cmd); } /* * Command send function for invalidating a device table entry */ static int device_flush_dte(struct iommu_dev_data *dev_data) { struct amd_iommu *iommu; int ret; iommu = amd_iommu_rlookup_table[dev_data->devid]; ret = iommu_flush_dte(iommu, dev_data->devid); if (ret) return ret; if (dev_data->ats.enabled) ret = device_flush_iotlb(dev_data, 0, ~0UL); return ret; } /* * TLB invalidation function which is called from the mapping functions. * It invalidates a single PTE if the range to flush is within a single * page. Otherwise it flushes the whole TLB of the IOMMU. */ static void __domain_flush_pages(struct protection_domain *domain, u64 address, size_t size, int pde) { struct iommu_dev_data *dev_data; struct iommu_cmd cmd; int ret = 0, i; build_inv_iommu_pages(&cmd, address, size, domain->id, pde); for (i = 0; i < amd_iommus_present; ++i) { if (!domain->dev_iommu[i]) continue; /* * Devices of this domain are behind this IOMMU * We need a TLB flush */ ret |= iommu_queue_command(amd_iommus[i], &cmd); } list_for_each_entry(dev_data, &domain->dev_list, list) { if (!dev_data->ats.enabled) continue; ret |= device_flush_iotlb(dev_data, address, size); } WARN_ON(ret); } static void domain_flush_pages(struct protection_domain *domain, u64 address, size_t size) { __domain_flush_pages(domain, address, size, 0); } /* Flush the whole IO/TLB for a given protection domain */ static void domain_flush_tlb(struct protection_domain *domain) { __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); } /* Flush the whole IO/TLB for a given protection domain - including PDE */ static void domain_flush_tlb_pde(struct protection_domain *domain) { __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); } static void domain_flush_complete(struct protection_domain *domain) { int i; for (i = 0; i < amd_iommus_present; ++i) { if (!domain->dev_iommu[i]) continue; /* * Devices of this domain are behind this IOMMU * We need to wait for completion of all commands. */ iommu_completion_wait(amd_iommus[i]); } } /* * This function flushes the DTEs for all devices in domain */ static void domain_flush_devices(struct protection_domain *domain) { struct iommu_dev_data *dev_data; list_for_each_entry(dev_data, &domain->dev_list, list) device_flush_dte(dev_data); } /**************************************************************************** * * The functions below are used the create the page table mappings for * unity mapped regions. * ****************************************************************************/ /* * This function is used to add another level to an IO page table. Adding * another level increases the size of the address space by 9 bits to a size up * to 64 bits. */ static bool increase_address_space(struct protection_domain *domain, gfp_t gfp) { u64 *pte; if (domain->mode == PAGE_MODE_6_LEVEL) /* address space already 64 bit large */ return false; pte = (void *)get_zeroed_page(gfp); if (!pte) return false; *pte = PM_LEVEL_PDE(domain->mode, virt_to_phys(domain->pt_root)); domain->pt_root = pte; domain->mode += 1; domain->updated = true; return true; } static u64 *alloc_pte(struct protection_domain *domain, unsigned long address, unsigned long page_size, u64 **pte_page, gfp_t gfp) { int level, end_lvl; u64 *pte, *page; BUG_ON(!is_power_of_2(page_size)); while (address > PM_LEVEL_SIZE(domain->mode)) increase_address_space(domain, gfp); level = domain->mode - 1; pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; address = PAGE_SIZE_ALIGN(address, page_size); end_lvl = PAGE_SIZE_LEVEL(page_size); while (level > end_lvl) { if (!IOMMU_PTE_PRESENT(*pte)) { page = (u64 *)get_zeroed_page(gfp); if (!page) return NULL; *pte = PM_LEVEL_PDE(level, virt_to_phys(page)); } /* No level skipping support yet */ if (PM_PTE_LEVEL(*pte) != level) return NULL; level -= 1; pte = IOMMU_PTE_PAGE(*pte); if (pte_page && level == end_lvl) *pte_page = pte; pte = &pte[PM_LEVEL_INDEX(level, address)]; } return pte; } /* * This function checks if there is a PTE for a given dma address. If * there is one, it returns the pointer to it. */ static u64 *fetch_pte(struct protection_domain *domain, unsigned long address, unsigned long *page_size) { int level; u64 *pte; if (address > PM_LEVEL_SIZE(domain->mode)) return NULL; level = domain->mode - 1; pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; *page_size = PTE_LEVEL_PAGE_SIZE(level); while (level > 0) { /* Not Present */ if (!IOMMU_PTE_PRESENT(*pte)) return NULL; /* Large PTE */ if (PM_PTE_LEVEL(*pte) == 7 || PM_PTE_LEVEL(*pte) == 0) break; /* No level skipping support yet */ if (PM_PTE_LEVEL(*pte) != level) return NULL; level -= 1; /* Walk to the next level */ pte = IOMMU_PTE_PAGE(*pte); pte = &pte[PM_LEVEL_INDEX(level, address)]; *page_size = PTE_LEVEL_PAGE_SIZE(level); } if (PM_PTE_LEVEL(*pte) == 0x07) { unsigned long pte_mask; /* * If we have a series of large PTEs, make * sure to return a pointer to the first one. */ *page_size = pte_mask = PTE_PAGE_SIZE(*pte); pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1); pte = (u64 *)(((unsigned long)pte) & pte_mask); } return pte; } /* * Generic mapping functions. It maps a physical address into a DMA * address space. It allocates the page table pages if necessary. * In the future it can be extended to a generic mapping function * supporting all features of AMD IOMMU page tables like level skipping * and full 64 bit address spaces. */ static int iommu_map_page(struct protection_domain *dom, unsigned long bus_addr, unsigned long phys_addr, int prot, unsigned long page_size) { u64 __pte, *pte; int i, count; BUG_ON(!IS_ALIGNED(bus_addr, page_size)); BUG_ON(!IS_ALIGNED(phys_addr, page_size)); if (!(prot & IOMMU_PROT_MASK)) return -EINVAL; count = PAGE_SIZE_PTE_COUNT(page_size); pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL); if (!pte) return -ENOMEM; for (i = 0; i < count; ++i) if (IOMMU_PTE_PRESENT(pte[i])) return -EBUSY; if (count > 1) { __pte = PAGE_SIZE_PTE(phys_addr, page_size); __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC; } else __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC; if (prot & IOMMU_PROT_IR) __pte |= IOMMU_PTE_IR; if (prot & IOMMU_PROT_IW) __pte |= IOMMU_PTE_IW; for (i = 0; i < count; ++i) pte[i] = __pte; update_domain(dom); return 0; } static unsigned long iommu_unmap_page(struct protection_domain *dom, unsigned long bus_addr, unsigned long page_size) { unsigned long long unmapped; unsigned long unmap_size; u64 *pte; BUG_ON(!is_power_of_2(page_size)); unmapped = 0; while (unmapped < page_size) { pte = fetch_pte(dom, bus_addr, &unmap_size); if (pte) { int i, count; count = PAGE_SIZE_PTE_COUNT(unmap_size); for (i = 0; i < count; i++) pte[i] = 0ULL; } bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; unmapped += unmap_size; } BUG_ON(unmapped && !is_power_of_2(unmapped)); return unmapped; } /**************************************************************************** * * The next functions belong to the address allocator for the dma_ops * interface functions. They work like the allocators in the other IOMMU * drivers. Its basically a bitmap which marks the allocated pages in * the aperture. Maybe it could be enhanced in the future to a more * efficient allocator. * ****************************************************************************/ /* * The address allocator core functions. * * called with domain->lock held */ /* * Used to reserve address ranges in the aperture (e.g. for exclusion * ranges. */ static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, unsigned long start_page, unsigned int pages) { unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; if (start_page + pages > last_page) pages = last_page - start_page; for (i = start_page; i < start_page + pages; ++i) { int index = i / APERTURE_RANGE_PAGES; int page = i % APERTURE_RANGE_PAGES; __set_bit(page, dom->aperture[index]->bitmap); } } /* * This function is used to add a new aperture range to an existing * aperture in case of dma_ops domain allocation or address allocation * failure. */ static int alloc_new_range(struct dma_ops_domain *dma_dom, bool populate, gfp_t gfp) { int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; struct amd_iommu *iommu; unsigned long i, old_size, pte_pgsize; #ifdef CONFIG_IOMMU_STRESS populate = false; #endif if (index >= APERTURE_MAX_RANGES) return -ENOMEM; dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); if (!dma_dom->aperture[index]) return -ENOMEM; dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); if (!dma_dom->aperture[index]->bitmap) goto out_free; dma_dom->aperture[index]->offset = dma_dom->aperture_size; if (populate) { unsigned long address = dma_dom->aperture_size; int i, num_ptes = APERTURE_RANGE_PAGES / 512; u64 *pte, *pte_page; for (i = 0; i < num_ptes; ++i) { pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE, &pte_page, gfp); if (!pte) goto out_free; dma_dom->aperture[index]->pte_pages[i] = pte_page; address += APERTURE_RANGE_SIZE / 64; } } old_size = dma_dom->aperture_size; dma_dom->aperture_size += APERTURE_RANGE_SIZE; /* Reserve address range used for MSI messages */ if (old_size < MSI_ADDR_BASE_LO && dma_dom->aperture_size > MSI_ADDR_BASE_LO) { unsigned long spage; int pages; pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE); spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT; dma_ops_reserve_addresses(dma_dom, spage, pages); } /* Initialize the exclusion range if necessary */ for_each_iommu(iommu) { if (iommu->exclusion_start && iommu->exclusion_start >= dma_dom->aperture[index]->offset && iommu->exclusion_start < dma_dom->aperture_size) { unsigned long startpage; int pages = iommu_num_pages(iommu->exclusion_start, iommu->exclusion_length, PAGE_SIZE); startpage = iommu->exclusion_start >> PAGE_SHIFT; dma_ops_reserve_addresses(dma_dom, startpage, pages); } } /* * Check for areas already mapped as present in the new aperture * range and mark those pages as reserved in the allocator. Such * mappings may already exist as a result of requested unity * mappings for devices. */ for (i = dma_dom->aperture[index]->offset; i < dma_dom->aperture_size; i += pte_pgsize) { u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize); if (!pte || !IOMMU_PTE_PRESENT(*pte)) continue; dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, pte_pgsize >> 12); } update_domain(&dma_dom->domain); return 0; out_free: update_domain(&dma_dom->domain); free_page((unsigned long)dma_dom->aperture[index]->bitmap); kfree(dma_dom->aperture[index]); dma_dom->aperture[index] = NULL; return -ENOMEM; } static unsigned long dma_ops_area_alloc(struct device *dev, struct dma_ops_domain *dom, unsigned int pages, unsigned long align_mask, u64 dma_mask, unsigned long start) { unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; int i = start >> APERTURE_RANGE_SHIFT; unsigned long boundary_size, mask; unsigned long address = -1; unsigned long limit; next_bit >>= PAGE_SHIFT; mask = dma_get_seg_boundary(dev); boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT : 1UL << (BITS_PER_LONG - PAGE_SHIFT); for (;i < max_index; ++i) { unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; if (dom->aperture[i]->offset >= dma_mask) break; limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, dma_mask >> PAGE_SHIFT); address = iommu_area_alloc(dom->aperture[i]->bitmap, limit, next_bit, pages, 0, boundary_size, align_mask); if (address != -1) { address = dom->aperture[i]->offset + (address << PAGE_SHIFT); dom->next_address = address + (pages << PAGE_SHIFT); break; } next_bit = 0; } return address; } static unsigned long dma_ops_alloc_addresses(struct device *dev, struct dma_ops_domain *dom, unsigned int pages, unsigned long align_mask, u64 dma_mask) { unsigned long address; #ifdef CONFIG_IOMMU_STRESS dom->next_address = 0; dom->need_flush = true; #endif address = dma_ops_area_alloc(dev, dom, pages, align_mask, dma_mask, dom->next_address); if (address == -1) { dom->next_address = 0; address = dma_ops_area_alloc(dev, dom, pages, align_mask, dma_mask, 0); dom->need_flush = true; } if (unlikely(address == -1)) address = DMA_ERROR_CODE; WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); return address; } /* * The address free function. * * called with domain->lock held */ static void dma_ops_free_addresses(struct dma_ops_domain *dom, unsigned long address, unsigned int pages) { unsigned i = address >> APERTURE_RANGE_SHIFT; struct aperture_range *range = dom->aperture[i]; BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); #ifdef CONFIG_IOMMU_STRESS if (i < 4) return; #endif if (address >= dom->next_address) dom->need_flush = true; address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; bitmap_clear(range->bitmap, address, pages); } /**************************************************************************** * * The next functions belong to the domain allocation. A domain is * allocated for every IOMMU as the default domain. If device isolation * is enabled, every device get its own domain. The most important thing * about domains is the page table mapping the DMA address space they * contain. * ****************************************************************************/ /* * This function adds a protection domain to the global protection domain list */ static void add_domain_to_list(struct protection_domain *domain) { unsigned long flags; spin_lock_irqsave(&amd_iommu_pd_lock, flags); list_add(&domain->list, &amd_iommu_pd_list); spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); } /* * This function removes a protection domain to the global * protection domain list */ static void del_domain_from_list(struct protection_domain *domain) { unsigned long flags; spin_lock_irqsave(&amd_iommu_pd_lock, flags); list_del(&domain->list); spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); } static u16 domain_id_alloc(void) { unsigned long flags; int id; write_lock_irqsave(&amd_iommu_devtable_lock, flags); id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); BUG_ON(id == 0); if (id > 0 && id < MAX_DOMAIN_ID) __set_bit(id, amd_iommu_pd_alloc_bitmap); else id = 0; write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); return id; } static void domain_id_free(int id) { unsigned long flags; write_lock_irqsave(&amd_iommu_devtable_lock, flags); if (id > 0 && id < MAX_DOMAIN_ID) __clear_bit(id, amd_iommu_pd_alloc_bitmap); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); } #define DEFINE_FREE_PT_FN(LVL, FN) \ static void free_pt_##LVL (unsigned long __pt) \ { \ unsigned long p; \ u64 *pt; \ int i; \ \ pt = (u64 *)__pt; \ \ for (i = 0; i < 512; ++i) { \ /* PTE present? */ \ if (!IOMMU_PTE_PRESENT(pt[i])) \ continue; \ \ /* Large PTE? */ \ if (PM_PTE_LEVEL(pt[i]) == 0 || \ PM_PTE_LEVEL(pt[i]) == 7) \ continue; \ \ p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \ FN(p); \ } \ free_page((unsigned long)pt); \ } DEFINE_FREE_PT_FN(l2, free_page) DEFINE_FREE_PT_FN(l3, free_pt_l2) DEFINE_FREE_PT_FN(l4, free_pt_l3) DEFINE_FREE_PT_FN(l5, free_pt_l4) DEFINE_FREE_PT_FN(l6, free_pt_l5) static void free_pagetable(struct protection_domain *domain) { unsigned long root = (unsigned long)domain->pt_root; switch (domain->mode) { case PAGE_MODE_NONE: break; case PAGE_MODE_1_LEVEL: free_page(root); break; case PAGE_MODE_2_LEVEL: free_pt_l2(root); break; case PAGE_MODE_3_LEVEL: free_pt_l3(root); break; case PAGE_MODE_4_LEVEL: free_pt_l4(root); break; case PAGE_MODE_5_LEVEL: free_pt_l5(root); break; case PAGE_MODE_6_LEVEL: free_pt_l6(root); break; default: BUG(); } } static void free_gcr3_tbl_level1(u64 *tbl) { u64 *ptr; int i; for (i = 0; i < 512; ++i) { if (!(tbl[i] & GCR3_VALID)) continue; ptr = __va(tbl[i] & PAGE_MASK); free_page((unsigned long)ptr); } } static void free_gcr3_tbl_level2(u64 *tbl) { u64 *ptr; int i; for (i = 0; i < 512; ++i) { if (!(tbl[i] & GCR3_VALID)) continue; ptr = __va(tbl[i] & PAGE_MASK); free_gcr3_tbl_level1(ptr); } } static void free_gcr3_table(struct protection_domain *domain) { if (domain->glx == 2) free_gcr3_tbl_level2(domain->gcr3_tbl); else if (domain->glx == 1) free_gcr3_tbl_level1(domain->gcr3_tbl); else BUG_ON(domain->glx != 0); free_page((unsigned long)domain->gcr3_tbl); } /* * Free a domain, only used if something went wrong in the * allocation path and we need to free an already allocated page table */ static void dma_ops_domain_free(struct dma_ops_domain *dom) { int i; if (!dom) return; del_domain_from_list(&dom->domain); free_pagetable(&dom->domain); for (i = 0; i < APERTURE_MAX_RANGES; ++i) { if (!dom->aperture[i]) continue; free_page((unsigned long)dom->aperture[i]->bitmap); kfree(dom->aperture[i]); } kfree(dom); } /* * Allocates a new protection domain usable for the dma_ops functions. * It also initializes the page table and the address allocator data * structures required for the dma_ops interface */ static struct dma_ops_domain *dma_ops_domain_alloc(void) { struct dma_ops_domain *dma_dom; dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); if (!dma_dom) return NULL; if (protection_domain_init(&dma_dom->domain)) goto free_dma_dom; dma_dom->domain.mode = PAGE_MODE_2_LEVEL; dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); dma_dom->domain.flags = PD_DMA_OPS_MASK; dma_dom->domain.priv = dma_dom; if (!dma_dom->domain.pt_root) goto free_dma_dom; dma_dom->need_flush = false; add_domain_to_list(&dma_dom->domain); if (alloc_new_range(dma_dom, true, GFP_KERNEL)) goto free_dma_dom; /* * mark the first page as allocated so we never return 0 as * a valid dma-address. So we can use 0 as error value */ dma_dom->aperture[0]->bitmap[0] = 1; dma_dom->next_address = 0; return dma_dom; free_dma_dom: dma_ops_domain_free(dma_dom); return NULL; } /* * little helper function to check whether a given protection domain is a * dma_ops domain */ static bool dma_ops_domain(struct protection_domain *domain) { return domain->flags & PD_DMA_OPS_MASK; } static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats) { u64 pte_root = 0; u64 flags = 0; if (domain->mode != PAGE_MODE_NONE) pte_root = virt_to_phys(domain->pt_root); pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) << DEV_ENTRY_MODE_SHIFT; pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; flags = amd_iommu_dev_table[devid].data[1]; if (ats) flags |= DTE_FLAG_IOTLB; if (domain->flags & PD_IOMMUV2_MASK) { u64 gcr3 = __pa(domain->gcr3_tbl); u64 glx = domain->glx; u64 tmp; pte_root |= DTE_FLAG_GV; pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; /* First mask out possible old values for GCR3 table */ tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; flags &= ~tmp; tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; flags &= ~tmp; /* Encode GCR3 table into DTE */ tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; pte_root |= tmp; tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; flags |= tmp; tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; flags |= tmp; } flags &= ~(0xffffUL); flags |= domain->id; amd_iommu_dev_table[devid].data[1] = flags; amd_iommu_dev_table[devid].data[0] = pte_root; } static void clear_dte_entry(u16 devid) { /* remove entry from the device table seen by the hardware */ amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; amd_iommu_dev_table[devid].data[1] = 0; amd_iommu_apply_erratum_63(devid); } static void do_attach(struct iommu_dev_data *dev_data, struct protection_domain *domain) { struct amd_iommu *iommu; bool ats; iommu = amd_iommu_rlookup_table[dev_data->devid]; ats = dev_data->ats.enabled; /* Update data structures */ dev_data->domain = domain; list_add(&dev_data->list, &domain->dev_list); set_dte_entry(dev_data->devid, domain, ats); /* Do reference counting */ domain->dev_iommu[iommu->index] += 1; domain->dev_cnt += 1; /* Flush the DTE entry */ device_flush_dte(dev_data); } static void do_detach(struct iommu_dev_data *dev_data) { struct amd_iommu *iommu; iommu = amd_iommu_rlookup_table[dev_data->devid]; /* decrease reference counters */ dev_data->domain->dev_iommu[iommu->index] -= 1; dev_data->domain->dev_cnt -= 1; /* Update data structures */ dev_data->domain = NULL; list_del(&dev_data->list); clear_dte_entry(dev_data->devid); /* Flush the DTE entry */ device_flush_dte(dev_data); } /* * If a device is not yet associated with a domain, this function does * assigns it visible for the hardware */ static int __attach_device(struct iommu_dev_data *dev_data, struct protection_domain *domain) { struct iommu_dev_data *head, *entry; int ret; /* lock domain */ spin_lock(&domain->lock); head = dev_data; if (head->alias_data != NULL) head = head->alias_data; /* Now we have the root of the alias group, if any */ ret = -EBUSY; if (head->domain != NULL) goto out_unlock; /* Attach alias group root */ do_attach(head, domain); /* Attach other devices in the alias group */ list_for_each_entry(entry, &head->alias_list, alias_list) do_attach(entry, domain); ret = 0; out_unlock: /* ready */ spin_unlock(&domain->lock); return ret; } static void pdev_iommuv2_disable(struct pci_dev *pdev) { pci_disable_ats(pdev); pci_disable_pri(pdev); pci_disable_pasid(pdev); } /* FIXME: Change generic reset-function to do the same */ static int pri_reset_while_enabled(struct pci_dev *pdev) { u16 control; int pos; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); if (!pos) return -EINVAL; pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); control |= PCI_PRI_CTRL_RESET; pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); return 0; } static int pdev_iommuv2_enable(struct pci_dev *pdev) { bool reset_enable; int reqs, ret; /* FIXME: Hardcode number of outstanding requests for now */ reqs = 32; if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) reqs = 1; reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); /* Only allow access to user-accessible pages */ ret = pci_enable_pasid(pdev, 0); if (ret) goto out_err; /* First reset the PRI state of the device */ ret = pci_reset_pri(pdev); if (ret) goto out_err; /* Enable PRI */ ret = pci_enable_pri(pdev, reqs); if (ret) goto out_err; if (reset_enable) { ret = pri_reset_while_enabled(pdev); if (ret) goto out_err; } ret = pci_enable_ats(pdev, PAGE_SHIFT); if (ret) goto out_err; return 0; out_err: pci_disable_pri(pdev); pci_disable_pasid(pdev); return ret; } /* FIXME: Move this to PCI code */ #define PCI_PRI_TLP_OFF (1 << 15) static bool pci_pri_tlp_required(struct pci_dev *pdev) { u16 status; int pos; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); if (!pos) return false; pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status); return (status & PCI_PRI_TLP_OFF) ? true : false; } /* * If a device is not yet associated with a domain, this function * assigns it visible for the hardware */ static int attach_device(struct device *dev, struct protection_domain *domain) { struct pci_dev *pdev = to_pci_dev(dev); struct iommu_dev_data *dev_data; unsigned long flags; int ret; dev_data = get_dev_data(dev); if (domain->flags & PD_IOMMUV2_MASK) { if (!dev_data->passthrough) return -EINVAL; if (dev_data->iommu_v2) { if (pdev_iommuv2_enable(pdev) != 0) return -EINVAL; dev_data->ats.enabled = true; dev_data->ats.qdep = pci_ats_queue_depth(pdev); dev_data->pri_tlp = pci_pri_tlp_required(pdev); } } else if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) { dev_data->ats.enabled = true; dev_data->ats.qdep = pci_ats_queue_depth(pdev); } write_lock_irqsave(&amd_iommu_devtable_lock, flags); ret = __attach_device(dev_data, domain); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); /* * We might boot into a crash-kernel here. The crashed kernel * left the caches in the IOMMU dirty. So we have to flush * here to evict all dirty stuff. */ domain_flush_tlb_pde(domain); return ret; } /* * Removes a device from a protection domain (unlocked) */ static void __detach_device(struct iommu_dev_data *dev_data) { struct iommu_dev_data *head, *entry; struct protection_domain *domain; unsigned long flags; BUG_ON(!dev_data->domain); domain = dev_data->domain; spin_lock_irqsave(&domain->lock, flags); head = dev_data; if (head->alias_data != NULL) head = head->alias_data; list_for_each_entry(entry, &head->alias_list, alias_list) do_detach(entry); do_detach(head); spin_unlock_irqrestore(&domain->lock, flags); } /* * Removes a device from a protection domain (with devtable_lock held) */ static void detach_device(struct device *dev) { struct protection_domain *domain; struct iommu_dev_data *dev_data; unsigned long flags; dev_data = get_dev_data(dev); domain = dev_data->domain; /* lock device table */ write_lock_irqsave(&amd_iommu_devtable_lock, flags); __detach_device(dev_data); write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) pdev_iommuv2_disable(to_pci_dev(dev)); else if (dev_data->ats.enabled) pci_disable_ats(to_pci_dev(dev)); dev_data->ats.enabled = false; } static int amd_iommu_add_device(struct device *dev) { struct iommu_dev_data *dev_data; struct iommu_domain *domain; struct amd_iommu *iommu; u16 devid; int ret; if (!check_device(dev) || get_dev_data(dev)) return 0; devid = get_device_id(dev); iommu = amd_iommu_rlookup_table[devid]; ret = iommu_init_device(dev); if (ret) { if (ret != -ENOTSUPP) pr_err("Failed to initialize device %s - trying to proceed anyway\n", dev_name(dev)); iommu_ignore_device(dev); dev->archdata.dma_ops = &nommu_dma_ops; goto out; } init_iommu_group(dev); dev_data = get_dev_data(dev); BUG_ON(!dev_data); if (iommu_pass_through || dev_data->iommu_v2) iommu_request_dm_for_dev(dev); /* Domains are initialized for this device - have a look what we ended up with */ domain = iommu_get_domain_for_dev(dev); if (domain->type == IOMMU_DOMAIN_IDENTITY) dev_data->passthrough = true; else dev->archdata.dma_ops = &amd_iommu_dma_ops; out: iommu_completion_wait(iommu); return 0; } static void amd_iommu_remove_device(struct device *dev) { struct amd_iommu *iommu; u16 devid; if (!check_device(dev)) return; devid = get_device_id(dev); iommu = amd_iommu_rlookup_table[devid]; iommu_uninit_device(dev); iommu_completion_wait(iommu); } /***************************************************************************** * * The next functions belong to the dma_ops mapping/unmapping code. * *****************************************************************************/ /* * In the dma_ops path we only have the struct device. This function * finds the corresponding IOMMU, the protection domain and the * requestor id for a given device. * If the device is not yet associated with a domain this is also done * in this function. */ static struct protection_domain *get_domain(struct device *dev) { struct protection_domain *domain; struct iommu_domain *io_domain; if (!check_device(dev)) return ERR_PTR(-EINVAL); io_domain = iommu_get_domain_for_dev(dev); if (!io_domain) return NULL; domain = to_pdomain(io_domain); if (!dma_ops_domain(domain)) return ERR_PTR(-EBUSY); return domain; } static void update_device_table(struct protection_domain *domain) { struct iommu_dev_data *dev_data; list_for_each_entry(dev_data, &domain->dev_list, list) set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled); } static void update_domain(struct protection_domain *domain) { if (!domain->updated) return; update_device_table(domain); domain_flush_devices(domain); domain_flush_tlb_pde(domain); domain->updated = false; } /* * This function fetches the PTE for a given address in the aperture */ static u64* dma_ops_get_pte(struct dma_ops_domain *dom, unsigned long address) { struct aperture_range *aperture; u64 *pte, *pte_page; aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; if (!aperture) return NULL; pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; if (!pte) { pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page, GFP_ATOMIC); aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; } else pte += PM_LEVEL_INDEX(0, address); update_domain(&dom->domain); return pte; } /* * This is the generic map function. It maps one 4kb page at paddr to * the given address in the DMA address space for the domain. */ static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom, unsigned long address, phys_addr_t paddr, int direction) { u64 *pte, __pte; WARN_ON(address > dom->aperture_size); paddr &= PAGE_MASK; pte = dma_ops_get_pte(dom, address); if (!pte) return DMA_ERROR_CODE; __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; if (direction == DMA_TO_DEVICE) __pte |= IOMMU_PTE_IR; else if (direction == DMA_FROM_DEVICE) __pte |= IOMMU_PTE_IW; else if (direction == DMA_BIDIRECTIONAL) __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; WARN_ON(*pte); *pte = __pte; return (dma_addr_t)address; } /* * The generic unmapping function for on page in the DMA address space. */ static void dma_ops_domain_unmap(struct dma_ops_domain *dom, unsigned long address) { struct aperture_range *aperture; u64 *pte; if (address >= dom->aperture_size) return; aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; if (!aperture) return; pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; if (!pte) return; pte += PM_LEVEL_INDEX(0, address); WARN_ON(!*pte); *pte = 0ULL; } /* * This function contains common code for mapping of a physically * contiguous memory region into DMA address space. It is used by all * mapping functions provided with this IOMMU driver. * Must be called with the domain lock held. */ static dma_addr_t __map_single(struct device *dev, struct dma_ops_domain *dma_dom, phys_addr_t paddr, size_t size, int dir, bool align, u64 dma_mask) { dma_addr_t offset = paddr & ~PAGE_MASK; dma_addr_t address, start, ret; unsigned int pages; unsigned long align_mask = 0; int i; pages = iommu_num_pages(paddr, size, PAGE_SIZE); paddr &= PAGE_MASK; INC_STATS_COUNTER(total_map_requests); if (pages > 1) INC_STATS_COUNTER(cross_page); if (align) align_mask = (1UL << get_order(size)) - 1; retry: address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, dma_mask); if (unlikely(address == DMA_ERROR_CODE)) { /* * setting next_address here will let the address * allocator only scan the new allocated range in the * first run. This is a small optimization. */ dma_dom->next_address = dma_dom->aperture_size; if (alloc_new_range(dma_dom, false, GFP_ATOMIC)) goto out; /* * aperture was successfully enlarged by 128 MB, try * allocation again */ goto retry; } start = address; for (i = 0; i < pages; ++i) { ret = dma_ops_domain_map(dma_dom, start, paddr, dir); if (ret == DMA_ERROR_CODE) goto out_unmap; paddr += PAGE_SIZE; start += PAGE_SIZE; } address += offset; ADD_STATS_COUNTER(alloced_io_mem, size); if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { domain_flush_tlb(&dma_dom->domain); dma_dom->need_flush = false; } else if (unlikely(amd_iommu_np_cache)) domain_flush_pages(&dma_dom->domain, address, size); out: return address; out_unmap: for (--i; i >= 0; --i) { start -= PAGE_SIZE; dma_ops_domain_unmap(dma_dom, start); } dma_ops_free_addresses(dma_dom, address, pages); return DMA_ERROR_CODE; } /* * Does the reverse of the __map_single function. Must be called with * the domain lock held too */ static void __unmap_single(struct dma_ops_domain *dma_dom, dma_addr_t dma_addr, size_t size, int dir) { dma_addr_t flush_addr; dma_addr_t i, start; unsigned int pages; if ((dma_addr == DMA_ERROR_CODE) || (dma_addr + size > dma_dom->aperture_size)) return; flush_addr = dma_addr; pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); dma_addr &= PAGE_MASK; start = dma_addr; for (i = 0; i < pages; ++i) { dma_ops_domain_unmap(dma_dom, start); start += PAGE_SIZE; } SUB_STATS_COUNTER(alloced_io_mem, size); dma_ops_free_addresses(dma_dom, dma_addr, pages); if (amd_iommu_unmap_flush || dma_dom->need_flush) { domain_flush_pages(&dma_dom->domain, flush_addr, size); dma_dom->need_flush = false; } } /* * The exported map_single function for dma_ops. */ static dma_addr_t map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; dma_addr_t addr; u64 dma_mask; phys_addr_t paddr = page_to_phys(page) + offset; INC_STATS_COUNTER(cnt_map_single); domain = get_domain(dev); if (PTR_ERR(domain) == -EINVAL) return (dma_addr_t)paddr; else if (IS_ERR(domain)) return DMA_ERROR_CODE; dma_mask = *dev->dma_mask; spin_lock_irqsave(&domain->lock, flags); addr = __map_single(dev, domain->priv, paddr, size, dir, false, dma_mask); if (addr == DMA_ERROR_CODE) goto out; domain_flush_complete(domain); out: spin_unlock_irqrestore(&domain->lock, flags); return addr; } /* * The exported unmap_single function for dma_ops. */ static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; INC_STATS_COUNTER(cnt_unmap_single); domain = get_domain(dev); if (IS_ERR(domain)) return; spin_lock_irqsave(&domain->lock, flags); __unmap_single(domain->priv, dma_addr, size, dir); domain_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); } /* * The exported map_sg function for dma_ops (handles scatter-gather * lists). */ static int map_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; int i; struct scatterlist *s; phys_addr_t paddr; int mapped_elems = 0; u64 dma_mask; INC_STATS_COUNTER(cnt_map_sg); domain = get_domain(dev); if (IS_ERR(domain)) return 0; dma_mask = *dev->dma_mask; spin_lock_irqsave(&domain->lock, flags); for_each_sg(sglist, s, nelems, i) { paddr = sg_phys(s); s->dma_address = __map_single(dev, domain->priv, paddr, s->length, dir, false, dma_mask); if (s->dma_address) { s->dma_length = s->length; mapped_elems++; } else goto unmap; } domain_flush_complete(domain); out: spin_unlock_irqrestore(&domain->lock, flags); return mapped_elems; unmap: for_each_sg(sglist, s, mapped_elems, i) { if (s->dma_address) __unmap_single(domain->priv, s->dma_address, s->dma_length, dir); s->dma_address = s->dma_length = 0; } mapped_elems = 0; goto out; } /* * The exported map_sg function for dma_ops (handles scatter-gather * lists). */ static void unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) { unsigned long flags; struct protection_domain *domain; struct scatterlist *s; int i; INC_STATS_COUNTER(cnt_unmap_sg); domain = get_domain(dev); if (IS_ERR(domain)) return; spin_lock_irqsave(&domain->lock, flags); for_each_sg(sglist, s, nelems, i) { __unmap_single(domain->priv, s->dma_address, s->dma_length, dir); s->dma_address = s->dma_length = 0; } domain_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); } /* * The exported alloc_coherent function for dma_ops. */ static void *alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t flag, struct dma_attrs *attrs) { u64 dma_mask = dev->coherent_dma_mask; struct protection_domain *domain; unsigned long flags; struct page *page; INC_STATS_COUNTER(cnt_alloc_coherent); domain = get_domain(dev); if (PTR_ERR(domain) == -EINVAL) { page = alloc_pages(flag, get_order(size)); *dma_addr = page_to_phys(page); return page_address(page); } else if (IS_ERR(domain)) return NULL; size = PAGE_ALIGN(size); dma_mask = dev->coherent_dma_mask; flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); flag |= __GFP_ZERO; page = alloc_pages(flag | __GFP_NOWARN, get_order(size)); if (!page) { if (!(flag & __GFP_WAIT)) return NULL; page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, get_order(size)); if (!page) return NULL; } if (!dma_mask) dma_mask = *dev->dma_mask; spin_lock_irqsave(&domain->lock, flags); *dma_addr = __map_single(dev, domain->priv, page_to_phys(page), size, DMA_BIDIRECTIONAL, true, dma_mask); if (*dma_addr == DMA_ERROR_CODE) { spin_unlock_irqrestore(&domain->lock, flags); goto out_free; } domain_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); return page_address(page); out_free: if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) __free_pages(page, get_order(size)); return NULL; } /* * The exported free_coherent function for dma_ops. */ static void free_coherent(struct device *dev, size_t size, void *virt_addr, dma_addr_t dma_addr, struct dma_attrs *attrs) { struct protection_domain *domain; unsigned long flags; struct page *page; INC_STATS_COUNTER(cnt_free_coherent); page = virt_to_page(virt_addr); size = PAGE_ALIGN(size); domain = get_domain(dev); if (IS_ERR(domain)) goto free_mem; spin_lock_irqsave(&domain->lock, flags); __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); domain_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); free_mem: if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) __free_pages(page, get_order(size)); } /* * This function is called by the DMA layer to find out if we can handle a * particular device. It is part of the dma_ops. */ static int amd_iommu_dma_supported(struct device *dev, u64 mask) { return check_device(dev); } static struct dma_map_ops amd_iommu_dma_ops = { .alloc = alloc_coherent, .free = free_coherent, .map_page = map_page, .unmap_page = unmap_page, .map_sg = map_sg, .unmap_sg = unmap_sg, .dma_supported = amd_iommu_dma_supported, }; int __init amd_iommu_init_api(void) { return bus_set_iommu(&pci_bus_type, &amd_iommu_ops); } int __init amd_iommu_init_dma_ops(void) { swiotlb = iommu_pass_through ? 1 : 0; iommu_detected = 1; /* * In case we don't initialize SWIOTLB (actually the common case * when AMD IOMMU is enabled), make sure there are global * dma_ops set as a fall-back for devices not handled by this * driver (for example non-PCI devices). */ if (!swiotlb) dma_ops = &nommu_dma_ops; amd_iommu_stats_init(); if (amd_iommu_unmap_flush) pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n"); else pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n"); return 0; } /***************************************************************************** * * The following functions belong to the exported interface of AMD IOMMU * * This interface allows access to lower level functions of the IOMMU * like protection domain handling and assignement of devices to domains * which is not possible with the dma_ops interface. * *****************************************************************************/ static void cleanup_domain(struct protection_domain *domain) { struct iommu_dev_data *entry; unsigned long flags; write_lock_irqsave(&amd_iommu_devtable_lock, flags); while (!list_empty(&domain->dev_list)) { entry = list_first_entry(&domain->dev_list, struct iommu_dev_data, list); __detach_device(entry); } write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); } static void protection_domain_free(struct protection_domain *domain) { if (!domain) return; del_domain_from_list(domain); if (domain->id) domain_id_free(domain->id); kfree(domain); } static int protection_domain_init(struct protection_domain *domain) { spin_lock_init(&domain->lock); mutex_init(&domain->api_lock); domain->id = domain_id_alloc(); if (!domain->id) return -ENOMEM; INIT_LIST_HEAD(&domain->dev_list); return 0; } static struct protection_domain *protection_domain_alloc(void) { struct protection_domain *domain; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) return NULL; if (protection_domain_init(domain)) goto out_err; add_domain_to_list(domain); return domain; out_err: kfree(domain); return NULL; } static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) { struct protection_domain *pdomain; struct dma_ops_domain *dma_domain; switch (type) { case IOMMU_DOMAIN_UNMANAGED: pdomain = protection_domain_alloc(); if (!pdomain) return NULL; pdomain->mode = PAGE_MODE_3_LEVEL; pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); if (!pdomain->pt_root) { protection_domain_free(pdomain); return NULL; } pdomain->domain.geometry.aperture_start = 0; pdomain->domain.geometry.aperture_end = ~0ULL; pdomain->domain.geometry.force_aperture = true; break; case IOMMU_DOMAIN_DMA: dma_domain = dma_ops_domain_alloc(); if (!dma_domain) { pr_err("AMD-Vi: Failed to allocate\n"); return NULL; } pdomain = &dma_domain->domain; break; case IOMMU_DOMAIN_IDENTITY: pdomain = protection_domain_alloc(); if (!pdomain) return NULL; pdomain->mode = PAGE_MODE_NONE; break; default: return NULL; } return &pdomain->domain; } static void amd_iommu_domain_free(struct iommu_domain *dom) { struct protection_domain *domain; if (!dom) return; domain = to_pdomain(dom); if (domain->dev_cnt > 0) cleanup_domain(domain); BUG_ON(domain->dev_cnt != 0); if (domain->mode != PAGE_MODE_NONE) free_pagetable(domain); if (domain->flags & PD_IOMMUV2_MASK) free_gcr3_table(domain); protection_domain_free(domain); } static void amd_iommu_detach_device(struct iommu_domain *dom, struct device *dev) { struct iommu_dev_data *dev_data = dev->archdata.iommu; struct amd_iommu *iommu; u16 devid; if (!check_device(dev)) return; devid = get_device_id(dev); if (dev_data->domain != NULL) detach_device(dev); iommu = amd_iommu_rlookup_table[devid]; if (!iommu) return; iommu_completion_wait(iommu); } static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev) { struct protection_domain *domain = to_pdomain(dom); struct iommu_dev_data *dev_data; struct amd_iommu *iommu; int ret; if (!check_device(dev)) return -EINVAL; dev_data = dev->archdata.iommu; iommu = amd_iommu_rlookup_table[dev_data->devid]; if (!iommu) return -EINVAL; if (dev_data->domain) detach_device(dev); ret = attach_device(dev, domain); iommu_completion_wait(iommu); return ret; } static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, phys_addr_t paddr, size_t page_size, int iommu_prot) { struct protection_domain *domain = to_pdomain(dom); int prot = 0; int ret; if (domain->mode == PAGE_MODE_NONE) return -EINVAL; if (iommu_prot & IOMMU_READ) prot |= IOMMU_PROT_IR; if (iommu_prot & IOMMU_WRITE) prot |= IOMMU_PROT_IW; mutex_lock(&domain->api_lock); ret = iommu_map_page(domain, iova, paddr, prot, page_size); mutex_unlock(&domain->api_lock); return ret; } static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, size_t page_size) { struct protection_domain *domain = to_pdomain(dom); size_t unmap_size; if (domain->mode == PAGE_MODE_NONE) return -EINVAL; mutex_lock(&domain->api_lock); unmap_size = iommu_unmap_page(domain, iova, page_size); mutex_unlock(&domain->api_lock); domain_flush_tlb_pde(domain); return unmap_size; } static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, dma_addr_t iova) { struct protection_domain *domain = to_pdomain(dom); unsigned long offset_mask, pte_pgsize; u64 *pte, __pte; if (domain->mode == PAGE_MODE_NONE) return iova; pte = fetch_pte(domain, iova, &pte_pgsize); if (!pte || !IOMMU_PTE_PRESENT(*pte)) return 0; offset_mask = pte_pgsize - 1; __pte = *pte & PM_ADDR_MASK; return (__pte & ~offset_mask) | (iova & offset_mask); } static bool amd_iommu_capable(enum iommu_cap cap) { switch (cap) { case IOMMU_CAP_CACHE_COHERENCY: return true; case IOMMU_CAP_INTR_REMAP: return (irq_remapping_enabled == 1); case IOMMU_CAP_NOEXEC: return false; } return false; } static void amd_iommu_get_dm_regions(struct device *dev, struct list_head *head) { struct unity_map_entry *entry; u16 devid; devid = get_device_id(dev); list_for_each_entry(entry, &amd_iommu_unity_map, list) { struct iommu_dm_region *region; if (devid < entry->devid_start || devid > entry->devid_end) continue; region = kzalloc(sizeof(*region), GFP_KERNEL); if (!region) { pr_err("Out of memory allocating dm-regions for %s\n", dev_name(dev)); return; } region->start = entry->address_start; region->length = entry->address_end - entry->address_start; if (entry->prot & IOMMU_PROT_IR) region->prot |= IOMMU_READ; if (entry->prot & IOMMU_PROT_IW) region->prot |= IOMMU_WRITE; list_add_tail(®ion->list, head); } } static void amd_iommu_put_dm_regions(struct device *dev, struct list_head *head) { struct iommu_dm_region *entry, *next; list_for_each_entry_safe(entry, next, head, list) kfree(entry); } static const struct iommu_ops amd_iommu_ops = { .capable = amd_iommu_capable, .domain_alloc = amd_iommu_domain_alloc, .domain_free = amd_iommu_domain_free, .attach_dev = amd_iommu_attach_device, .detach_dev = amd_iommu_detach_device, .map = amd_iommu_map, .unmap = amd_iommu_unmap, .map_sg = default_iommu_map_sg, .iova_to_phys = amd_iommu_iova_to_phys, .add_device = amd_iommu_add_device, .remove_device = amd_iommu_remove_device, .get_dm_regions = amd_iommu_get_dm_regions, .put_dm_regions = amd_iommu_put_dm_regions, .pgsize_bitmap = AMD_IOMMU_PGSIZES, }; /***************************************************************************** * * The next functions do a basic initialization of IOMMU for pass through * mode * * In passthrough mode the IOMMU is initialized and enabled but not used for * DMA-API translation. * *****************************************************************************/ /* IOMMUv2 specific functions */ int amd_iommu_register_ppr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&ppr_notifier, nb); } EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&ppr_notifier, nb); } EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); void amd_iommu_domain_direct_map(struct iommu_domain *dom) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; spin_lock_irqsave(&domain->lock, flags); /* Update data structure */ domain->mode = PAGE_MODE_NONE; domain->updated = true; /* Make changes visible to IOMMUs */ update_domain(domain); /* Page-table is not visible to IOMMU anymore, so free it */ free_pagetable(domain); spin_unlock_irqrestore(&domain->lock, flags); } EXPORT_SYMBOL(amd_iommu_domain_direct_map); int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int levels, ret; if (pasids <= 0 || pasids > (PASID_MASK + 1)) return -EINVAL; /* Number of GCR3 table levels required */ for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) levels += 1; if (levels > amd_iommu_max_glx_val) return -EINVAL; spin_lock_irqsave(&domain->lock, flags); /* * Save us all sanity checks whether devices already in the * domain support IOMMUv2. Just force that the domain has no * devices attached when it is switched into IOMMUv2 mode. */ ret = -EBUSY; if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) goto out; ret = -ENOMEM; domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); if (domain->gcr3_tbl == NULL) goto out; domain->glx = levels; domain->flags |= PD_IOMMUV2_MASK; domain->updated = true; update_domain(domain); ret = 0; out: spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_domain_enable_v2); static int __flush_pasid(struct protection_domain *domain, int pasid, u64 address, bool size) { struct iommu_dev_data *dev_data; struct iommu_cmd cmd; int i, ret; if (!(domain->flags & PD_IOMMUV2_MASK)) return -EINVAL; build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); /* * IOMMU TLB needs to be flushed before Device TLB to * prevent device TLB refill from IOMMU TLB */ for (i = 0; i < amd_iommus_present; ++i) { if (domain->dev_iommu[i] == 0) continue; ret = iommu_queue_command(amd_iommus[i], &cmd); if (ret != 0) goto out; } /* Wait until IOMMU TLB flushes are complete */ domain_flush_complete(domain); /* Now flush device TLBs */ list_for_each_entry(dev_data, &domain->dev_list, list) { struct amd_iommu *iommu; int qdep; /* There might be non-IOMMUv2 capable devices in an IOMMUv2 * domain. */ if (!dev_data->ats.enabled) continue; qdep = dev_data->ats.qdep; iommu = amd_iommu_rlookup_table[dev_data->devid]; build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, qdep, address, size); ret = iommu_queue_command(iommu, &cmd); if (ret != 0) goto out; } /* Wait until all device TLBs are flushed */ domain_flush_complete(domain); ret = 0; out: return ret; } static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, u64 address) { INC_STATS_COUNTER(invalidate_iotlb); return __flush_pasid(domain, pasid, address, false); } int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, u64 address) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __amd_iommu_flush_page(domain, pasid, address); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_flush_page); static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) { INC_STATS_COUNTER(invalidate_iotlb_all); return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, true); } int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __amd_iommu_flush_tlb(domain, pasid); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_flush_tlb); static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) { int index; u64 *pte; while (true) { index = (pasid >> (9 * level)) & 0x1ff; pte = &root[index]; if (level == 0) break; if (!(*pte & GCR3_VALID)) { if (!alloc) return NULL; root = (void *)get_zeroed_page(GFP_ATOMIC); if (root == NULL) return NULL; *pte = __pa(root) | GCR3_VALID; } root = __va(*pte & PAGE_MASK); level -= 1; } return pte; } static int __set_gcr3(struct protection_domain *domain, int pasid, unsigned long cr3) { u64 *pte; if (domain->mode != PAGE_MODE_NONE) return -EINVAL; pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); if (pte == NULL) return -ENOMEM; *pte = (cr3 & PAGE_MASK) | GCR3_VALID; return __amd_iommu_flush_tlb(domain, pasid); } static int __clear_gcr3(struct protection_domain *domain, int pasid) { u64 *pte; if (domain->mode != PAGE_MODE_NONE) return -EINVAL; pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); if (pte == NULL) return 0; *pte = 0; return __amd_iommu_flush_tlb(domain, pasid); } int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, unsigned long cr3) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __set_gcr3(domain, pasid, cr3); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __clear_gcr3(domain, pasid); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, int status, int tag) { struct iommu_dev_data *dev_data; struct amd_iommu *iommu; struct iommu_cmd cmd; INC_STATS_COUNTER(complete_ppr); dev_data = get_dev_data(&pdev->dev); iommu = amd_iommu_rlookup_table[dev_data->devid]; build_complete_ppr(&cmd, dev_data->devid, pasid, status, tag, dev_data->pri_tlp); return iommu_queue_command(iommu, &cmd); } EXPORT_SYMBOL(amd_iommu_complete_ppr); struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) { struct protection_domain *pdomain; pdomain = get_domain(&pdev->dev); if (IS_ERR(pdomain)) return NULL; /* Only return IOMMUv2 domains */ if (!(pdomain->flags & PD_IOMMUV2_MASK)) return NULL; return &pdomain->domain; } EXPORT_SYMBOL(amd_iommu_get_v2_domain); void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) { struct iommu_dev_data *dev_data; if (!amd_iommu_v2_supported()) return; dev_data = get_dev_data(&pdev->dev); dev_data->errata |= (1 << erratum); } EXPORT_SYMBOL(amd_iommu_enable_device_erratum); int amd_iommu_device_info(struct pci_dev *pdev, struct amd_iommu_device_info *info) { int max_pasids; int pos; if (pdev == NULL || info == NULL) return -EINVAL; if (!amd_iommu_v2_supported()) return -EINVAL; memset(info, 0, sizeof(*info)); pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS); if (pos) info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); if (pos) info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); if (pos) { int features; max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); max_pasids = min(max_pasids, (1 << 20)); info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; info->max_pasids = min(pci_max_pasids(pdev), max_pasids); features = pci_pasid_features(pdev); if (features & PCI_PASID_CAP_EXEC) info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; if (features & PCI_PASID_CAP_PRIV) info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; } return 0; } EXPORT_SYMBOL(amd_iommu_device_info); #ifdef CONFIG_IRQ_REMAP /***************************************************************************** * * Interrupt Remapping Implementation * *****************************************************************************/ union irte { u32 val; struct { u32 valid : 1, no_fault : 1, int_type : 3, rq_eoi : 1, dm : 1, rsvd_1 : 1, destination : 8, vector : 8, rsvd_2 : 8; } fields; }; struct irq_2_irte { u16 devid; /* Device ID for IRTE table */ u16 index; /* Index into IRTE table*/ }; struct amd_ir_data { struct irq_2_irte irq_2_irte; union irte irte_entry; union { struct msi_msg msi_entry; }; }; static struct irq_chip amd_ir_chip; #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6) #define DTE_IRQ_REMAP_INTCTL (2ULL << 60) #define DTE_IRQ_TABLE_LEN (8ULL << 1) #define DTE_IRQ_REMAP_ENABLE 1ULL static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) { u64 dte; dte = amd_iommu_dev_table[devid].data[2]; dte &= ~DTE_IRQ_PHYS_ADDR_MASK; dte |= virt_to_phys(table->table); dte |= DTE_IRQ_REMAP_INTCTL; dte |= DTE_IRQ_TABLE_LEN; dte |= DTE_IRQ_REMAP_ENABLE; amd_iommu_dev_table[devid].data[2] = dte; } #define IRTE_ALLOCATED (~1U) static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic) { struct irq_remap_table *table = NULL; struct amd_iommu *iommu; unsigned long flags; u16 alias; write_lock_irqsave(&amd_iommu_devtable_lock, flags); iommu = amd_iommu_rlookup_table[devid]; if (!iommu) goto out_unlock; table = irq_lookup_table[devid]; if (table) goto out; alias = amd_iommu_alias_table[devid]; table = irq_lookup_table[alias]; if (table) { irq_lookup_table[devid] = table; set_dte_irq_entry(devid, table); iommu_flush_dte(iommu, devid); goto out; } /* Nothing there yet, allocate new irq remapping table */ table = kzalloc(sizeof(*table), GFP_ATOMIC); if (!table) goto out; /* Initialize table spin-lock */ spin_lock_init(&table->lock); if (ioapic) /* Keep the first 32 indexes free for IOAPIC interrupts */ table->min_index = 32; table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC); if (!table->table) { kfree(table); table = NULL; goto out; } memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32)); if (ioapic) { int i; for (i = 0; i < 32; ++i) table->table[i] = IRTE_ALLOCATED; } irq_lookup_table[devid] = table; set_dte_irq_entry(devid, table); iommu_flush_dte(iommu, devid); if (devid != alias) { irq_lookup_table[alias] = table; set_dte_irq_entry(alias, table); iommu_flush_dte(iommu, alias); } out: iommu_completion_wait(iommu); out_unlock: write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); return table; } static int alloc_irq_index(u16 devid, int count) { struct irq_remap_table *table; unsigned long flags; int index, c; table = get_irq_table(devid, false); if (!table) return -ENODEV; spin_lock_irqsave(&table->lock, flags); /* Scan table for free entries */ for (c = 0, index = table->min_index; index < MAX_IRQS_PER_TABLE; ++index) { if (table->table[index] == 0) c += 1; else c = 0; if (c == count) { for (; c != 0; --c) table->table[index - c + 1] = IRTE_ALLOCATED; index -= count - 1; goto out; } } index = -ENOSPC; out: spin_unlock_irqrestore(&table->lock, flags); return index; } static int modify_irte(u16 devid, int index, union irte irte) { struct irq_remap_table *table; struct amd_iommu *iommu; unsigned long flags; iommu = amd_iommu_rlookup_table[devid]; if (iommu == NULL) return -EINVAL; table = get_irq_table(devid, false); if (!table) return -ENOMEM; spin_lock_irqsave(&table->lock, flags); table->table[index] = irte.val; spin_unlock_irqrestore(&table->lock, flags); iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); return 0; } static void free_irte(u16 devid, int index) { struct irq_remap_table *table; struct amd_iommu *iommu; unsigned long flags; iommu = amd_iommu_rlookup_table[devid]; if (iommu == NULL) return; table = get_irq_table(devid, false); if (!table) return; spin_lock_irqsave(&table->lock, flags); table->table[index] = 0; spin_unlock_irqrestore(&table->lock, flags); iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); } static int get_devid(struct irq_alloc_info *info) { int devid = -1; switch (info->type) { case X86_IRQ_ALLOC_TYPE_IOAPIC: devid = get_ioapic_devid(info->ioapic_id); break; case X86_IRQ_ALLOC_TYPE_HPET: devid = get_hpet_devid(info->hpet_id); break; case X86_IRQ_ALLOC_TYPE_MSI: case X86_IRQ_ALLOC_TYPE_MSIX: devid = get_device_id(&info->msi_dev->dev); break; default: BUG_ON(1); break; } return devid; } static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info) { struct amd_iommu *iommu; int devid; if (!info) return NULL; devid = get_devid(info); if (devid >= 0) { iommu = amd_iommu_rlookup_table[devid]; if (iommu) return iommu->ir_domain; } return NULL; } static struct irq_domain *get_irq_domain(struct irq_alloc_info *info) { struct amd_iommu *iommu; int devid; if (!info) return NULL; switch (info->type) { case X86_IRQ_ALLOC_TYPE_MSI: case X86_IRQ_ALLOC_TYPE_MSIX: devid = get_device_id(&info->msi_dev->dev); if (devid >= 0) { iommu = amd_iommu_rlookup_table[devid]; if (iommu) return iommu->msi_domain; } break; default: break; } return NULL; } struct irq_remap_ops amd_iommu_irq_ops = { .prepare = amd_iommu_prepare, .enable = amd_iommu_enable, .disable = amd_iommu_disable, .reenable = amd_iommu_reenable, .enable_faulting = amd_iommu_enable_faulting, .get_ir_irq_domain = get_ir_irq_domain, .get_irq_domain = get_irq_domain, }; static void irq_remapping_prepare_irte(struct amd_ir_data *data, struct irq_cfg *irq_cfg, struct irq_alloc_info *info, int devid, int index, int sub_handle) { struct irq_2_irte *irte_info = &data->irq_2_irte; struct msi_msg *msg = &data->msi_entry; union irte *irte = &data->irte_entry; struct IO_APIC_route_entry *entry; data->irq_2_irte.devid = devid; data->irq_2_irte.index = index + sub_handle; /* Setup IRTE for IOMMU */ irte->val = 0; irte->fields.vector = irq_cfg->vector; irte->fields.int_type = apic->irq_delivery_mode; irte->fields.destination = irq_cfg->dest_apicid; irte->fields.dm = apic->irq_dest_mode; irte->fields.valid = 1; switch (info->type) { case X86_IRQ_ALLOC_TYPE_IOAPIC: /* Setup IOAPIC entry */ entry = info->ioapic_entry; info->ioapic_entry = NULL; memset(entry, 0, sizeof(*entry)); entry->vector = index; entry->mask = 0; entry->trigger = info->ioapic_trigger; entry->polarity = info->ioapic_polarity; /* Mask level triggered irqs. */ if (info->ioapic_trigger) entry->mask = 1; break; case X86_IRQ_ALLOC_TYPE_HPET: case X86_IRQ_ALLOC_TYPE_MSI: case X86_IRQ_ALLOC_TYPE_MSIX: msg->address_hi = MSI_ADDR_BASE_HI; msg->address_lo = MSI_ADDR_BASE_LO; msg->data = irte_info->index; break; default: BUG_ON(1); break; } } static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_alloc_info *info = arg; struct irq_data *irq_data; struct amd_ir_data *data; struct irq_cfg *cfg; int i, ret, devid; int index = -1; if (!info) return -EINVAL; if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI && info->type != X86_IRQ_ALLOC_TYPE_MSIX) return -EINVAL; /* * With IRQ remapping enabled, don't need contiguous CPU vectors * to support multiple MSI interrupts. */ if (info->type == X86_IRQ_ALLOC_TYPE_MSI) info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; devid = get_devid(info); if (devid < 0) return -EINVAL; ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); if (ret < 0) return ret; if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { if (get_irq_table(devid, true)) index = info->ioapic_pin; else ret = -ENOMEM; } else { index = alloc_irq_index(devid, nr_irqs); } if (index < 0) { pr_warn("Failed to allocate IRTE\n"); goto out_free_parent; } for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(domain, virq + i); cfg = irqd_cfg(irq_data); if (!irq_data || !cfg) { ret = -EINVAL; goto out_free_data; } ret = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) goto out_free_data; irq_data->hwirq = (devid << 16) + i; irq_data->chip_data = data; irq_data->chip = &amd_ir_chip; irq_remapping_prepare_irte(data, cfg, info, devid, index, i); irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); } return 0; out_free_data: for (i--; i >= 0; i--) { irq_data = irq_domain_get_irq_data(domain, virq + i); if (irq_data) kfree(irq_data->chip_data); } for (i = 0; i < nr_irqs; i++) free_irte(devid, index + i); out_free_parent: irq_domain_free_irqs_common(domain, virq, nr_irqs); return ret; } static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_2_irte *irte_info; struct irq_data *irq_data; struct amd_ir_data *data; int i; for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(domain, virq + i); if (irq_data && irq_data->chip_data) { data = irq_data->chip_data; irte_info = &data->irq_2_irte; free_irte(irte_info->devid, irte_info->index); kfree(data); } } irq_domain_free_irqs_common(domain, virq, nr_irqs); } static void irq_remapping_activate(struct irq_domain *domain, struct irq_data *irq_data) { struct amd_ir_data *data = irq_data->chip_data; struct irq_2_irte *irte_info = &data->irq_2_irte; modify_irte(irte_info->devid, irte_info->index, data->irte_entry); } static void irq_remapping_deactivate(struct irq_domain *domain, struct irq_data *irq_data) { struct amd_ir_data *data = irq_data->chip_data; struct irq_2_irte *irte_info = &data->irq_2_irte; union irte entry; entry.val = 0; modify_irte(irte_info->devid, irte_info->index, data->irte_entry); } static struct irq_domain_ops amd_ir_domain_ops = { .alloc = irq_remapping_alloc, .free = irq_remapping_free, .activate = irq_remapping_activate, .deactivate = irq_remapping_deactivate, }; static int amd_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct amd_ir_data *ir_data = data->chip_data; struct irq_2_irte *irte_info = &ir_data->irq_2_irte; struct irq_cfg *cfg = irqd_cfg(data); struct irq_data *parent = data->parent_data; int ret; ret = parent->chip->irq_set_affinity(parent, mask, force); if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) return ret; /* * Atomically updates the IRTE with the new destination, vector * and flushes the interrupt entry cache. */ ir_data->irte_entry.fields.vector = cfg->vector; ir_data->irte_entry.fields.destination = cfg->dest_apicid; modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry); /* * After this point, all the interrupts will start arriving * at the new destination. So, time to cleanup the previous * vector allocation. */ send_cleanup_vector(cfg); return IRQ_SET_MASK_OK_DONE; } static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) { struct amd_ir_data *ir_data = irq_data->chip_data; *msg = ir_data->msi_entry; } static struct irq_chip amd_ir_chip = { .irq_ack = ir_ack_apic_edge, .irq_set_affinity = amd_ir_set_affinity, .irq_compose_msi_msg = ir_compose_msi_msg, }; int amd_iommu_create_irq_domain(struct amd_iommu *iommu) { iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu); if (!iommu->ir_domain) return -ENOMEM; iommu->ir_domain->parent = arch_get_ir_parent_domain(); iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain); return 0; } #endif