/* * Copyright(c) 2015, 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include "hfi.h" #include "common.h" #include "qp.h" #include "sdma.h" #include "iowait.h" #include "trace.h" /* must be a power of 2 >= 64 <= 32768 */ #define SDMA_DESCQ_CNT 2048 #define SDMA_DESC_INTR 64 #define INVALID_TAIL 0xffff static uint sdma_descq_cnt = SDMA_DESCQ_CNT; module_param(sdma_descq_cnt, uint, S_IRUGO); MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries"); static uint sdma_idle_cnt = 250; module_param(sdma_idle_cnt, uint, S_IRUGO); MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)"); uint mod_num_sdma; module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO); MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use"); static uint sdma_desct_intr = SDMA_DESC_INTR; module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt"); #define SDMA_WAIT_BATCH_SIZE 20 /* max wait time for a SDMA engine to indicate it has halted */ #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */ /* all SDMA engine errors that cause a halt */ #define SD(name) SEND_DMA_##name #define ALL_SDMA_ENG_HALT_ERRS \ (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \ | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK)) /* sdma_sendctrl operations */ #define SDMA_SENDCTRL_OP_ENABLE BIT(0) #define SDMA_SENDCTRL_OP_INTENABLE BIT(1) #define SDMA_SENDCTRL_OP_HALT BIT(2) #define SDMA_SENDCTRL_OP_CLEANUP BIT(3) /* handle long defines */ #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \ SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \ SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT static const char * const sdma_state_names[] = { [sdma_state_s00_hw_down] = "s00_HwDown", [sdma_state_s10_hw_start_up_halt_wait] = "s10_HwStartUpHaltWait", [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait", [sdma_state_s20_idle] = "s20_Idle", [sdma_state_s30_sw_clean_up_wait] = "s30_SwCleanUpWait", [sdma_state_s40_hw_clean_up_wait] = "s40_HwCleanUpWait", [sdma_state_s50_hw_halt_wait] = "s50_HwHaltWait", [sdma_state_s60_idle_halt_wait] = "s60_IdleHaltWait", [sdma_state_s80_hw_freeze] = "s80_HwFreeze", [sdma_state_s82_freeze_sw_clean] = "s82_FreezeSwClean", [sdma_state_s99_running] = "s99_Running", }; #ifdef CONFIG_SDMA_VERBOSITY static const char * const sdma_event_names[] = { [sdma_event_e00_go_hw_down] = "e00_GoHwDown", [sdma_event_e10_go_hw_start] = "e10_GoHwStart", [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone", [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone", [sdma_event_e30_go_running] = "e30_GoRunning", [sdma_event_e40_sw_cleaned] = "e40_SwCleaned", [sdma_event_e50_hw_cleaned] = "e50_HwCleaned", [sdma_event_e60_hw_halted] = "e60_HwHalted", [sdma_event_e70_go_idle] = "e70_GoIdle", [sdma_event_e80_hw_freeze] = "e80_HwFreeze", [sdma_event_e81_hw_frozen] = "e81_HwFrozen", [sdma_event_e82_hw_unfreeze] = "e82_HwUnfreeze", [sdma_event_e85_link_down] = "e85_LinkDown", [sdma_event_e90_sw_halted] = "e90_SwHalted", }; #endif static const struct sdma_set_state_action sdma_action_table[] = { [sdma_state_s00_hw_down] = { .go_s99_running_tofalse = 1, .op_enable = 0, .op_intenable = 0, .op_halt = 0, .op_cleanup = 0, }, [sdma_state_s10_hw_start_up_halt_wait] = { .op_enable = 0, .op_intenable = 0, .op_halt = 1, .op_cleanup = 0, }, [sdma_state_s15_hw_start_up_clean_wait] = { .op_enable = 0, .op_intenable = 1, .op_halt = 0, .op_cleanup = 1, }, [sdma_state_s20_idle] = { .op_enable = 0, .op_intenable = 1, .op_halt = 0, .op_cleanup = 0, }, [sdma_state_s30_sw_clean_up_wait] = { .op_enable = 0, .op_intenable = 0, .op_halt = 0, .op_cleanup = 0, }, [sdma_state_s40_hw_clean_up_wait] = { .op_enable = 0, .op_intenable = 0, .op_halt = 0, .op_cleanup = 1, }, [sdma_state_s50_hw_halt_wait] = { .op_enable = 0, .op_intenable = 0, .op_halt = 0, .op_cleanup = 0, }, [sdma_state_s60_idle_halt_wait] = { .go_s99_running_tofalse = 1, .op_enable = 0, .op_intenable = 0, .op_halt = 1, .op_cleanup = 0, }, [sdma_state_s80_hw_freeze] = { .op_enable = 0, .op_intenable = 0, .op_halt = 0, .op_cleanup = 0, }, [sdma_state_s82_freeze_sw_clean] = { .op_enable = 0, .op_intenable = 0, .op_halt = 0, .op_cleanup = 0, }, [sdma_state_s99_running] = { .op_enable = 1, .op_intenable = 1, .op_halt = 0, .op_cleanup = 0, .go_s99_running_totrue = 1, }, }; #define SDMA_TAIL_UPDATE_THRESH 0x1F /* declare all statics here rather than keep sorting */ static void sdma_complete(struct kref *); static void sdma_finalput(struct sdma_state *); static void sdma_get(struct sdma_state *); static void sdma_hw_clean_up_task(unsigned long); static void sdma_put(struct sdma_state *); static void sdma_set_state(struct sdma_engine *, enum sdma_states); static void sdma_start_hw_clean_up(struct sdma_engine *); static void sdma_sw_clean_up_task(unsigned long); static void sdma_sendctrl(struct sdma_engine *, unsigned); static void init_sdma_regs(struct sdma_engine *, u32, uint); static void sdma_process_event( struct sdma_engine *sde, enum sdma_events event); static void __sdma_process_event( struct sdma_engine *sde, enum sdma_events event); static void dump_sdma_state(struct sdma_engine *sde); static void sdma_make_progress(struct sdma_engine *sde, u64 status); static void sdma_desc_avail(struct sdma_engine *sde, uint avail); static void sdma_flush_descq(struct sdma_engine *sde); /** * sdma_state_name() - return state string from enum * @state: state */ static const char *sdma_state_name(enum sdma_states state) { return sdma_state_names[state]; } static void sdma_get(struct sdma_state *ss) { kref_get(&ss->kref); } static void sdma_complete(struct kref *kref) { struct sdma_state *ss = container_of(kref, struct sdma_state, kref); complete(&ss->comp); } static void sdma_put(struct sdma_state *ss) { kref_put(&ss->kref, sdma_complete); } static void sdma_finalput(struct sdma_state *ss) { sdma_put(ss); wait_for_completion(&ss->comp); } static inline void write_sde_csr( struct sdma_engine *sde, u32 offset0, u64 value) { write_kctxt_csr(sde->dd, sde->this_idx, offset0, value); } static inline u64 read_sde_csr( struct sdma_engine *sde, u32 offset0) { return read_kctxt_csr(sde->dd, sde->this_idx, offset0); } /* * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for * sdma engine 'sde' to drop to 0. */ static void sdma_wait_for_packet_egress(struct sdma_engine *sde, int pause) { u64 off = 8 * sde->this_idx; struct hfi1_devdata *dd = sde->dd; int lcnt = 0; u64 reg_prev; u64 reg = 0; while (1) { reg_prev = reg; reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS); reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK; reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT; if (reg == 0) break; /* counter is reest if accupancy count changes */ if (reg != reg_prev) lcnt = 0; if (lcnt++ > 500) { /* timed out - bounce the link */ dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n", __func__, sde->this_idx, (u32)reg); queue_work(dd->pport->link_wq, &dd->pport->link_bounce_work); break; } udelay(1); } } /* * sdma_wait() - wait for packet egress to complete for all SDMA engines, * and pause for credit return. */ void sdma_wait(struct hfi1_devdata *dd) { int i; for (i = 0; i < dd->num_sdma; i++) { struct sdma_engine *sde = &dd->per_sdma[i]; sdma_wait_for_packet_egress(sde, 0); } } static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt) { u64 reg; if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT)) return; reg = cnt; reg &= SD(DESC_CNT_CNT_MASK); reg <<= SD(DESC_CNT_CNT_SHIFT); write_sde_csr(sde, SD(DESC_CNT), reg); } static inline void complete_tx(struct sdma_engine *sde, struct sdma_txreq *tx, int res) { /* protect against complete modifying */ struct iowait *wait = tx->wait; callback_t complete = tx->complete; #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER trace_hfi1_sdma_out_sn(sde, tx->sn); if (WARN_ON_ONCE(sde->head_sn != tx->sn)) dd_dev_err(sde->dd, "expected %llu got %llu\n", sde->head_sn, tx->sn); sde->head_sn++; #endif __sdma_txclean(sde->dd, tx); if (complete) (*complete)(tx, res); if (wait && iowait_sdma_dec(wait)) iowait_drain_wakeup(wait); } /* * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status * * Depending on timing there can be txreqs in two places: * - in the descq ring * - in the flush list * * To avoid ordering issues the descq ring needs to be flushed * first followed by the flush list. * * This routine is called from two places * - From a work queue item * - Directly from the state machine just before setting the * state to running * * Must be called with head_lock held * */ static void sdma_flush(struct sdma_engine *sde) { struct sdma_txreq *txp, *txp_next; LIST_HEAD(flushlist); unsigned long flags; /* flush from head to tail */ sdma_flush_descq(sde); spin_lock_irqsave(&sde->flushlist_lock, flags); /* copy flush list */ list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) { list_del_init(&txp->list); list_add_tail(&txp->list, &flushlist); } spin_unlock_irqrestore(&sde->flushlist_lock, flags); /* flush from flush list */ list_for_each_entry_safe(txp, txp_next, &flushlist, list) complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); } /* * Fields a work request for flushing the descq ring * and the flush list * * If the engine has been brought to running during * the scheduling delay, the flush is ignored, assuming * that the process of bringing the engine to running * would have done this flush prior to going to running. * */ static void sdma_field_flush(struct work_struct *work) { unsigned long flags; struct sdma_engine *sde = container_of(work, struct sdma_engine, flush_worker); write_seqlock_irqsave(&sde->head_lock, flags); if (!__sdma_running(sde)) sdma_flush(sde); write_sequnlock_irqrestore(&sde->head_lock, flags); } static void sdma_err_halt_wait(struct work_struct *work) { struct sdma_engine *sde = container_of(work, struct sdma_engine, err_halt_worker); u64 statuscsr; unsigned long timeout; timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT); while (1) { statuscsr = read_sde_csr(sde, SD(STATUS)); statuscsr &= SD(STATUS_ENG_HALTED_SMASK); if (statuscsr) break; if (time_after(jiffies, timeout)) { dd_dev_err(sde->dd, "SDMA engine %d - timeout waiting for engine to halt\n", sde->this_idx); /* * Continue anyway. This could happen if there was * an uncorrectable error in the wrong spot. */ break; } usleep_range(80, 120); } sdma_process_event(sde, sdma_event_e15_hw_halt_done); } static void sdma_err_progress_check_schedule(struct sdma_engine *sde) { if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) { unsigned index; struct hfi1_devdata *dd = sde->dd; for (index = 0; index < dd->num_sdma; index++) { struct sdma_engine *curr_sdma = &dd->per_sdma[index]; if (curr_sdma != sde) curr_sdma->progress_check_head = curr_sdma->descq_head; } dd_dev_err(sde->dd, "SDMA engine %d - check scheduled\n", sde->this_idx); mod_timer(&sde->err_progress_check_timer, jiffies + 10); } } static void sdma_err_progress_check(unsigned long data) { unsigned index; struct sdma_engine *sde = (struct sdma_engine *)data; dd_dev_err(sde->dd, "SDE progress check event\n"); for (index = 0; index < sde->dd->num_sdma; index++) { struct sdma_engine *curr_sde = &sde->dd->per_sdma[index]; unsigned long flags; /* check progress on each engine except the current one */ if (curr_sde == sde) continue; /* * We must lock interrupts when acquiring sde->lock, * to avoid a deadlock if interrupt triggers and spins on * the same lock on same CPU */ spin_lock_irqsave(&curr_sde->tail_lock, flags); write_seqlock(&curr_sde->head_lock); /* skip non-running queues */ if (curr_sde->state.current_state != sdma_state_s99_running) { write_sequnlock(&curr_sde->head_lock); spin_unlock_irqrestore(&curr_sde->tail_lock, flags); continue; } if ((curr_sde->descq_head != curr_sde->descq_tail) && (curr_sde->descq_head == curr_sde->progress_check_head)) __sdma_process_event(curr_sde, sdma_event_e90_sw_halted); write_sequnlock(&curr_sde->head_lock); spin_unlock_irqrestore(&curr_sde->tail_lock, flags); } schedule_work(&sde->err_halt_worker); } static void sdma_hw_clean_up_task(unsigned long opaque) { struct sdma_engine *sde = (struct sdma_engine *)opaque; u64 statuscsr; while (1) { #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); #endif statuscsr = read_sde_csr(sde, SD(STATUS)); statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK); if (statuscsr) break; udelay(10); } sdma_process_event(sde, sdma_event_e25_hw_clean_up_done); } static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde) { smp_read_barrier_depends(); /* see sdma_update_tail() */ return sde->tx_ring[sde->tx_head & sde->sdma_mask]; } /* * flush ring for recovery */ static void sdma_flush_descq(struct sdma_engine *sde) { u16 head, tail; int progress = 0; struct sdma_txreq *txp = get_txhead(sde); /* The reason for some of the complexity of this code is that * not all descriptors have corresponding txps. So, we have to * be able to skip over descs until we wander into the range of * the next txp on the list. */ head = sde->descq_head & sde->sdma_mask; tail = sde->descq_tail & sde->sdma_mask; while (head != tail) { /* advance head, wrap if needed */ head = ++sde->descq_head & sde->sdma_mask; /* if now past this txp's descs, do the callback */ if (txp && txp->next_descq_idx == head) { /* remove from list */ sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED); trace_hfi1_sdma_progress(sde, head, tail, txp); txp = get_txhead(sde); } progress++; } if (progress) sdma_desc_avail(sde, sdma_descq_freecnt(sde)); } static void sdma_sw_clean_up_task(unsigned long opaque) { struct sdma_engine *sde = (struct sdma_engine *)opaque; unsigned long flags; spin_lock_irqsave(&sde->tail_lock, flags); write_seqlock(&sde->head_lock); /* * At this point, the following should always be true: * - We are halted, so no more descriptors are getting retired. * - We are not running, so no one is submitting new work. * - Only we can send the e40_sw_cleaned, so we can't start * running again until we say so. So, the active list and * descq are ours to play with. */ /* * In the error clean up sequence, software clean must be called * before the hardware clean so we can use the hardware head in * the progress routine. A hardware clean or SPC unfreeze will * reset the hardware head. * * Process all retired requests. The progress routine will use the * latest physical hardware head - we are not running so speed does * not matter. */ sdma_make_progress(sde, 0); sdma_flush(sde); /* * Reset our notion of head and tail. * Note that the HW registers have been reset via an earlier * clean up. */ sde->descq_tail = 0; sde->descq_head = 0; sde->desc_avail = sdma_descq_freecnt(sde); *sde->head_dma = 0; __sdma_process_event(sde, sdma_event_e40_sw_cleaned); write_sequnlock(&sde->head_lock); spin_unlock_irqrestore(&sde->tail_lock, flags); } static void sdma_sw_tear_down(struct sdma_engine *sde) { struct sdma_state *ss = &sde->state; /* Releasing this reference means the state machine has stopped. */ sdma_put(ss); /* stop waiting for all unfreeze events to complete */ atomic_set(&sde->dd->sdma_unfreeze_count, -1); wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); } static void sdma_start_hw_clean_up(struct sdma_engine *sde) { tasklet_hi_schedule(&sde->sdma_hw_clean_up_task); } static void sdma_set_state(struct sdma_engine *sde, enum sdma_states next_state) { struct sdma_state *ss = &sde->state; const struct sdma_set_state_action *action = sdma_action_table; unsigned op = 0; trace_hfi1_sdma_state( sde, sdma_state_names[ss->current_state], sdma_state_names[next_state]); /* debugging bookkeeping */ ss->previous_state = ss->current_state; ss->previous_op = ss->current_op; ss->current_state = next_state; if (ss->previous_state != sdma_state_s99_running && next_state == sdma_state_s99_running) sdma_flush(sde); if (action[next_state].op_enable) op |= SDMA_SENDCTRL_OP_ENABLE; if (action[next_state].op_intenable) op |= SDMA_SENDCTRL_OP_INTENABLE; if (action[next_state].op_halt) op |= SDMA_SENDCTRL_OP_HALT; if (action[next_state].op_cleanup) op |= SDMA_SENDCTRL_OP_CLEANUP; if (action[next_state].go_s99_running_tofalse) ss->go_s99_running = 0; if (action[next_state].go_s99_running_totrue) ss->go_s99_running = 1; ss->current_op = op; sdma_sendctrl(sde, ss->current_op); } /** * sdma_get_descq_cnt() - called when device probed * * Return a validated descq count. * * This is currently only used in the verbs initialization to build the tx * list. * * This will probably be deleted in favor of a more scalable approach to * alloc tx's. * */ u16 sdma_get_descq_cnt(void) { u16 count = sdma_descq_cnt; if (!count) return SDMA_DESCQ_CNT; /* count must be a power of 2 greater than 64 and less than * 32768. Otherwise return default. */ if (!is_power_of_2(count)) return SDMA_DESCQ_CNT; if (count < 64 || count > 32768) return SDMA_DESCQ_CNT; return count; } /** * sdma_engine_get_vl() - return vl for a given sdma engine * @sde: sdma engine * * This function returns the vl mapped to a given engine, or an error if * the mapping can't be found. The mapping fields are protected by RCU. */ int sdma_engine_get_vl(struct sdma_engine *sde) { struct hfi1_devdata *dd = sde->dd; struct sdma_vl_map *m; u8 vl; if (sde->this_idx >= TXE_NUM_SDMA_ENGINES) return -EINVAL; rcu_read_lock(); m = rcu_dereference(dd->sdma_map); if (unlikely(!m)) { rcu_read_unlock(); return -EINVAL; } vl = m->engine_to_vl[sde->this_idx]; rcu_read_unlock(); return vl; } /** * sdma_select_engine_vl() - select sdma engine * @dd: devdata * @selector: a spreading factor * @vl: this vl * * * This function returns an engine based on the selector and a vl. The * mapping fields are protected by RCU. */ struct sdma_engine *sdma_select_engine_vl( struct hfi1_devdata *dd, u32 selector, u8 vl) { struct sdma_vl_map *m; struct sdma_map_elem *e; struct sdma_engine *rval; /* NOTE This should only happen if SC->VL changed after the initial * checks on the QP/AH * Default will return engine 0 below */ if (vl >= num_vls) { rval = NULL; goto done; } rcu_read_lock(); m = rcu_dereference(dd->sdma_map); if (unlikely(!m)) { rcu_read_unlock(); return &dd->per_sdma[0]; } e = m->map[vl & m->mask]; rval = e->sde[selector & e->mask]; rcu_read_unlock(); done: rval = !rval ? &dd->per_sdma[0] : rval; trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx); return rval; } /** * sdma_select_engine_sc() - select sdma engine * @dd: devdata * @selector: a spreading factor * @sc5: the 5 bit sc * * * This function returns an engine based on the selector and an sc. */ struct sdma_engine *sdma_select_engine_sc( struct hfi1_devdata *dd, u32 selector, u8 sc5) { u8 vl = sc_to_vlt(dd, sc5); return sdma_select_engine_vl(dd, selector, vl); } struct sdma_rht_map_elem { u32 mask; u8 ctr; struct sdma_engine *sde[0]; }; struct sdma_rht_node { unsigned long cpu_id; struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED]; struct rhash_head node; }; #define NR_CPUS_HINT 192 static const struct rhashtable_params sdma_rht_params = { .nelem_hint = NR_CPUS_HINT, .head_offset = offsetof(struct sdma_rht_node, node), .key_offset = offsetof(struct sdma_rht_node, cpu_id), .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id), .max_size = NR_CPUS, .min_size = 8, .automatic_shrinking = true, }; /* * sdma_select_user_engine() - select sdma engine based on user setup * @dd: devdata * @selector: a spreading factor * @vl: this vl * * This function returns an sdma engine for a user sdma request. * User defined sdma engine affinity setting is honored when applicable, * otherwise system default sdma engine mapping is used. To ensure correct * ordering, the mapping from to sde must remain unchanged. */ struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd, u32 selector, u8 vl) { struct sdma_rht_node *rht_node; struct sdma_engine *sde = NULL; const struct cpumask *current_mask = ¤t->cpus_allowed; unsigned long cpu_id; /* * To ensure that always the same sdma engine(s) will be * selected make sure the process is pinned to this CPU only. */ if (cpumask_weight(current_mask) != 1) goto out; cpu_id = smp_processor_id(); rcu_read_lock(); rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id, sdma_rht_params); if (rht_node && rht_node->map[vl]) { struct sdma_rht_map_elem *map = rht_node->map[vl]; sde = map->sde[selector & map->mask]; } rcu_read_unlock(); if (sde) return sde; out: return sdma_select_engine_vl(dd, selector, vl); } static void sdma_populate_sde_map(struct sdma_rht_map_elem *map) { int i; for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++) map->sde[map->ctr + i] = map->sde[i]; } static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map, struct sdma_engine *sde) { unsigned int i, pow; /* only need to check the first ctr entries for a match */ for (i = 0; i < map->ctr; i++) { if (map->sde[i] == sde) { memmove(&map->sde[i], &map->sde[i + 1], (map->ctr - i - 1) * sizeof(map->sde[0])); map->ctr--; pow = roundup_pow_of_two(map->ctr ? : 1); map->mask = pow - 1; sdma_populate_sde_map(map); break; } } } /* * Prevents concurrent reads and writes of the sdma engine cpu_mask */ static DEFINE_MUTEX(process_to_sde_mutex); ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf, size_t count) { struct hfi1_devdata *dd = sde->dd; cpumask_var_t mask, new_mask; unsigned long cpu; int ret, vl, sz; vl = sdma_engine_get_vl(sde); if (unlikely(vl < 0)) return -EINVAL; ret = zalloc_cpumask_var(&mask, GFP_KERNEL); if (!ret) return -ENOMEM; ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL); if (!ret) { free_cpumask_var(mask); return -ENOMEM; } ret = cpulist_parse(buf, mask); if (ret) goto out_free; if (!cpumask_subset(mask, cpu_online_mask)) { dd_dev_warn(sde->dd, "Invalid CPU mask\n"); ret = -EINVAL; goto out_free; } sz = sizeof(struct sdma_rht_map_elem) + (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *)); mutex_lock(&process_to_sde_mutex); for_each_cpu(cpu, mask) { struct sdma_rht_node *rht_node; /* Check if we have this already mapped */ if (cpumask_test_cpu(cpu, &sde->cpu_mask)) { cpumask_set_cpu(cpu, new_mask); continue; } if (vl >= ARRAY_SIZE(rht_node->map)) { ret = -EINVAL; goto out; } rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, sdma_rht_params); if (!rht_node) { rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL); if (!rht_node) { ret = -ENOMEM; goto out; } rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); if (!rht_node->map[vl]) { kfree(rht_node); ret = -ENOMEM; goto out; } rht_node->cpu_id = cpu; rht_node->map[vl]->mask = 0; rht_node->map[vl]->ctr = 1; rht_node->map[vl]->sde[0] = sde; ret = rhashtable_insert_fast(dd->sdma_rht, &rht_node->node, sdma_rht_params); if (ret) { kfree(rht_node->map[vl]); kfree(rht_node); dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n", cpu); goto out; } } else { int ctr, pow; /* Add new user mappings */ if (!rht_node->map[vl]) rht_node->map[vl] = kzalloc(sz, GFP_KERNEL); if (!rht_node->map[vl]) { ret = -ENOMEM; goto out; } rht_node->map[vl]->ctr++; ctr = rht_node->map[vl]->ctr; rht_node->map[vl]->sde[ctr - 1] = sde; pow = roundup_pow_of_two(ctr); rht_node->map[vl]->mask = pow - 1; /* Populate the sde map table */ sdma_populate_sde_map(rht_node->map[vl]); } cpumask_set_cpu(cpu, new_mask); } /* Clean up old mappings */ for_each_cpu(cpu, cpu_online_mask) { struct sdma_rht_node *rht_node; /* Don't cleanup sdes that are set in the new mask */ if (cpumask_test_cpu(cpu, mask)) continue; rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu, sdma_rht_params); if (rht_node) { bool empty = true; int i; /* Remove mappings for old sde */ for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) if (rht_node->map[i]) sdma_cleanup_sde_map(rht_node->map[i], sde); /* Free empty hash table entries */ for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { if (!rht_node->map[i]) continue; if (rht_node->map[i]->ctr) { empty = false; break; } } if (empty) { ret = rhashtable_remove_fast(dd->sdma_rht, &rht_node->node, sdma_rht_params); WARN_ON(ret); for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) kfree(rht_node->map[i]); kfree(rht_node); } } } cpumask_copy(&sde->cpu_mask, new_mask); out: mutex_unlock(&process_to_sde_mutex); out_free: free_cpumask_var(mask); free_cpumask_var(new_mask); return ret ? : strnlen(buf, PAGE_SIZE); } ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf) { mutex_lock(&process_to_sde_mutex); if (cpumask_empty(&sde->cpu_mask)) snprintf(buf, PAGE_SIZE, "%s\n", "empty"); else cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask); mutex_unlock(&process_to_sde_mutex); return strnlen(buf, PAGE_SIZE); } static void sdma_rht_free(void *ptr, void *arg) { struct sdma_rht_node *rht_node = ptr; int i; for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) kfree(rht_node->map[i]); kfree(rht_node); } /** * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings * @s: seq file * @dd: hfi1_devdata * @cpuid: cpu id * * This routine dumps the process to sde mappings per cpu */ void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd, unsigned long cpuid) { struct sdma_rht_node *rht_node; int i, j; rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid, sdma_rht_params); if (!rht_node) return; seq_printf(s, "cpu%3lu: ", cpuid); for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) { if (!rht_node->map[i] || !rht_node->map[i]->ctr) continue; seq_printf(s, " vl%d: [", i); for (j = 0; j < rht_node->map[i]->ctr; j++) { if (!rht_node->map[i]->sde[j]) continue; if (j > 0) seq_puts(s, ","); seq_printf(s, " sdma%2d", rht_node->map[i]->sde[j]->this_idx); } seq_puts(s, " ]"); } seq_puts(s, "\n"); } /* * Free the indicated map struct */ static void sdma_map_free(struct sdma_vl_map *m) { int i; for (i = 0; m && i < m->actual_vls; i++) kfree(m->map[i]); kfree(m); } /* * Handle RCU callback */ static void sdma_map_rcu_callback(struct rcu_head *list) { struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list); sdma_map_free(m); } /** * sdma_map_init - called when # vls change * @dd: hfi1_devdata * @port: port number * @num_vls: number of vls * @vl_engines: per vl engine mapping (optional) * * This routine changes the mapping based on the number of vls. * * vl_engines is used to specify a non-uniform vl/engine loading. NULL * implies auto computing the loading and giving each VLs a uniform * distribution of engines per VL. * * The auto algorithm computes the sde_per_vl and the number of extra * engines. Any extra engines are added from the last VL on down. * * rcu locking is used here to control access to the mapping fields. * * If either the num_vls or num_sdma are non-power of 2, the array sizes * in the struct sdma_vl_map and the struct sdma_map_elem are rounded * up to the next highest power of 2 and the first entry is reused * in a round robin fashion. * * If an error occurs the map change is not done and the mapping is * not changed. * */ int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines) { int i, j; int extra, sde_per_vl; int engine = 0; u8 lvl_engines[OPA_MAX_VLS]; struct sdma_vl_map *oldmap, *newmap; if (!(dd->flags & HFI1_HAS_SEND_DMA)) return 0; if (!vl_engines) { /* truncate divide */ sde_per_vl = dd->num_sdma / num_vls; /* extras */ extra = dd->num_sdma % num_vls; vl_engines = lvl_engines; /* add extras from last vl down */ for (i = num_vls - 1; i >= 0; i--, extra--) vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0); } /* build new map */ newmap = kzalloc( sizeof(struct sdma_vl_map) + roundup_pow_of_two(num_vls) * sizeof(struct sdma_map_elem *), GFP_KERNEL); if (!newmap) goto bail; newmap->actual_vls = num_vls; newmap->vls = roundup_pow_of_two(num_vls); newmap->mask = (1 << ilog2(newmap->vls)) - 1; /* initialize back-map */ for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++) newmap->engine_to_vl[i] = -1; for (i = 0; i < newmap->vls; i++) { /* save for wrap around */ int first_engine = engine; if (i < newmap->actual_vls) { int sz = roundup_pow_of_two(vl_engines[i]); /* only allocate once */ newmap->map[i] = kzalloc( sizeof(struct sdma_map_elem) + sz * sizeof(struct sdma_engine *), GFP_KERNEL); if (!newmap->map[i]) goto bail; newmap->map[i]->mask = (1 << ilog2(sz)) - 1; /* assign engines */ for (j = 0; j < sz; j++) { newmap->map[i]->sde[j] = &dd->per_sdma[engine]; if (++engine >= first_engine + vl_engines[i]) /* wrap back to first engine */ engine = first_engine; } /* assign back-map */ for (j = 0; j < vl_engines[i]; j++) newmap->engine_to_vl[first_engine + j] = i; } else { /* just re-use entry without allocating */ newmap->map[i] = newmap->map[i % num_vls]; } engine = first_engine + vl_engines[i]; } /* newmap in hand, save old map */ spin_lock_irq(&dd->sde_map_lock); oldmap = rcu_dereference_protected(dd->sdma_map, lockdep_is_held(&dd->sde_map_lock)); /* publish newmap */ rcu_assign_pointer(dd->sdma_map, newmap); spin_unlock_irq(&dd->sde_map_lock); /* success, free any old map after grace period */ if (oldmap) call_rcu(&oldmap->list, sdma_map_rcu_callback); return 0; bail: /* free any partial allocation */ sdma_map_free(newmap); return -ENOMEM; } /* * Clean up allocated memory. * * This routine is can be called regardless of the success of sdma_init() * */ static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines) { size_t i; struct sdma_engine *sde; if (dd->sdma_pad_dma) { dma_free_coherent(&dd->pcidev->dev, 4, (void *)dd->sdma_pad_dma, dd->sdma_pad_phys); dd->sdma_pad_dma = NULL; dd->sdma_pad_phys = 0; } if (dd->sdma_heads_dma) { dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size, (void *)dd->sdma_heads_dma, dd->sdma_heads_phys); dd->sdma_heads_dma = NULL; dd->sdma_heads_phys = 0; } for (i = 0; dd->per_sdma && i < num_engines; ++i) { sde = &dd->per_sdma[i]; sde->head_dma = NULL; sde->head_phys = 0; if (sde->descq) { dma_free_coherent( &dd->pcidev->dev, sde->descq_cnt * sizeof(u64[2]), sde->descq, sde->descq_phys ); sde->descq = NULL; sde->descq_phys = 0; } kvfree(sde->tx_ring); sde->tx_ring = NULL; } spin_lock_irq(&dd->sde_map_lock); sdma_map_free(rcu_access_pointer(dd->sdma_map)); RCU_INIT_POINTER(dd->sdma_map, NULL); spin_unlock_irq(&dd->sde_map_lock); synchronize_rcu(); kfree(dd->per_sdma); dd->per_sdma = NULL; if (dd->sdma_rht) { rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL); kfree(dd->sdma_rht); dd->sdma_rht = NULL; } } /** * sdma_init() - called when device probed * @dd: hfi1_devdata * @port: port number (currently only zero) * * Initializes each sde and its csrs. * Interrupts are not required to be enabled. * * Returns: * 0 - success, -errno on failure */ int sdma_init(struct hfi1_devdata *dd, u8 port) { unsigned this_idx; struct sdma_engine *sde; struct rhashtable *tmp_sdma_rht; u16 descq_cnt; void *curr_head; struct hfi1_pportdata *ppd = dd->pport + port; u32 per_sdma_credits; uint idle_cnt = sdma_idle_cnt; size_t num_engines = dd->chip_sdma_engines; int ret = -ENOMEM; if (!HFI1_CAP_IS_KSET(SDMA)) { HFI1_CAP_CLEAR(SDMA_AHG); return 0; } if (mod_num_sdma && /* can't exceed chip support */ mod_num_sdma <= dd->chip_sdma_engines && /* count must be >= vls */ mod_num_sdma >= num_vls) num_engines = mod_num_sdma; dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma); dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines); dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n", dd->chip_sdma_mem_size); per_sdma_credits = dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE); /* set up freeze waitqueue */ init_waitqueue_head(&dd->sdma_unfreeze_wq); atomic_set(&dd->sdma_unfreeze_count, 0); descq_cnt = sdma_get_descq_cnt(); dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n", num_engines, descq_cnt); /* alloc memory for array of send engines */ dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL); if (!dd->per_sdma) return ret; idle_cnt = ns_to_cclock(dd, idle_cnt); if (idle_cnt) dd->default_desc1 = SDMA_DESC1_HEAD_TO_HOST_FLAG; else dd->default_desc1 = SDMA_DESC1_INT_REQ_FLAG; if (!sdma_desct_intr) sdma_desct_intr = SDMA_DESC_INTR; /* Allocate memory for SendDMA descriptor FIFOs */ for (this_idx = 0; this_idx < num_engines; ++this_idx) { sde = &dd->per_sdma[this_idx]; sde->dd = dd; sde->ppd = ppd; sde->this_idx = this_idx; sde->descq_cnt = descq_cnt; sde->desc_avail = sdma_descq_freecnt(sde); sde->sdma_shift = ilog2(descq_cnt); sde->sdma_mask = (1 << sde->sdma_shift) - 1; /* Create a mask specifically for each interrupt source */ sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES + this_idx); sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES + this_idx); sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES + this_idx); /* Create a combined mask to cover all 3 interrupt sources */ sde->imask = sde->int_mask | sde->progress_mask | sde->idle_mask; spin_lock_init(&sde->tail_lock); seqlock_init(&sde->head_lock); spin_lock_init(&sde->senddmactrl_lock); spin_lock_init(&sde->flushlist_lock); /* insure there is always a zero bit */ sde->ahg_bits = 0xfffffffe00000000ULL; sdma_set_state(sde, sdma_state_s00_hw_down); /* set up reference counting */ kref_init(&sde->state.kref); init_completion(&sde->state.comp); INIT_LIST_HEAD(&sde->flushlist); INIT_LIST_HEAD(&sde->dmawait); sde->tail_csr = get_kctxt_csr_addr(dd, this_idx, SD(TAIL)); tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task, (unsigned long)sde); tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task, (unsigned long)sde); INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait); INIT_WORK(&sde->flush_worker, sdma_field_flush); sde->progress_check_head = 0; setup_timer(&sde->err_progress_check_timer, sdma_err_progress_check, (unsigned long)sde); sde->descq = dma_zalloc_coherent( &dd->pcidev->dev, descq_cnt * sizeof(u64[2]), &sde->descq_phys, GFP_KERNEL ); if (!sde->descq) goto bail; sde->tx_ring = kcalloc(descq_cnt, sizeof(struct sdma_txreq *), GFP_KERNEL); if (!sde->tx_ring) sde->tx_ring = vzalloc( sizeof(struct sdma_txreq *) * descq_cnt); if (!sde->tx_ring) goto bail; } dd->sdma_heads_size = L1_CACHE_BYTES * num_engines; /* Allocate memory for DMA of head registers to memory */ dd->sdma_heads_dma = dma_zalloc_coherent( &dd->pcidev->dev, dd->sdma_heads_size, &dd->sdma_heads_phys, GFP_KERNEL ); if (!dd->sdma_heads_dma) { dd_dev_err(dd, "failed to allocate SendDMA head memory\n"); goto bail; } /* Allocate memory for pad */ dd->sdma_pad_dma = dma_zalloc_coherent( &dd->pcidev->dev, sizeof(u32), &dd->sdma_pad_phys, GFP_KERNEL ); if (!dd->sdma_pad_dma) { dd_dev_err(dd, "failed to allocate SendDMA pad memory\n"); goto bail; } /* assign each engine to different cacheline and init registers */ curr_head = (void *)dd->sdma_heads_dma; for (this_idx = 0; this_idx < num_engines; ++this_idx) { unsigned long phys_offset; sde = &dd->per_sdma[this_idx]; sde->head_dma = curr_head; curr_head += L1_CACHE_BYTES; phys_offset = (unsigned long)sde->head_dma - (unsigned long)dd->sdma_heads_dma; sde->head_phys = dd->sdma_heads_phys + phys_offset; init_sdma_regs(sde, per_sdma_credits, idle_cnt); } dd->flags |= HFI1_HAS_SEND_DMA; dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0; dd->num_sdma = num_engines; ret = sdma_map_init(dd, port, ppd->vls_operational, NULL); if (ret < 0) goto bail; tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL); if (!tmp_sdma_rht) { ret = -ENOMEM; goto bail; } ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params); if (ret < 0) goto bail; dd->sdma_rht = tmp_sdma_rht; dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma); return 0; bail: sdma_clean(dd, num_engines); return ret; } /** * sdma_all_running() - called when the link goes up * @dd: hfi1_devdata * * This routine moves all engines to the running state. */ void sdma_all_running(struct hfi1_devdata *dd) { struct sdma_engine *sde; unsigned int i; /* move all engines to running */ for (i = 0; i < dd->num_sdma; ++i) { sde = &dd->per_sdma[i]; sdma_process_event(sde, sdma_event_e30_go_running); } } /** * sdma_all_idle() - called when the link goes down * @dd: hfi1_devdata * * This routine moves all engines to the idle state. */ void sdma_all_idle(struct hfi1_devdata *dd) { struct sdma_engine *sde; unsigned int i; /* idle all engines */ for (i = 0; i < dd->num_sdma; ++i) { sde = &dd->per_sdma[i]; sdma_process_event(sde, sdma_event_e70_go_idle); } } /** * sdma_start() - called to kick off state processing for all engines * @dd: hfi1_devdata * * This routine is for kicking off the state processing for all required * sdma engines. Interrupts need to be working at this point. * */ void sdma_start(struct hfi1_devdata *dd) { unsigned i; struct sdma_engine *sde; /* kick off the engines state processing */ for (i = 0; i < dd->num_sdma; ++i) { sde = &dd->per_sdma[i]; sdma_process_event(sde, sdma_event_e10_go_hw_start); } } /** * sdma_exit() - used when module is removed * @dd: hfi1_devdata */ void sdma_exit(struct hfi1_devdata *dd) { unsigned this_idx; struct sdma_engine *sde; for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma; ++this_idx) { sde = &dd->per_sdma[this_idx]; if (!list_empty(&sde->dmawait)) dd_dev_err(dd, "sde %u: dmawait list not empty!\n", sde->this_idx); sdma_process_event(sde, sdma_event_e00_go_hw_down); del_timer_sync(&sde->err_progress_check_timer); /* * This waits for the state machine to exit so it is not * necessary to kill the sdma_sw_clean_up_task to make sure * it is not running. */ sdma_finalput(&sde->state); } sdma_clean(dd, dd->num_sdma); } /* * unmap the indicated descriptor */ static inline void sdma_unmap_desc( struct hfi1_devdata *dd, struct sdma_desc *descp) { switch (sdma_mapping_type(descp)) { case SDMA_MAP_SINGLE: dma_unmap_single( &dd->pcidev->dev, sdma_mapping_addr(descp), sdma_mapping_len(descp), DMA_TO_DEVICE); break; case SDMA_MAP_PAGE: dma_unmap_page( &dd->pcidev->dev, sdma_mapping_addr(descp), sdma_mapping_len(descp), DMA_TO_DEVICE); break; } } /* * return the mode as indicated by the first * descriptor in the tx. */ static inline u8 ahg_mode(struct sdma_txreq *tx) { return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK) >> SDMA_DESC1_HEADER_MODE_SHIFT; } /** * __sdma_txclean() - clean tx of mappings, descp *kmalloc's * @dd: hfi1_devdata for unmapping * @tx: tx request to clean * * This is used in the progress routine to clean the tx or * by the ULP to toss an in-process tx build. * * The code can be called multiple times without issue. * */ void __sdma_txclean( struct hfi1_devdata *dd, struct sdma_txreq *tx) { u16 i; if (tx->num_desc) { u8 skip = 0, mode = ahg_mode(tx); /* unmap first */ sdma_unmap_desc(dd, &tx->descp[0]); /* determine number of AHG descriptors to skip */ if (mode > SDMA_AHG_APPLY_UPDATE1) skip = mode >> 1; for (i = 1 + skip; i < tx->num_desc; i++) sdma_unmap_desc(dd, &tx->descp[i]); tx->num_desc = 0; } kfree(tx->coalesce_buf); tx->coalesce_buf = NULL; /* kmalloc'ed descp */ if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) { tx->desc_limit = ARRAY_SIZE(tx->descs); kfree(tx->descp); } } static inline u16 sdma_gethead(struct sdma_engine *sde) { struct hfi1_devdata *dd = sde->dd; int use_dmahead; u16 hwhead; #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); #endif retry: use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) && (dd->flags & HFI1_HAS_SDMA_TIMEOUT); hwhead = use_dmahead ? (u16)le64_to_cpu(*sde->head_dma) : (u16)read_sde_csr(sde, SD(HEAD)); if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) { u16 cnt; u16 swtail; u16 swhead; int sane; swhead = sde->descq_head & sde->sdma_mask; /* this code is really bad for cache line trading */ swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask; cnt = sde->descq_cnt; if (swhead < swtail) /* not wrapped */ sane = (hwhead >= swhead) & (hwhead <= swtail); else if (swhead > swtail) /* wrapped around */ sane = ((hwhead >= swhead) && (hwhead < cnt)) || (hwhead <= swtail); else /* empty */ sane = (hwhead == swhead); if (unlikely(!sane)) { dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n", sde->this_idx, use_dmahead ? "dma" : "kreg", hwhead, swhead, swtail, cnt); if (use_dmahead) { /* try one more time, using csr */ use_dmahead = 0; goto retry; } /* proceed as if no progress */ hwhead = swhead; } } return hwhead; } /* * This is called when there are send DMA descriptors that might be * available. * * This is called with head_lock held. */ static void sdma_desc_avail(struct sdma_engine *sde, uint avail) { struct iowait *wait, *nw; struct iowait *waits[SDMA_WAIT_BATCH_SIZE]; uint i, n = 0, seq, max_idx = 0; struct sdma_txreq *stx; struct hfi1_ibdev *dev = &sde->dd->verbs_dev; u8 max_starved_cnt = 0; #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); dd_dev_err(sde->dd, "avail: %u\n", avail); #endif do { seq = read_seqbegin(&dev->iowait_lock); if (!list_empty(&sde->dmawait)) { /* at least one item */ write_seqlock(&dev->iowait_lock); /* Harvest waiters wanting DMA descriptors */ list_for_each_entry_safe( wait, nw, &sde->dmawait, list) { u16 num_desc = 0; if (!wait->wakeup) continue; if (n == ARRAY_SIZE(waits)) break; if (!list_empty(&wait->tx_head)) { stx = list_first_entry( &wait->tx_head, struct sdma_txreq, list); num_desc = stx->num_desc; } if (num_desc > avail) break; avail -= num_desc; /* Find the most starved wait memeber */ iowait_starve_find_max(wait, &max_starved_cnt, n, &max_idx); list_del_init(&wait->list); waits[n++] = wait; } write_sequnlock(&dev->iowait_lock); break; } } while (read_seqretry(&dev->iowait_lock, seq)); /* Schedule the most starved one first */ if (n) waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON); for (i = 0; i < n; i++) if (i != max_idx) waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON); } /* head_lock must be held */ static void sdma_make_progress(struct sdma_engine *sde, u64 status) { struct sdma_txreq *txp = NULL; int progress = 0; u16 hwhead, swhead; int idle_check_done = 0; hwhead = sdma_gethead(sde); /* The reason for some of the complexity of this code is that * not all descriptors have corresponding txps. So, we have to * be able to skip over descs until we wander into the range of * the next txp on the list. */ retry: txp = get_txhead(sde); swhead = sde->descq_head & sde->sdma_mask; trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); while (swhead != hwhead) { /* advance head, wrap if needed */ swhead = ++sde->descq_head & sde->sdma_mask; /* if now past this txp's descs, do the callback */ if (txp && txp->next_descq_idx == swhead) { /* remove from list */ sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL; complete_tx(sde, txp, SDMA_TXREQ_S_OK); /* see if there is another txp */ txp = get_txhead(sde); } trace_hfi1_sdma_progress(sde, hwhead, swhead, txp); progress++; } /* * The SDMA idle interrupt is not guaranteed to be ordered with respect * to updates to the the dma_head location in host memory. The head * value read might not be fully up to date. If there are pending * descriptors and the SDMA idle interrupt fired then read from the * CSR SDMA head instead to get the latest value from the hardware. * The hardware SDMA head should be read at most once in this invocation * of sdma_make_progress(..) which is ensured by idle_check_done flag */ if ((status & sde->idle_mask) && !idle_check_done) { u16 swtail; swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask; if (swtail != hwhead) { hwhead = (u16)read_sde_csr(sde, SD(HEAD)); idle_check_done = 1; goto retry; } } sde->last_status = status; if (progress) sdma_desc_avail(sde, sdma_descq_freecnt(sde)); } /* * sdma_engine_interrupt() - interrupt handler for engine * @sde: sdma engine * @status: sdma interrupt reason * * Status is a mask of the 3 possible interrupts for this engine. It will * contain bits _only_ for this SDMA engine. It will contain at least one * bit, it may contain more. */ void sdma_engine_interrupt(struct sdma_engine *sde, u64 status) { trace_hfi1_sdma_engine_interrupt(sde, status); write_seqlock(&sde->head_lock); sdma_set_desc_cnt(sde, sdma_desct_intr); if (status & sde->idle_mask) sde->idle_int_cnt++; else if (status & sde->progress_mask) sde->progress_int_cnt++; else if (status & sde->int_mask) sde->sdma_int_cnt++; sdma_make_progress(sde, status); write_sequnlock(&sde->head_lock); } /** * sdma_engine_error() - error handler for engine * @sde: sdma engine * @status: sdma interrupt reason */ void sdma_engine_error(struct sdma_engine *sde, u64 status) { unsigned long flags; #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n", sde->this_idx, (unsigned long long)status, sdma_state_names[sde->state.current_state]); #endif spin_lock_irqsave(&sde->tail_lock, flags); write_seqlock(&sde->head_lock); if (status & ALL_SDMA_ENG_HALT_ERRS) __sdma_process_event(sde, sdma_event_e60_hw_halted); if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) { dd_dev_err(sde->dd, "SDMA (%u) engine error: 0x%llx state %s\n", sde->this_idx, (unsigned long long)status, sdma_state_names[sde->state.current_state]); dump_sdma_state(sde); } write_sequnlock(&sde->head_lock); spin_unlock_irqrestore(&sde->tail_lock, flags); } static void sdma_sendctrl(struct sdma_engine *sde, unsigned op) { u64 set_senddmactrl = 0; u64 clr_senddmactrl = 0; unsigned long flags; #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n", sde->this_idx, (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0, (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0, (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0, (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0); #endif if (op & SDMA_SENDCTRL_OP_ENABLE) set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); else clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK); if (op & SDMA_SENDCTRL_OP_INTENABLE) set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); else clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK); if (op & SDMA_SENDCTRL_OP_HALT) set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); else clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK); spin_lock_irqsave(&sde->senddmactrl_lock, flags); sde->p_senddmactrl |= set_senddmactrl; sde->p_senddmactrl &= ~clr_senddmactrl; if (op & SDMA_SENDCTRL_OP_CLEANUP) write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl | SD(CTRL_SDMA_CLEANUP_SMASK)); else write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl); spin_unlock_irqrestore(&sde->senddmactrl_lock, flags); #ifdef CONFIG_SDMA_VERBOSITY sdma_dumpstate(sde); #endif } static void sdma_setlengen(struct sdma_engine *sde) { #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); #endif /* * Set SendDmaLenGen and clear-then-set the MSB of the generation * count to enable generation checking and load the internal * generation counter. */ write_sde_csr(sde, SD(LEN_GEN), (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)); write_sde_csr(sde, SD(LEN_GEN), ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) | (4ULL << SD(LEN_GEN_GENERATION_SHIFT))); } static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail) { /* Commit writes to memory and advance the tail on the chip */ smp_wmb(); /* see get_txhead() */ writeq(tail, sde->tail_csr); } /* * This is called when changing to state s10_hw_start_up_halt_wait as * a result of send buffer errors or send DMA descriptor errors. */ static void sdma_hw_start_up(struct sdma_engine *sde) { u64 reg; #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); #endif sdma_setlengen(sde); sdma_update_tail(sde, 0); /* Set SendDmaTail */ *sde->head_dma = 0; reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) << SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT); write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg); } /* * set_sdma_integrity * * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'. */ static void set_sdma_integrity(struct sdma_engine *sde) { struct hfi1_devdata *dd = sde->dd; write_sde_csr(sde, SD(CHECK_ENABLE), hfi1_pkt_base_sdma_integrity(dd)); } static void init_sdma_regs( struct sdma_engine *sde, u32 credits, uint idle_cnt) { u8 opval, opmask; #ifdef CONFIG_SDMA_VERBOSITY struct hfi1_devdata *dd = sde->dd; dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, slashstrip(__FILE__), __LINE__, __func__); #endif write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys); sdma_setlengen(sde); sdma_update_tail(sde, 0); /* Set SendDmaTail */ write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt); write_sde_csr(sde, SD(DESC_CNT), 0); write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys); write_sde_csr(sde, SD(MEMORY), ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) | ((u64)(credits * sde->this_idx) << SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT))); write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull); set_sdma_integrity(sde); opmask = OPCODE_CHECK_MASK_DISABLED; opval = OPCODE_CHECK_VAL_DISABLED; write_sde_csr(sde, SD(CHECK_OPCODE), (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) | (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT)); } #ifdef CONFIG_SDMA_VERBOSITY #define sdma_dumpstate_helper0(reg) do { \ csr = read_csr(sde->dd, reg); \ dd_dev_err(sde->dd, "%36s 0x%016llx\n", #reg, csr); \ } while (0) #define sdma_dumpstate_helper(reg) do { \ csr = read_sde_csr(sde, reg); \ dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \ #reg, sde->this_idx, csr); \ } while (0) #define sdma_dumpstate_helper2(reg) do { \ csr = read_csr(sde->dd, reg + (8 * i)); \ dd_dev_err(sde->dd, "%33s_%02u 0x%016llx\n", \ #reg, i, csr); \ } while (0) void sdma_dumpstate(struct sdma_engine *sde) { u64 csr; unsigned i; sdma_dumpstate_helper(SD(CTRL)); sdma_dumpstate_helper(SD(STATUS)); sdma_dumpstate_helper0(SD(ERR_STATUS)); sdma_dumpstate_helper0(SD(ERR_MASK)); sdma_dumpstate_helper(SD(ENG_ERR_STATUS)); sdma_dumpstate_helper(SD(ENG_ERR_MASK)); for (i = 0; i < CCE_NUM_INT_CSRS; ++i) { sdma_dumpstate_helper2(CCE_INT_STATUS); sdma_dumpstate_helper2(CCE_INT_MASK); sdma_dumpstate_helper2(CCE_INT_BLOCKED); } sdma_dumpstate_helper(SD(TAIL)); sdma_dumpstate_helper(SD(HEAD)); sdma_dumpstate_helper(SD(PRIORITY_THLD)); sdma_dumpstate_helper(SD(IDLE_CNT)); sdma_dumpstate_helper(SD(RELOAD_CNT)); sdma_dumpstate_helper(SD(DESC_CNT)); sdma_dumpstate_helper(SD(DESC_FETCHED_CNT)); sdma_dumpstate_helper(SD(MEMORY)); sdma_dumpstate_helper0(SD(ENGINES)); sdma_dumpstate_helper0(SD(MEM_SIZE)); /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS); */ sdma_dumpstate_helper(SD(BASE_ADDR)); sdma_dumpstate_helper(SD(LEN_GEN)); sdma_dumpstate_helper(SD(HEAD_ADDR)); sdma_dumpstate_helper(SD(CHECK_ENABLE)); sdma_dumpstate_helper(SD(CHECK_VL)); sdma_dumpstate_helper(SD(CHECK_JOB_KEY)); sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY)); sdma_dumpstate_helper(SD(CHECK_SLID)); sdma_dumpstate_helper(SD(CHECK_OPCODE)); } #endif static void dump_sdma_state(struct sdma_engine *sde) { struct hw_sdma_desc *descqp; u64 desc[2]; u64 addr; u8 gen; u16 len; u16 head, tail, cnt; head = sde->descq_head & sde->sdma_mask; tail = sde->descq_tail & sde->sdma_mask; cnt = sdma_descq_freecnt(sde); dd_dev_err(sde->dd, "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n", sde->this_idx, head, tail, cnt, !list_empty(&sde->flushlist)); /* print info for each entry in the descriptor queue */ while (head != tail) { char flags[6] = { 'x', 'x', 'x', 'x', 0 }; descqp = &sde->descq[head]; desc[0] = le64_to_cpu(descqp->qw[0]); desc[1] = le64_to_cpu(descqp->qw[1]); flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? 'H' : '-'; flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) & SDMA_DESC0_PHY_ADDR_MASK; gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) & SDMA_DESC1_GENERATION_MASK; len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) & SDMA_DESC0_BYTE_COUNT_MASK; dd_dev_err(sde->dd, "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", head, flags, addr, gen, len); dd_dev_err(sde->dd, "\tdesc0:0x%016llx desc1 0x%016llx\n", desc[0], desc[1]); if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) dd_dev_err(sde->dd, "\taidx: %u amode: %u alen: %u\n", (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK) >> SDMA_DESC1_HEADER_INDEX_SHIFT), (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK) >> SDMA_DESC1_HEADER_MODE_SHIFT), (u8)((desc[1] & SDMA_DESC1_HEADER_DWS_SMASK) >> SDMA_DESC1_HEADER_DWS_SHIFT)); head++; head &= sde->sdma_mask; } } #define SDE_FMT \ "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n" /** * sdma_seqfile_dump_sde() - debugfs dump of sde * @s: seq file * @sde: send dma engine to dump * * This routine dumps the sde to the indicated seq file. */ void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde) { u16 head, tail; struct hw_sdma_desc *descqp; u64 desc[2]; u64 addr; u8 gen; u16 len; head = sde->descq_head & sde->sdma_mask; tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask; seq_printf(s, SDE_FMT, sde->this_idx, sde->cpu, sdma_state_name(sde->state.current_state), (unsigned long long)read_sde_csr(sde, SD(CTRL)), (unsigned long long)read_sde_csr(sde, SD(STATUS)), (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)), (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail, (unsigned long long)read_sde_csr(sde, SD(HEAD)), head, (unsigned long long)le64_to_cpu(*sde->head_dma), (unsigned long long)read_sde_csr(sde, SD(MEMORY)), (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)), (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)), (unsigned long long)sde->last_status, (unsigned long long)sde->ahg_bits, sde->tx_tail, sde->tx_head, sde->descq_tail, sde->descq_head, !list_empty(&sde->flushlist), sde->descq_full_count, (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID)); /* print info for each entry in the descriptor queue */ while (head != tail) { char flags[6] = { 'x', 'x', 'x', 'x', 0 }; descqp = &sde->descq[head]; desc[0] = le64_to_cpu(descqp->qw[0]); desc[1] = le64_to_cpu(descqp->qw[1]); flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-'; flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ? 'H' : '-'; flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-'; flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-'; addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT) & SDMA_DESC0_PHY_ADDR_MASK; gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT) & SDMA_DESC1_GENERATION_MASK; len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT) & SDMA_DESC0_BYTE_COUNT_MASK; seq_printf(s, "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n", head, flags, addr, gen, len); if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n", (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK) >> SDMA_DESC1_HEADER_INDEX_SHIFT), (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK) >> SDMA_DESC1_HEADER_MODE_SHIFT)); head = (head + 1) & sde->sdma_mask; } } /* * add the generation number into * the qw1 and return */ static inline u64 add_gen(struct sdma_engine *sde, u64 qw1) { u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3; qw1 &= ~SDMA_DESC1_GENERATION_SMASK; qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK) << SDMA_DESC1_GENERATION_SHIFT; return qw1; } /* * This routine submits the indicated tx * * Space has already been guaranteed and * tail side of ring is locked. * * The hardware tail update is done * in the caller and that is facilitated * by returning the new tail. * * There is special case logic for ahg * to not add the generation number for * up to 2 descriptors that follow the * first descriptor. * */ static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx) { int i; u16 tail; struct sdma_desc *descp = tx->descp; u8 skip = 0, mode = ahg_mode(tx); tail = sde->descq_tail & sde->sdma_mask; sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1])); trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1], tail, &sde->descq[tail]); tail = ++sde->descq_tail & sde->sdma_mask; descp++; if (mode > SDMA_AHG_APPLY_UPDATE1) skip = mode >> 1; for (i = 1; i < tx->num_desc; i++, descp++) { u64 qw1; sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]); if (skip) { /* edits don't have generation */ qw1 = descp->qw[1]; skip--; } else { /* replace generation with real one for non-edits */ qw1 = add_gen(sde, descp->qw[1]); } sde->descq[tail].qw[1] = cpu_to_le64(qw1); trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1, tail, &sde->descq[tail]); tail = ++sde->descq_tail & sde->sdma_mask; } tx->next_descq_idx = tail; #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER tx->sn = sde->tail_sn++; trace_hfi1_sdma_in_sn(sde, tx->sn); WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]); #endif sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx; sde->desc_avail -= tx->num_desc; return tail; } /* * Check for progress */ static int sdma_check_progress( struct sdma_engine *sde, struct iowait *wait, struct sdma_txreq *tx, bool pkts_sent) { int ret; sde->desc_avail = sdma_descq_freecnt(sde); if (tx->num_desc <= sde->desc_avail) return -EAGAIN; /* pulse the head_lock */ if (wait && wait->sleep) { unsigned seq; seq = raw_seqcount_begin( (const seqcount_t *)&sde->head_lock.seqcount); ret = wait->sleep(sde, wait, tx, seq, pkts_sent); if (ret == -EAGAIN) sde->desc_avail = sdma_descq_freecnt(sde); } else { ret = -EBUSY; } return ret; } /** * sdma_send_txreq() - submit a tx req to ring * @sde: sdma engine to use * @wait: wait structure to use when full (may be NULL) * @tx: sdma_txreq to submit * @pkts_sent: has any packet been sent yet? * * The call submits the tx into the ring. If a iowait structure is non-NULL * the packet will be queued to the list in wait. * * Return: * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in * ring (wait == NULL) * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state */ int sdma_send_txreq(struct sdma_engine *sde, struct iowait *wait, struct sdma_txreq *tx, bool pkts_sent) { int ret = 0; u16 tail; unsigned long flags; /* user should have supplied entire packet */ if (unlikely(tx->tlen)) return -EINVAL; tx->wait = wait; spin_lock_irqsave(&sde->tail_lock, flags); retry: if (unlikely(!__sdma_running(sde))) goto unlock_noconn; if (unlikely(tx->num_desc > sde->desc_avail)) goto nodesc; tail = submit_tx(sde, tx); if (wait) iowait_sdma_inc(wait); sdma_update_tail(sde, tail); unlock: spin_unlock_irqrestore(&sde->tail_lock, flags); return ret; unlock_noconn: if (wait) iowait_sdma_inc(wait); tx->next_descq_idx = 0; #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER tx->sn = sde->tail_sn++; trace_hfi1_sdma_in_sn(sde, tx->sn); #endif spin_lock(&sde->flushlist_lock); list_add_tail(&tx->list, &sde->flushlist); spin_unlock(&sde->flushlist_lock); if (wait) { wait->tx_count++; wait->count += tx->num_desc; } schedule_work(&sde->flush_worker); ret = -ECOMM; goto unlock; nodesc: ret = sdma_check_progress(sde, wait, tx, pkts_sent); if (ret == -EAGAIN) { ret = 0; goto retry; } sde->descq_full_count++; goto unlock; } /** * sdma_send_txlist() - submit a list of tx req to ring * @sde: sdma engine to use * @wait: wait structure to use when full (may be NULL) * @tx_list: list of sdma_txreqs to submit * @count: pointer to a u32 which, after return will contain the total number of * sdma_txreqs removed from the tx_list. This will include sdma_txreqs * whose SDMA descriptors are submitted to the ring and the sdma_txreqs * which are added to SDMA engine flush list if the SDMA engine state is * not running. * * The call submits the list into the ring. * * If the iowait structure is non-NULL and not equal to the iowait list * the unprocessed part of the list will be appended to the list in wait. * * In all cases, the tx_list will be updated so the head of the tx_list is * the list of descriptors that have yet to be transmitted. * * The intent of this call is to provide a more efficient * way of submitting multiple packets to SDMA while holding the tail * side locking. * * Return: * 0 - Success, * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL) * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state */ int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait, struct list_head *tx_list, u32 *count_out) { struct sdma_txreq *tx, *tx_next; int ret = 0; unsigned long flags; u16 tail = INVALID_TAIL; u32 submit_count = 0, flush_count = 0, total_count; spin_lock_irqsave(&sde->tail_lock, flags); retry: list_for_each_entry_safe(tx, tx_next, tx_list, list) { tx->wait = wait; if (unlikely(!__sdma_running(sde))) goto unlock_noconn; if (unlikely(tx->num_desc > sde->desc_avail)) goto nodesc; if (unlikely(tx->tlen)) { ret = -EINVAL; goto update_tail; } list_del_init(&tx->list); tail = submit_tx(sde, tx); submit_count++; if (tail != INVALID_TAIL && (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) { sdma_update_tail(sde, tail); tail = INVALID_TAIL; } } update_tail: total_count = submit_count + flush_count; if (wait) { iowait_sdma_add(wait, total_count); iowait_starve_clear(submit_count > 0, wait); } if (tail != INVALID_TAIL) sdma_update_tail(sde, tail); spin_unlock_irqrestore(&sde->tail_lock, flags); *count_out = total_count; return ret; unlock_noconn: spin_lock(&sde->flushlist_lock); list_for_each_entry_safe(tx, tx_next, tx_list, list) { tx->wait = wait; list_del_init(&tx->list); tx->next_descq_idx = 0; #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER tx->sn = sde->tail_sn++; trace_hfi1_sdma_in_sn(sde, tx->sn); #endif list_add_tail(&tx->list, &sde->flushlist); flush_count++; if (wait) { wait->tx_count++; wait->count += tx->num_desc; } } spin_unlock(&sde->flushlist_lock); schedule_work(&sde->flush_worker); ret = -ECOMM; goto update_tail; nodesc: ret = sdma_check_progress(sde, wait, tx, submit_count > 0); if (ret == -EAGAIN) { ret = 0; goto retry; } sde->descq_full_count++; goto update_tail; } static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event) { unsigned long flags; spin_lock_irqsave(&sde->tail_lock, flags); write_seqlock(&sde->head_lock); __sdma_process_event(sde, event); if (sde->state.current_state == sdma_state_s99_running) sdma_desc_avail(sde, sdma_descq_freecnt(sde)); write_sequnlock(&sde->head_lock); spin_unlock_irqrestore(&sde->tail_lock, flags); } static void __sdma_process_event(struct sdma_engine *sde, enum sdma_events event) { struct sdma_state *ss = &sde->state; int need_progress = 0; /* CONFIG SDMA temporary */ #ifdef CONFIG_SDMA_VERBOSITY dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx, sdma_state_names[ss->current_state], sdma_event_names[event]); #endif switch (ss->current_state) { case sdma_state_s00_hw_down: switch (event) { case sdma_event_e00_go_hw_down: break; case sdma_event_e30_go_running: /* * If down, but running requested (usually result * of link up, then we need to start up. * This can happen when hw down is requested while * bringing the link up with traffic active on * 7220, e.g. */ ss->go_s99_running = 1; /* fall through -- and start dma engine */ case sdma_event_e10_go_hw_start: /* This reference means the state machine is started */ sdma_get(&sde->state); sdma_set_state(sde, sdma_state_s10_hw_start_up_halt_wait); break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e40_sw_cleaned: sdma_sw_tear_down(sde); break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: break; case sdma_event_e70_go_idle: break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s10_hw_start_up_halt_wait: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); sdma_sw_tear_down(sde); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: sdma_set_state(sde, sdma_state_s15_hw_start_up_clean_wait); sdma_start_hw_clean_up(sde); break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: schedule_work(&sde->err_halt_worker); break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s15_hw_start_up_clean_wait: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); sdma_sw_tear_down(sde); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: sdma_hw_start_up(sde); sdma_set_state(sde, ss->go_s99_running ? sdma_state_s99_running : sdma_state_s20_idle); break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s20_idle: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); sdma_sw_tear_down(sde); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: sdma_set_state(sde, sdma_state_s99_running); ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: sdma_set_state(sde, sdma_state_s50_hw_halt_wait); schedule_work(&sde->err_halt_worker); break; case sdma_event_e70_go_idle: break; case sdma_event_e85_link_down: /* fall through */ case sdma_event_e80_hw_freeze: sdma_set_state(sde, sdma_state_s80_hw_freeze); atomic_dec(&sde->dd->sdma_unfreeze_count); wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s30_sw_clean_up_wait: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait); sdma_start_hw_clean_up(sde); break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: ss->go_s99_running = 0; break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s40_hw_clean_up_wait: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: sdma_hw_start_up(sde); sdma_set_state(sde, ss->go_s99_running ? sdma_state_s99_running : sdma_state_s20_idle); break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: ss->go_s99_running = 0; break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s50_hw_halt_wait: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: schedule_work(&sde->err_halt_worker); break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: ss->go_s99_running = 0; break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s60_idle_halt_wait: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: schedule_work(&sde->err_halt_worker); break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s80_hw_freeze: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: sdma_set_state(sde, sdma_state_s82_freeze_sw_clean); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e82_hw_unfreeze: break; case sdma_event_e85_link_down: break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s82_freeze_sw_clean: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: ss->go_s99_running = 1; break; case sdma_event_e40_sw_cleaned: /* notify caller this engine is done cleaning */ atomic_dec(&sde->dd->sdma_unfreeze_count); wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: break; case sdma_event_e70_go_idle: ss->go_s99_running = 0; break; case sdma_event_e80_hw_freeze: break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: sdma_hw_start_up(sde); sdma_set_state(sde, ss->go_s99_running ? sdma_state_s99_running : sdma_state_s20_idle); break; case sdma_event_e85_link_down: break; case sdma_event_e90_sw_halted: break; } break; case sdma_state_s99_running: switch (event) { case sdma_event_e00_go_hw_down: sdma_set_state(sde, sdma_state_s00_hw_down); tasklet_hi_schedule(&sde->sdma_sw_clean_up_task); break; case sdma_event_e10_go_hw_start: break; case sdma_event_e15_hw_halt_done: break; case sdma_event_e25_hw_clean_up_done: break; case sdma_event_e30_go_running: break; case sdma_event_e40_sw_cleaned: break; case sdma_event_e50_hw_cleaned: break; case sdma_event_e60_hw_halted: need_progress = 1; sdma_err_progress_check_schedule(sde); /* fall through */ case sdma_event_e90_sw_halted: /* * SW initiated halt does not perform engines * progress check */ sdma_set_state(sde, sdma_state_s50_hw_halt_wait); schedule_work(&sde->err_halt_worker); break; case sdma_event_e70_go_idle: sdma_set_state(sde, sdma_state_s60_idle_halt_wait); break; case sdma_event_e85_link_down: ss->go_s99_running = 0; /* fall through */ case sdma_event_e80_hw_freeze: sdma_set_state(sde, sdma_state_s80_hw_freeze); atomic_dec(&sde->dd->sdma_unfreeze_count); wake_up_interruptible(&sde->dd->sdma_unfreeze_wq); break; case sdma_event_e81_hw_frozen: break; case sdma_event_e82_hw_unfreeze: break; } break; } ss->last_event = event; if (need_progress) sdma_make_progress(sde, 0); } /* * _extend_sdma_tx_descs() - helper to extend txreq * * This is called once the initial nominal allocation * of descriptors in the sdma_txreq is exhausted. * * The code will bump the allocation up to the max * of MAX_DESC (64) descriptors. There doesn't seem * much point in an interim step. The last descriptor * is reserved for coalesce buffer in order to support * cases where input packet has >MAX_DESC iovecs. * */ static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) { int i; /* Handle last descriptor */ if (unlikely((tx->num_desc == (MAX_DESC - 1)))) { /* if tlen is 0, it is for padding, release last descriptor */ if (!tx->tlen) { tx->desc_limit = MAX_DESC; } else if (!tx->coalesce_buf) { /* allocate coalesce buffer with space for padding */ tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32), GFP_ATOMIC); if (!tx->coalesce_buf) goto enomem; tx->coalesce_idx = 0; } return 0; } if (unlikely(tx->num_desc == MAX_DESC)) goto enomem; tx->descp = kmalloc_array( MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC); if (!tx->descp) goto enomem; /* reserve last descriptor for coalescing */ tx->desc_limit = MAX_DESC - 1; /* copy ones already built */ for (i = 0; i < tx->num_desc; i++) tx->descp[i] = tx->descs[i]; return 0; enomem: __sdma_txclean(dd, tx); return -ENOMEM; } /* * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors * * This is called once the initial nominal allocation of descriptors * in the sdma_txreq is exhausted. * * This function calls _extend_sdma_tx_descs to extend or allocate * coalesce buffer. If there is a allocated coalesce buffer, it will * copy the input packet data into the coalesce buffer. It also adds * coalesce buffer descriptor once when whole packet is received. * * Return: * <0 - error * 0 - coalescing, don't populate descriptor * 1 - continue with populating descriptor */ int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx, int type, void *kvaddr, struct page *page, unsigned long offset, u16 len) { int pad_len, rval; dma_addr_t addr; rval = _extend_sdma_tx_descs(dd, tx); if (rval) { __sdma_txclean(dd, tx); return rval; } /* If coalesce buffer is allocated, copy data into it */ if (tx->coalesce_buf) { if (type == SDMA_MAP_NONE) { __sdma_txclean(dd, tx); return -EINVAL; } if (type == SDMA_MAP_PAGE) { kvaddr = kmap(page); kvaddr += offset; } else if (WARN_ON(!kvaddr)) { __sdma_txclean(dd, tx); return -EINVAL; } memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len); tx->coalesce_idx += len; if (type == SDMA_MAP_PAGE) kunmap(page); /* If there is more data, return */ if (tx->tlen - tx->coalesce_idx) return 0; /* Whole packet is received; add any padding */ pad_len = tx->packet_len & (sizeof(u32) - 1); if (pad_len) { pad_len = sizeof(u32) - pad_len; memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len); /* padding is taken care of for coalescing case */ tx->packet_len += pad_len; tx->tlen += pad_len; } /* dma map the coalesce buffer */ addr = dma_map_single(&dd->pcidev->dev, tx->coalesce_buf, tx->tlen, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) { __sdma_txclean(dd, tx); return -ENOSPC; } /* Add descriptor for coalesce buffer */ tx->desc_limit = MAX_DESC; return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx, addr, tx->tlen); } return 1; } /* Update sdes when the lmc changes */ void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid) { struct sdma_engine *sde; int i; u64 sreg; sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) << SD(CHECK_SLID_MASK_SHIFT)) | (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) << SD(CHECK_SLID_VALUE_SHIFT)); for (i = 0; i < dd->num_sdma; i++) { hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x", i, (u32)sreg); sde = &dd->per_sdma[i]; write_sde_csr(sde, SD(CHECK_SLID), sreg); } } /* tx not dword sized - pad */ int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx) { int rval = 0; tx->num_desc++; if ((unlikely(tx->num_desc == tx->desc_limit))) { rval = _extend_sdma_tx_descs(dd, tx); if (rval) { __sdma_txclean(dd, tx); return rval; } } /* finish the one just added */ make_tx_sdma_desc( tx, SDMA_MAP_NONE, dd->sdma_pad_phys, sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1))); _sdma_close_tx(dd, tx); return rval; } /* * Add ahg to the sdma_txreq * * The logic will consume up to 3 * descriptors at the beginning of * sdma_txreq. */ void _sdma_txreq_ahgadd( struct sdma_txreq *tx, u8 num_ahg, u8 ahg_entry, u32 *ahg, u8 ahg_hlen) { u32 i, shift = 0, desc = 0; u8 mode; WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4); /* compute mode */ if (num_ahg == 1) mode = SDMA_AHG_APPLY_UPDATE1; else if (num_ahg <= 5) mode = SDMA_AHG_APPLY_UPDATE2; else mode = SDMA_AHG_APPLY_UPDATE3; tx->num_desc++; /* initialize to consumed descriptors to zero */ switch (mode) { case SDMA_AHG_APPLY_UPDATE3: tx->num_desc++; tx->descs[2].qw[0] = 0; tx->descs[2].qw[1] = 0; /* FALLTHROUGH */ case SDMA_AHG_APPLY_UPDATE2: tx->num_desc++; tx->descs[1].qw[0] = 0; tx->descs[1].qw[1] = 0; break; } ahg_hlen >>= 2; tx->descs[0].qw[1] |= (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK) << SDMA_DESC1_HEADER_INDEX_SHIFT) | (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK) << SDMA_DESC1_HEADER_DWS_SHIFT) | (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK) << SDMA_DESC1_HEADER_MODE_SHIFT) | (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK) << SDMA_DESC1_HEADER_UPDATE1_SHIFT); for (i = 0; i < (num_ahg - 1); i++) { if (!shift && !(i & 2)) desc++; tx->descs[desc].qw[!!(i & 2)] |= (((u64)ahg[i + 1]) << shift); shift = (shift + 32) & 63; } } /** * sdma_ahg_alloc - allocate an AHG entry * @sde: engine to allocate from * * Return: * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled, * -ENOSPC if an entry is not available */ int sdma_ahg_alloc(struct sdma_engine *sde) { int nr; int oldbit; if (!sde) { trace_hfi1_ahg_allocate(sde, -EINVAL); return -EINVAL; } while (1) { nr = ffz(ACCESS_ONCE(sde->ahg_bits)); if (nr > 31) { trace_hfi1_ahg_allocate(sde, -ENOSPC); return -ENOSPC; } oldbit = test_and_set_bit(nr, &sde->ahg_bits); if (!oldbit) break; cpu_relax(); } trace_hfi1_ahg_allocate(sde, nr); return nr; } /** * sdma_ahg_free - free an AHG entry * @sde: engine to return AHG entry * @ahg_index: index to free * * This routine frees the indicate AHG entry. */ void sdma_ahg_free(struct sdma_engine *sde, int ahg_index) { if (!sde) return; trace_hfi1_ahg_deallocate(sde, ahg_index); if (ahg_index < 0 || ahg_index > 31) return; clear_bit(ahg_index, &sde->ahg_bits); } /* * SPC freeze handling for SDMA engines. Called when the driver knows * the SPC is going into a freeze but before the freeze is fully * settled. Generally an error interrupt. * * This event will pull the engine out of running so no more entries can be * added to the engine's queue. */ void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down) { int i; enum sdma_events event = link_down ? sdma_event_e85_link_down : sdma_event_e80_hw_freeze; /* set up the wait but do not wait here */ atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); /* tell all engines to stop running and wait */ for (i = 0; i < dd->num_sdma; i++) sdma_process_event(&dd->per_sdma[i], event); /* sdma_freeze() will wait for all engines to have stopped */ } /* * SPC freeze handling for SDMA engines. Called when the driver knows * the SPC is fully frozen. */ void sdma_freeze(struct hfi1_devdata *dd) { int i; int ret; /* * Make sure all engines have moved out of the running state before * continuing. */ ret = wait_event_interruptible(dd->sdma_unfreeze_wq, atomic_read(&dd->sdma_unfreeze_count) <= 0); /* interrupted or count is negative, then unloading - just exit */ if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0) return; /* set up the count for the next wait */ atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma); /* tell all engines that the SPC is frozen, they can start cleaning */ for (i = 0; i < dd->num_sdma; i++) sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen); /* * Wait for everyone to finish software clean before exiting. The * software clean will read engine CSRs, so must be completed before * the next step, which will clear the engine CSRs. */ (void)wait_event_interruptible(dd->sdma_unfreeze_wq, atomic_read(&dd->sdma_unfreeze_count) <= 0); /* no need to check results - done no matter what */ } /* * SPC freeze handling for the SDMA engines. Called after the SPC is unfrozen. * * The SPC freeze acts like a SDMA halt and a hardware clean combined. All * that is left is a software clean. We could do it after the SPC is fully * frozen, but then we'd have to add another state to wait for the unfreeze. * Instead, just defer the software clean until the unfreeze step. */ void sdma_unfreeze(struct hfi1_devdata *dd) { int i; /* tell all engines start freeze clean up */ for (i = 0; i < dd->num_sdma; i++) sdma_process_event(&dd->per_sdma[i], sdma_event_e82_hw_unfreeze); } /** * _sdma_engine_progress_schedule() - schedule progress on engine * @sde: sdma_engine to schedule progress * */ void _sdma_engine_progress_schedule( struct sdma_engine *sde) { trace_hfi1_sdma_engine_progress(sde, sde->progress_mask); /* assume we have selected a good cpu */ write_csr(sde->dd, CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)), sde->progress_mask); }