/* * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org> * Copyright (C) 2003 Red Hat <alan@redhat.com> * */ #include <linux/module.h> #include <linux/types.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/major.h> #include <linux/errno.h> #include <linux/genhd.h> #include <linux/blkpg.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/hdreg.h> #include <linux/ide.h> #include <linux/bitops.h> #include <linux/nmi.h> #include <asm/byteorder.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <asm/io.h> /* * Conventional PIO operations for ATA devices */ static u8 ide_inb (unsigned long port) { return (u8) inb(port); } static void ide_outb (u8 val, unsigned long port) { outb(val, port); } /* * MMIO operations, typically used for SATA controllers */ static u8 ide_mm_inb (unsigned long port) { return (u8) readb((void __iomem *) port); } static void ide_mm_outb (u8 value, unsigned long port) { writeb(value, (void __iomem *) port); } void SELECT_DRIVE (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; const struct ide_port_ops *port_ops = hwif->port_ops; ide_task_t task; if (port_ops && port_ops->selectproc) port_ops->selectproc(drive); memset(&task, 0, sizeof(task)); task.tf_flags = IDE_TFLAG_OUT_DEVICE; drive->hwif->tp_ops->tf_load(drive, &task); } void SELECT_MASK(ide_drive_t *drive, int mask) { const struct ide_port_ops *port_ops = drive->hwif->port_ops; if (port_ops && port_ops->maskproc) port_ops->maskproc(drive, mask); } void ide_exec_command(ide_hwif_t *hwif, u8 cmd) { if (hwif->host_flags & IDE_HFLAG_MMIO) writeb(cmd, (void __iomem *)hwif->io_ports.command_addr); else outb(cmd, hwif->io_ports.command_addr); } EXPORT_SYMBOL_GPL(ide_exec_command); u8 ide_read_status(ide_hwif_t *hwif) { if (hwif->host_flags & IDE_HFLAG_MMIO) return readb((void __iomem *)hwif->io_ports.status_addr); else return inb(hwif->io_ports.status_addr); } EXPORT_SYMBOL_GPL(ide_read_status); u8 ide_read_altstatus(ide_hwif_t *hwif) { if (hwif->host_flags & IDE_HFLAG_MMIO) return readb((void __iomem *)hwif->io_ports.ctl_addr); else return inb(hwif->io_ports.ctl_addr); } EXPORT_SYMBOL_GPL(ide_read_altstatus); u8 ide_read_sff_dma_status(ide_hwif_t *hwif) { if (hwif->host_flags & IDE_HFLAG_MMIO) return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS)); else return inb(hwif->dma_base + ATA_DMA_STATUS); } EXPORT_SYMBOL_GPL(ide_read_sff_dma_status); void ide_set_irq(ide_hwif_t *hwif, int on) { u8 ctl = ATA_DEVCTL_OBS; if (on == 4) { /* hack for SRST */ ctl |= 4; on &= ~4; } ctl |= on ? 0 : 2; if (hwif->host_flags & IDE_HFLAG_MMIO) writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr); else outb(ctl, hwif->io_ports.ctl_addr); } EXPORT_SYMBOL_GPL(ide_set_irq); void ide_tf_load(ide_drive_t *drive, ide_task_t *task) { ide_hwif_t *hwif = drive->hwif; struct ide_io_ports *io_ports = &hwif->io_ports; struct ide_taskfile *tf = &task->tf; void (*tf_outb)(u8 addr, unsigned long port); u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF; if (mmio) tf_outb = ide_mm_outb; else tf_outb = ide_outb; if (task->tf_flags & IDE_TFLAG_FLAGGED) HIHI = 0xFF; if (task->tf_flags & IDE_TFLAG_OUT_DATA) { u16 data = (tf->hob_data << 8) | tf->data; if (mmio) writew(data, (void __iomem *)io_ports->data_addr); else outw(data, io_ports->data_addr); } if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE) tf_outb(tf->hob_feature, io_ports->feature_addr); if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT) tf_outb(tf->hob_nsect, io_ports->nsect_addr); if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL) tf_outb(tf->hob_lbal, io_ports->lbal_addr); if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM) tf_outb(tf->hob_lbam, io_ports->lbam_addr); if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH) tf_outb(tf->hob_lbah, io_ports->lbah_addr); if (task->tf_flags & IDE_TFLAG_OUT_FEATURE) tf_outb(tf->feature, io_ports->feature_addr); if (task->tf_flags & IDE_TFLAG_OUT_NSECT) tf_outb(tf->nsect, io_ports->nsect_addr); if (task->tf_flags & IDE_TFLAG_OUT_LBAL) tf_outb(tf->lbal, io_ports->lbal_addr); if (task->tf_flags & IDE_TFLAG_OUT_LBAM) tf_outb(tf->lbam, io_ports->lbam_addr); if (task->tf_flags & IDE_TFLAG_OUT_LBAH) tf_outb(tf->lbah, io_ports->lbah_addr); if (task->tf_flags & IDE_TFLAG_OUT_DEVICE) tf_outb((tf->device & HIHI) | drive->select.all, io_ports->device_addr); } EXPORT_SYMBOL_GPL(ide_tf_load); void ide_tf_read(ide_drive_t *drive, ide_task_t *task) { ide_hwif_t *hwif = drive->hwif; struct ide_io_ports *io_ports = &hwif->io_ports; struct ide_taskfile *tf = &task->tf; void (*tf_outb)(u8 addr, unsigned long port); u8 (*tf_inb)(unsigned long port); u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; if (mmio) { tf_outb = ide_mm_outb; tf_inb = ide_mm_inb; } else { tf_outb = ide_outb; tf_inb = ide_inb; } if (task->tf_flags & IDE_TFLAG_IN_DATA) { u16 data; if (mmio) data = readw((void __iomem *)io_ports->data_addr); else data = inw(io_ports->data_addr); tf->data = data & 0xff; tf->hob_data = (data >> 8) & 0xff; } /* be sure we're looking at the low order bits */ tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr); if (task->tf_flags & IDE_TFLAG_IN_FEATURE) tf->feature = tf_inb(io_ports->feature_addr); if (task->tf_flags & IDE_TFLAG_IN_NSECT) tf->nsect = tf_inb(io_ports->nsect_addr); if (task->tf_flags & IDE_TFLAG_IN_LBAL) tf->lbal = tf_inb(io_ports->lbal_addr); if (task->tf_flags & IDE_TFLAG_IN_LBAM) tf->lbam = tf_inb(io_ports->lbam_addr); if (task->tf_flags & IDE_TFLAG_IN_LBAH) tf->lbah = tf_inb(io_ports->lbah_addr); if (task->tf_flags & IDE_TFLAG_IN_DEVICE) tf->device = tf_inb(io_ports->device_addr); if (task->tf_flags & IDE_TFLAG_LBA48) { tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr); if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE) tf->hob_feature = tf_inb(io_ports->feature_addr); if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT) tf->hob_nsect = tf_inb(io_ports->nsect_addr); if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL) tf->hob_lbal = tf_inb(io_ports->lbal_addr); if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM) tf->hob_lbam = tf_inb(io_ports->lbam_addr); if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH) tf->hob_lbah = tf_inb(io_ports->lbah_addr); } } EXPORT_SYMBOL_GPL(ide_tf_read); /* * Some localbus EIDE interfaces require a special access sequence * when using 32-bit I/O instructions to transfer data. We call this * the "vlb_sync" sequence, which consists of three successive reads * of the sector count register location, with interrupts disabled * to ensure that the reads all happen together. */ static void ata_vlb_sync(unsigned long port) { (void)inb(port); (void)inb(port); (void)inb(port); } /* * This is used for most PIO data transfers *from* the IDE interface * * These routines will round up any request for an odd number of bytes, * so if an odd len is specified, be sure that there's at least one * extra byte allocated for the buffer. */ void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf, unsigned int len) { ide_hwif_t *hwif = drive->hwif; struct ide_io_ports *io_ports = &hwif->io_ports; unsigned long data_addr = io_ports->data_addr; u8 io_32bit = drive->io_32bit; u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; len++; if (io_32bit) { unsigned long uninitialized_var(flags); if ((io_32bit & 2) && !mmio) { local_irq_save(flags); ata_vlb_sync(io_ports->nsect_addr); } if (mmio) __ide_mm_insl((void __iomem *)data_addr, buf, len / 4); else insl(data_addr, buf, len / 4); if ((io_32bit & 2) && !mmio) local_irq_restore(flags); if ((len & 3) >= 2) { if (mmio) __ide_mm_insw((void __iomem *)data_addr, (u8 *)buf + (len & ~3), 1); else insw(data_addr, (u8 *)buf + (len & ~3), 1); } } else { if (mmio) __ide_mm_insw((void __iomem *)data_addr, buf, len / 2); else insw(data_addr, buf, len / 2); } } EXPORT_SYMBOL_GPL(ide_input_data); /* * This is used for most PIO data transfers *to* the IDE interface */ void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf, unsigned int len) { ide_hwif_t *hwif = drive->hwif; struct ide_io_ports *io_ports = &hwif->io_ports; unsigned long data_addr = io_ports->data_addr; u8 io_32bit = drive->io_32bit; u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; if (io_32bit) { unsigned long uninitialized_var(flags); if ((io_32bit & 2) && !mmio) { local_irq_save(flags); ata_vlb_sync(io_ports->nsect_addr); } if (mmio) __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4); else outsl(data_addr, buf, len / 4); if ((io_32bit & 2) && !mmio) local_irq_restore(flags); if ((len & 3) >= 2) { if (mmio) __ide_mm_outsw((void __iomem *)data_addr, (u8 *)buf + (len & ~3), 1); else outsw(data_addr, (u8 *)buf + (len & ~3), 1); } } else { if (mmio) __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2); else outsw(data_addr, buf, len / 2); } } EXPORT_SYMBOL_GPL(ide_output_data); u8 ide_read_error(ide_drive_t *drive) { ide_task_t task; memset(&task, 0, sizeof(task)); task.tf_flags = IDE_TFLAG_IN_FEATURE; drive->hwif->tp_ops->tf_read(drive, &task); return task.tf.error; } EXPORT_SYMBOL_GPL(ide_read_error); void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason) { ide_task_t task; memset(&task, 0, sizeof(task)); task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM | IDE_TFLAG_IN_NSECT; drive->hwif->tp_ops->tf_read(drive, &task); *bcount = (task.tf.lbah << 8) | task.tf.lbam; *ireason = task.tf.nsect & 3; } EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason); const struct ide_tp_ops default_tp_ops = { .exec_command = ide_exec_command, .read_status = ide_read_status, .read_altstatus = ide_read_altstatus, .read_sff_dma_status = ide_read_sff_dma_status, .set_irq = ide_set_irq, .tf_load = ide_tf_load, .tf_read = ide_tf_read, .input_data = ide_input_data, .output_data = ide_output_data, }; void ide_fix_driveid (struct hd_driveid *id) { #ifndef __LITTLE_ENDIAN # ifdef __BIG_ENDIAN int i; u16 *stringcast; id->config = __le16_to_cpu(id->config); id->cyls = __le16_to_cpu(id->cyls); id->reserved2 = __le16_to_cpu(id->reserved2); id->heads = __le16_to_cpu(id->heads); id->track_bytes = __le16_to_cpu(id->track_bytes); id->sector_bytes = __le16_to_cpu(id->sector_bytes); id->sectors = __le16_to_cpu(id->sectors); id->vendor0 = __le16_to_cpu(id->vendor0); id->vendor1 = __le16_to_cpu(id->vendor1); id->vendor2 = __le16_to_cpu(id->vendor2); stringcast = (u16 *)&id->serial_no[0]; for (i = 0; i < (20/2); i++) stringcast[i] = __le16_to_cpu(stringcast[i]); id->buf_type = __le16_to_cpu(id->buf_type); id->buf_size = __le16_to_cpu(id->buf_size); id->ecc_bytes = __le16_to_cpu(id->ecc_bytes); stringcast = (u16 *)&id->fw_rev[0]; for (i = 0; i < (8/2); i++) stringcast[i] = __le16_to_cpu(stringcast[i]); stringcast = (u16 *)&id->model[0]; for (i = 0; i < (40/2); i++) stringcast[i] = __le16_to_cpu(stringcast[i]); id->dword_io = __le16_to_cpu(id->dword_io); id->reserved50 = __le16_to_cpu(id->reserved50); id->field_valid = __le16_to_cpu(id->field_valid); id->cur_cyls = __le16_to_cpu(id->cur_cyls); id->cur_heads = __le16_to_cpu(id->cur_heads); id->cur_sectors = __le16_to_cpu(id->cur_sectors); id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0); id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1); id->lba_capacity = __le32_to_cpu(id->lba_capacity); id->dma_1word = __le16_to_cpu(id->dma_1word); id->dma_mword = __le16_to_cpu(id->dma_mword); id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); id->eide_dma_min = __le16_to_cpu(id->eide_dma_min); id->eide_dma_time = __le16_to_cpu(id->eide_dma_time); id->eide_pio = __le16_to_cpu(id->eide_pio); id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); for (i = 0; i < 2; ++i) id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); for (i = 0; i < 4; ++i) id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); id->queue_depth = __le16_to_cpu(id->queue_depth); for (i = 0; i < 4; ++i) id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); id->major_rev_num = __le16_to_cpu(id->major_rev_num); id->minor_rev_num = __le16_to_cpu(id->minor_rev_num); id->command_set_1 = __le16_to_cpu(id->command_set_1); id->command_set_2 = __le16_to_cpu(id->command_set_2); id->cfsse = __le16_to_cpu(id->cfsse); id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1); id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2); id->csf_default = __le16_to_cpu(id->csf_default); id->dma_ultra = __le16_to_cpu(id->dma_ultra); id->trseuc = __le16_to_cpu(id->trseuc); id->trsEuc = __le16_to_cpu(id->trsEuc); id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues); id->mprc = __le16_to_cpu(id->mprc); id->hw_config = __le16_to_cpu(id->hw_config); id->acoustic = __le16_to_cpu(id->acoustic); id->msrqs = __le16_to_cpu(id->msrqs); id->sxfert = __le16_to_cpu(id->sxfert); id->sal = __le16_to_cpu(id->sal); id->spg = __le32_to_cpu(id->spg); id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); for (i = 0; i < 22; i++) id->words104_125[i] = __le16_to_cpu(id->words104_125[i]); id->last_lun = __le16_to_cpu(id->last_lun); id->word127 = __le16_to_cpu(id->word127); id->dlf = __le16_to_cpu(id->dlf); id->csfo = __le16_to_cpu(id->csfo); for (i = 0; i < 26; i++) id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); id->word156 = __le16_to_cpu(id->word156); for (i = 0; i < 3; i++) id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); id->cfa_power = __le16_to_cpu(id->cfa_power); for (i = 0; i < 14; i++) id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); for (i = 0; i < 31; i++) id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); for (i = 0; i < 48; i++) id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); id->integrity_word = __le16_to_cpu(id->integrity_word); # else # error "Please fix <asm/byteorder.h>" # endif #endif } /* * ide_fixstring() cleans up and (optionally) byte-swaps a text string, * removing leading/trailing blanks and compressing internal blanks. * It is primarily used to tidy up the model name/number fields as * returned by the WIN_[P]IDENTIFY commands. */ void ide_fixstring (u8 *s, const int bytecount, const int byteswap) { u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ if (byteswap) { /* convert from big-endian to host byte order */ for (p = end ; p != s;) { unsigned short *pp = (unsigned short *) (p -= 2); *pp = ntohs(*pp); } } /* strip leading blanks */ while (s != end && *s == ' ') ++s; /* compress internal blanks and strip trailing blanks */ while (s != end && *s) { if (*s++ != ' ' || (s != end && *s && *s != ' ')) *p++ = *(s-1); } /* wipe out trailing garbage */ while (p != end) *p++ = '\0'; } EXPORT_SYMBOL(ide_fixstring); /* * Needed for PCI irq sharing */ int drive_is_ready (ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); u8 stat = 0; if (drive->waiting_for_dma) return hwif->dma_ops->dma_test_irq(drive); #if 0 /* need to guarantee 400ns since last command was issued */ udelay(1); #endif /* * We do a passive status test under shared PCI interrupts on * cards that truly share the ATA side interrupt, but may also share * an interrupt with another pci card/device. We make no assumptions * about possible isa-pnp and pci-pnp issues yet. */ if (hwif->io_ports.ctl_addr) stat = hwif->tp_ops->read_altstatus(hwif); else /* Note: this may clear a pending IRQ!! */ stat = hwif->tp_ops->read_status(hwif); if (stat & BUSY_STAT) /* drive busy: definitely not interrupting */ return 0; /* drive ready: *might* be interrupting */ return 1; } EXPORT_SYMBOL(drive_is_ready); /* * This routine busy-waits for the drive status to be not "busy". * It then checks the status for all of the "good" bits and none * of the "bad" bits, and if all is okay it returns 0. All other * cases return error -- caller may then invoke ide_error(). * * This routine should get fixed to not hog the cpu during extra long waits.. * That could be done by busy-waiting for the first jiffy or two, and then * setting a timer to wake up at half second intervals thereafter, * until timeout is achieved, before timing out. */ static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat) { ide_hwif_t *hwif = drive->hwif; const struct ide_tp_ops *tp_ops = hwif->tp_ops; unsigned long flags; int i; u8 stat; udelay(1); /* spec allows drive 400ns to assert "BUSY" */ stat = tp_ops->read_status(hwif); if (stat & BUSY_STAT) { local_irq_set(flags); timeout += jiffies; while ((stat = tp_ops->read_status(hwif)) & BUSY_STAT) { if (time_after(jiffies, timeout)) { /* * One last read after the timeout in case * heavy interrupt load made us not make any * progress during the timeout.. */ stat = tp_ops->read_status(hwif); if (!(stat & BUSY_STAT)) break; local_irq_restore(flags); *rstat = stat; return -EBUSY; } } local_irq_restore(flags); } /* * Allow status to settle, then read it again. * A few rare drives vastly violate the 400ns spec here, * so we'll wait up to 10usec for a "good" status * rather than expensively fail things immediately. * This fix courtesy of Matthew Faupel & Niccolo Rigacci. */ for (i = 0; i < 10; i++) { udelay(1); stat = tp_ops->read_status(hwif); if (OK_STAT(stat, good, bad)) { *rstat = stat; return 0; } } *rstat = stat; return -EFAULT; } /* * In case of error returns error value after doing "*startstop = ide_error()". * The caller should return the updated value of "startstop" in this case, * "startstop" is unchanged when the function returns 0. */ int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) { int err; u8 stat; /* bail early if we've exceeded max_failures */ if (drive->max_failures && (drive->failures > drive->max_failures)) { *startstop = ide_stopped; return 1; } err = __ide_wait_stat(drive, good, bad, timeout, &stat); if (err) { char *s = (err == -EBUSY) ? "status timeout" : "status error"; *startstop = ide_error(drive, s, stat); } return err; } EXPORT_SYMBOL(ide_wait_stat); /** * ide_in_drive_list - look for drive in black/white list * @id: drive identifier * @drive_table: list to inspect * * Look for a drive in the blacklist and the whitelist tables * Returns 1 if the drive is found in the table. */ int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table) { for ( ; drive_table->id_model; drive_table++) if ((!strcmp(drive_table->id_model, id->model)) && (!drive_table->id_firmware || strstr(id->fw_rev, drive_table->id_firmware))) return 1; return 0; } EXPORT_SYMBOL_GPL(ide_in_drive_list); /* * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid. * We list them here and depend on the device side cable detection for them. * * Some optical devices with the buggy firmwares have the same problem. */ static const struct drive_list_entry ivb_list[] = { { "QUANTUM FIREBALLlct10 05" , "A03.0900" }, { "TSSTcorp CDDVDW SH-S202J" , "SB00" }, { "TSSTcorp CDDVDW SH-S202J" , "SB01" }, { "TSSTcorp CDDVDW SH-S202N" , "SB00" }, { "TSSTcorp CDDVDW SH-S202N" , "SB01" }, { "TSSTcorp CDDVDW SH-S202H" , "SB00" }, { "TSSTcorp CDDVDW SH-S202H" , "SB01" }, { NULL , NULL } }; /* * All hosts that use the 80c ribbon must use! * The name is derived from upper byte of word 93 and the 80c ribbon. */ u8 eighty_ninty_three (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct hd_driveid *id = drive->id; int ivb = ide_in_drive_list(id, ivb_list); if (hwif->cbl == ATA_CBL_PATA40_SHORT) return 1; if (ivb) printk(KERN_DEBUG "%s: skipping word 93 validity check\n", drive->name); if (ide_dev_is_sata(id) && !ivb) return 1; if (hwif->cbl != ATA_CBL_PATA80 && !ivb) goto no_80w; /* * FIXME: * - change master/slave IDENTIFY order * - force bit13 (80c cable present) check also for !ivb devices * (unless the slave device is pre-ATA3) */ if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000))) return 1; no_80w: if (drive->udma33_warned == 1) return 0; printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, " "limiting max speed to UDMA33\n", drive->name, hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host"); drive->udma33_warned = 1; return 0; } int ide_driveid_update(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; const struct ide_tp_ops *tp_ops = hwif->tp_ops; struct hd_driveid *id; unsigned long timeout, flags; u8 stat; /* * Re-read drive->id for possible DMA mode * change (copied from ide-probe.c) */ SELECT_MASK(drive, 1); tp_ops->set_irq(hwif, 0); msleep(50); tp_ops->exec_command(hwif, WIN_IDENTIFY); timeout = jiffies + WAIT_WORSTCASE; do { if (time_after(jiffies, timeout)) { SELECT_MASK(drive, 0); return 0; /* drive timed-out */ } msleep(50); /* give drive a breather */ stat = tp_ops->read_altstatus(hwif); } while (stat & BUSY_STAT); msleep(50); /* wait for IRQ and DRQ_STAT */ stat = tp_ops->read_status(hwif); if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) { SELECT_MASK(drive, 0); printk("%s: CHECK for good STATUS\n", drive->name); return 0; } local_irq_save(flags); SELECT_MASK(drive, 0); id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); if (!id) { local_irq_restore(flags); return 0; } tp_ops->input_data(drive, NULL, id, SECTOR_SIZE); (void)tp_ops->read_status(hwif); /* clear drive IRQ */ local_irq_enable(); local_irq_restore(flags); ide_fix_driveid(id); if (id) { drive->id->dma_ultra = id->dma_ultra; drive->id->dma_mword = id->dma_mword; drive->id->dma_1word = id->dma_1word; /* anything more ? */ kfree(id); if (drive->using_dma && ide_id_dma_bug(drive)) ide_dma_off(drive); } return 1; } int ide_config_drive_speed(ide_drive_t *drive, u8 speed) { ide_hwif_t *hwif = drive->hwif; const struct ide_tp_ops *tp_ops = hwif->tp_ops; int error = 0; u8 stat; ide_task_t task; #ifdef CONFIG_BLK_DEV_IDEDMA if (hwif->dma_ops) /* check if host supports DMA */ hwif->dma_ops->dma_host_set(drive, 0); #endif /* Skip setting PIO flow-control modes on pre-EIDE drives */ if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08)) goto skip; /* * Don't use ide_wait_cmd here - it will * attempt to set_geometry and recalibrate, * but for some reason these don't work at * this point (lost interrupt). */ /* * Select the drive, and issue the SETFEATURES command */ disable_irq_nosync(hwif->irq); /* * FIXME: we race against the running IRQ here if * this is called from non IRQ context. If we use * disable_irq() we hang on the error path. Work * is needed. */ udelay(1); SELECT_DRIVE(drive); SELECT_MASK(drive, 0); udelay(1); tp_ops->set_irq(hwif, 0); memset(&task, 0, sizeof(task)); task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT; task.tf.feature = SETFEATURES_XFER; task.tf.nsect = speed; tp_ops->tf_load(drive, &task); tp_ops->exec_command(hwif, WIN_SETFEATURES); if (drive->quirk_list == 2) tp_ops->set_irq(hwif, 1); error = __ide_wait_stat(drive, drive->ready_stat, BUSY_STAT|DRQ_STAT|ERR_STAT, WAIT_CMD, &stat); SELECT_MASK(drive, 0); enable_irq(hwif->irq); if (error) { (void) ide_dump_status(drive, "set_drive_speed_status", stat); return error; } drive->id->dma_ultra &= ~0xFF00; drive->id->dma_mword &= ~0x0F00; drive->id->dma_1word &= ~0x0F00; skip: #ifdef CONFIG_BLK_DEV_IDEDMA if (speed >= XFER_SW_DMA_0 && drive->using_dma) hwif->dma_ops->dma_host_set(drive, 1); else if (hwif->dma_ops) /* check if host supports DMA */ ide_dma_off_quietly(drive); #endif switch(speed) { case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break; case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break; case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break; case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break; case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break; case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break; case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break; case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break; case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; default: break; } if (!drive->init_speed) drive->init_speed = speed; drive->current_speed = speed; return error; } /* * This should get invoked any time we exit the driver to * wait for an interrupt response from a drive. handler() points * at the appropriate code to handle the next interrupt, and a * timer is started to prevent us from waiting forever in case * something goes wrong (see the ide_timer_expiry() handler later on). * * See also ide_execute_command */ static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, unsigned int timeout, ide_expiry_t *expiry) { ide_hwgroup_t *hwgroup = HWGROUP(drive); BUG_ON(hwgroup->handler); hwgroup->handler = handler; hwgroup->expiry = expiry; hwgroup->timer.expires = jiffies + timeout; hwgroup->req_gen_timer = hwgroup->req_gen; add_timer(&hwgroup->timer); } void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, unsigned int timeout, ide_expiry_t *expiry) { unsigned long flags; spin_lock_irqsave(&ide_lock, flags); __ide_set_handler(drive, handler, timeout, expiry); spin_unlock_irqrestore(&ide_lock, flags); } EXPORT_SYMBOL(ide_set_handler); /** * ide_execute_command - execute an IDE command * @drive: IDE drive to issue the command against * @command: command byte to write * @handler: handler for next phase * @timeout: timeout for command * @expiry: handler to run on timeout * * Helper function to issue an IDE command. This handles the * atomicity requirements, command timing and ensures that the * handler and IRQ setup do not race. All IDE command kick off * should go via this function or do equivalent locking. */ void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry) { unsigned long flags; ide_hwif_t *hwif = HWIF(drive); spin_lock_irqsave(&ide_lock, flags); __ide_set_handler(drive, handler, timeout, expiry); hwif->tp_ops->exec_command(hwif, cmd); /* * Drive takes 400nS to respond, we must avoid the IRQ being * serviced before that. * * FIXME: we could skip this delay with care on non shared devices */ ndelay(400); spin_unlock_irqrestore(&ide_lock, flags); } EXPORT_SYMBOL(ide_execute_command); void ide_execute_pkt_cmd(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; unsigned long flags; spin_lock_irqsave(&ide_lock, flags); hwif->tp_ops->exec_command(hwif, WIN_PACKETCMD); ndelay(400); spin_unlock_irqrestore(&ide_lock, flags); } EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd); static inline void ide_complete_drive_reset(ide_drive_t *drive, int err) { struct request *rq = drive->hwif->hwgroup->rq; if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET) ide_end_request(drive, err ? err : 1, 0); } /* needed below */ static ide_startstop_t do_reset1 (ide_drive_t *, int); /* * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an atapi drive reset operation. If the drive has not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; ide_hwgroup_t *hwgroup = hwif->hwgroup; u8 stat; SELECT_DRIVE(drive); udelay (10); stat = hwif->tp_ops->read_status(hwif); if (OK_STAT(stat, 0, BUSY_STAT)) printk("%s: ATAPI reset complete\n", drive->name); else { if (time_before(jiffies, hwgroup->poll_timeout)) { ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); /* continue polling */ return ide_started; } /* end of polling */ hwgroup->polling = 0; printk("%s: ATAPI reset timed-out, status=0x%02x\n", drive->name, stat); /* do it the old fashioned way */ return do_reset1(drive, 1); } /* done polling */ hwgroup->polling = 0; ide_complete_drive_reset(drive, 0); return ide_stopped; } /* * reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an ide reset operation. If the drives have not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static ide_startstop_t reset_pollfunc (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); ide_hwif_t *hwif = HWIF(drive); const struct ide_port_ops *port_ops = hwif->port_ops; u8 tmp; int err = 0; if (port_ops && port_ops->reset_poll) { err = port_ops->reset_poll(drive); if (err) { printk(KERN_ERR "%s: host reset_poll failure for %s.\n", hwif->name, drive->name); goto out; } } tmp = hwif->tp_ops->read_status(hwif); if (!OK_STAT(tmp, 0, BUSY_STAT)) { if (time_before(jiffies, hwgroup->poll_timeout)) { ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); /* continue polling */ return ide_started; } printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); drive->failures++; err = -EIO; } else { printk("%s: reset: ", hwif->name); tmp = ide_read_error(drive); if (tmp == 1) { printk("success\n"); drive->failures = 0; } else { drive->failures++; printk("master: "); switch (tmp & 0x7f) { case 1: printk("passed"); break; case 2: printk("formatter device error"); break; case 3: printk("sector buffer error"); break; case 4: printk("ECC circuitry error"); break; case 5: printk("controlling MPU error"); break; default:printk("error (0x%02x?)", tmp); } if (tmp & 0x80) printk("; slave: failed"); printk("\n"); err = -EIO; } } out: hwgroup->polling = 0; /* done polling */ ide_complete_drive_reset(drive, err); return ide_stopped; } static void ide_disk_pre_reset(ide_drive_t *drive) { int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1; drive->special.all = 0; drive->special.b.set_geometry = legacy; drive->special.b.recalibrate = legacy; drive->mult_count = 0; if (!drive->keep_settings && !drive->using_dma) drive->mult_req = 0; if (drive->mult_req != drive->mult_count) drive->special.b.set_multmode = 1; } static void pre_reset(ide_drive_t *drive) { const struct ide_port_ops *port_ops = drive->hwif->port_ops; if (drive->media == ide_disk) ide_disk_pre_reset(drive); else drive->post_reset = 1; if (drive->using_dma) { if (drive->crc_count) ide_check_dma_crc(drive); else ide_dma_off(drive); } if (!drive->keep_settings) { if (!drive->using_dma) { drive->unmask = 0; drive->io_32bit = 0; } return; } if (port_ops && port_ops->pre_reset) port_ops->pre_reset(drive); if (drive->current_speed != 0xff) drive->desired_speed = drive->current_speed; drive->current_speed = 0xff; } /* * do_reset1() attempts to recover a confused drive by resetting it. * Unfortunately, resetting a disk drive actually resets all devices on * the same interface, so it can really be thought of as resetting the * interface rather than resetting the drive. * * ATAPI devices have their own reset mechanism which allows them to be * individually reset without clobbering other devices on the same interface. * * Unfortunately, the IDE interface does not generate an interrupt to let * us know when the reset operation has finished, so we must poll for this. * Equally poor, though, is the fact that this may a very long time to complete, * (up to 30 seconds worstcase). So, instead of busy-waiting here for it, * we set a timer to poll at 50ms intervals. */ static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) { unsigned int unit; unsigned long flags; ide_hwif_t *hwif; ide_hwgroup_t *hwgroup; struct ide_io_ports *io_ports; const struct ide_tp_ops *tp_ops; const struct ide_port_ops *port_ops; spin_lock_irqsave(&ide_lock, flags); hwif = HWIF(drive); hwgroup = HWGROUP(drive); io_ports = &hwif->io_ports; tp_ops = hwif->tp_ops; /* We must not reset with running handlers */ BUG_ON(hwgroup->handler != NULL); /* For an ATAPI device, first try an ATAPI SRST. */ if (drive->media != ide_disk && !do_not_try_atapi) { pre_reset(drive); SELECT_DRIVE(drive); udelay (20); tp_ops->exec_command(hwif, WIN_SRST); ndelay(400); hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; hwgroup->polling = 1; __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); spin_unlock_irqrestore(&ide_lock, flags); return ide_started; } /* * First, reset any device state data we were maintaining * for any of the drives on this interface. */ for (unit = 0; unit < MAX_DRIVES; ++unit) pre_reset(&hwif->drives[unit]); if (io_ports->ctl_addr == 0) { spin_unlock_irqrestore(&ide_lock, flags); ide_complete_drive_reset(drive, -ENXIO); return ide_stopped; } /* * Note that we also set nIEN while resetting the device, * to mask unwanted interrupts from the interface during the reset. * However, due to the design of PC hardware, this will cause an * immediate interrupt due to the edge transition it produces. * This single interrupt gives us a "fast poll" for drives that * recover from reset very quickly, saving us the first 50ms wait time. * * TODO: add ->softreset method and stop abusing ->set_irq */ /* set SRST and nIEN */ tp_ops->set_irq(hwif, 4); /* more than enough time */ udelay(10); /* clear SRST, leave nIEN (unless device is on the quirk list) */ tp_ops->set_irq(hwif, drive->quirk_list == 2); /* more than enough time */ udelay(10); hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; hwgroup->polling = 1; __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); /* * Some weird controller like resetting themselves to a strange * state when the disks are reset this way. At least, the Winbond * 553 documentation says that */ port_ops = hwif->port_ops; if (port_ops && port_ops->resetproc) port_ops->resetproc(drive); spin_unlock_irqrestore(&ide_lock, flags); return ide_started; } /* * ide_do_reset() is the entry point to the drive/interface reset code. */ ide_startstop_t ide_do_reset (ide_drive_t *drive) { return do_reset1(drive, 0); } EXPORT_SYMBOL(ide_do_reset); /* * ide_wait_not_busy() waits for the currently selected device on the hwif * to report a non-busy status, see comments in ide_probe_port(). */ int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) { u8 stat = 0; while(timeout--) { /* * Turn this into a schedule() sleep once I'm sure * about locking issues (2.5 work ?). */ mdelay(1); stat = hwif->tp_ops->read_status(hwif); if ((stat & BUSY_STAT) == 0) return 0; /* * Assume a value of 0xff means nothing is connected to * the interface and it doesn't implement the pull-down * resistor on D7. */ if (stat == 0xff) return -ENODEV; touch_softlockup_watchdog(); touch_nmi_watchdog(); } return -EBUSY; } EXPORT_SYMBOL_GPL(ide_wait_not_busy);