// SPDX-License-Identifier: GPL-2.0-or-later /* * w83627hf.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (c) 1998 - 2003 Frodo Looijaard , * Philip Edelbrock , * and Mark Studebaker * Ported to 2.6 by Bernhard C. Schrenk * Copyright (c) 2007 - 1012 Jean Delvare */ /* * Supports following chips: * * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA * w83627hf 9 3 2 3 0x20 0x5ca3 no yes(LPC) * w83627thf 7 3 3 3 0x90 0x5ca3 no yes(LPC) * w83637hf 7 3 3 3 0x80 0x5ca3 no yes(LPC) * w83687thf 7 3 3 3 0x90 0x5ca3 no yes(LPC) * w83697hf 8 2 2 2 0x60 0x5ca3 no yes(LPC) * * For other winbond chips, and for i2c support in the above chips, * use w83781d.c. * * Note: automatic ("cruise") fan control for 697, 637 & 627thf not * supported yet. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lm75.h" static struct platform_device *pdev; #define DRVNAME "w83627hf" enum chips { w83627hf, w83627thf, w83697hf, w83637hf, w83687thf }; struct w83627hf_sio_data { enum chips type; int sioaddr; }; static u8 force_i2c = 0x1f; module_param(force_i2c, byte, 0); MODULE_PARM_DESC(force_i2c, "Initialize the i2c address of the sensors"); static bool init = 1; module_param(init, bool, 0); MODULE_PARM_DESC(init, "Set to zero to bypass chip initialization"); static unsigned short force_id; module_param(force_id, ushort, 0); MODULE_PARM_DESC(force_id, "Override the detected device ID"); /* modified from kernel/include/traps.c */ #define DEV 0x07 /* Register: Logical device select */ /* logical device numbers for superio_select (below) */ #define W83627HF_LD_FDC 0x00 #define W83627HF_LD_PRT 0x01 #define W83627HF_LD_UART1 0x02 #define W83627HF_LD_UART2 0x03 #define W83627HF_LD_KBC 0x05 #define W83627HF_LD_CIR 0x06 /* w83627hf only */ #define W83627HF_LD_GAME 0x07 #define W83627HF_LD_MIDI 0x07 #define W83627HF_LD_GPIO1 0x07 #define W83627HF_LD_GPIO5 0x07 /* w83627thf only */ #define W83627HF_LD_GPIO2 0x08 #define W83627HF_LD_GPIO3 0x09 #define W83627HF_LD_GPIO4 0x09 /* w83627thf only */ #define W83627HF_LD_ACPI 0x0a #define W83627HF_LD_HWM 0x0b #define DEVID 0x20 /* Register: Device ID */ #define W83627THF_GPIO5_EN 0x30 /* w83627thf only */ #define W83627THF_GPIO5_IOSR 0xf3 /* w83627thf only */ #define W83627THF_GPIO5_DR 0xf4 /* w83627thf only */ #define W83687THF_VID_EN 0x29 /* w83687thf only */ #define W83687THF_VID_CFG 0xF0 /* w83687thf only */ #define W83687THF_VID_DATA 0xF1 /* w83687thf only */ static inline void superio_outb(struct w83627hf_sio_data *sio, int reg, int val) { outb(reg, sio->sioaddr); outb(val, sio->sioaddr + 1); } static inline int superio_inb(struct w83627hf_sio_data *sio, int reg) { outb(reg, sio->sioaddr); return inb(sio->sioaddr + 1); } static inline void superio_select(struct w83627hf_sio_data *sio, int ld) { outb(DEV, sio->sioaddr); outb(ld, sio->sioaddr + 1); } static inline int superio_enter(struct w83627hf_sio_data *sio) { if (!request_muxed_region(sio->sioaddr, 2, DRVNAME)) return -EBUSY; outb(0x87, sio->sioaddr); outb(0x87, sio->sioaddr); return 0; } static inline void superio_exit(struct w83627hf_sio_data *sio) { outb(0xAA, sio->sioaddr); release_region(sio->sioaddr, 2); } #define W627_DEVID 0x52 #define W627THF_DEVID 0x82 #define W697_DEVID 0x60 #define W637_DEVID 0x70 #define W687THF_DEVID 0x85 #define WINB_ACT_REG 0x30 #define WINB_BASE_REG 0x60 /* Constants specified below */ /* Alignment of the base address */ #define WINB_ALIGNMENT ~7 /* Offset & size of I/O region we are interested in */ #define WINB_REGION_OFFSET 5 #define WINB_REGION_SIZE 2 /* Where are the sensors address/data registers relative to the region offset */ #define W83781D_ADDR_REG_OFFSET 0 #define W83781D_DATA_REG_OFFSET 1 /* The W83781D registers */ /* The W83782D registers for nr=7,8 are in bank 5 */ #define W83781D_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \ (0x554 + (((nr) - 7) * 2))) #define W83781D_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \ (0x555 + (((nr) - 7) * 2))) #define W83781D_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \ (0x550 + (nr) - 7)) /* nr:0-2 for fans:1-3 */ #define W83627HF_REG_FAN_MIN(nr) (0x3b + (nr)) #define W83627HF_REG_FAN(nr) (0x28 + (nr)) #define W83627HF_REG_TEMP2_CONFIG 0x152 #define W83627HF_REG_TEMP3_CONFIG 0x252 /* these are zero-based, unlike config constants above */ static const u16 w83627hf_reg_temp[] = { 0x27, 0x150, 0x250 }; static const u16 w83627hf_reg_temp_hyst[] = { 0x3A, 0x153, 0x253 }; static const u16 w83627hf_reg_temp_over[] = { 0x39, 0x155, 0x255 }; #define W83781D_REG_BANK 0x4E #define W83781D_REG_CONFIG 0x40 #define W83781D_REG_ALARM1 0x459 #define W83781D_REG_ALARM2 0x45A #define W83781D_REG_ALARM3 0x45B #define W83781D_REG_BEEP_CONFIG 0x4D #define W83781D_REG_BEEP_INTS1 0x56 #define W83781D_REG_BEEP_INTS2 0x57 #define W83781D_REG_BEEP_INTS3 0x453 #define W83781D_REG_VID_FANDIV 0x47 #define W83781D_REG_CHIPID 0x49 #define W83781D_REG_WCHIPID 0x58 #define W83781D_REG_CHIPMAN 0x4F #define W83781D_REG_PIN 0x4B #define W83781D_REG_VBAT 0x5D #define W83627HF_REG_PWM1 0x5A #define W83627HF_REG_PWM2 0x5B static const u8 W83627THF_REG_PWM_ENABLE[] = { 0x04, /* FAN 1 mode */ 0x04, /* FAN 2 mode */ 0x12, /* FAN AUX mode */ }; static const u8 W83627THF_PWM_ENABLE_SHIFT[] = { 2, 4, 1 }; #define W83627THF_REG_PWM1 0x01 /* 697HF/637HF/687THF too */ #define W83627THF_REG_PWM2 0x03 /* 697HF/637HF/687THF too */ #define W83627THF_REG_PWM3 0x11 /* 637HF/687THF too */ #define W83627THF_REG_VRM_OVT_CFG 0x18 /* 637HF/687THF too */ static const u8 regpwm_627hf[] = { W83627HF_REG_PWM1, W83627HF_REG_PWM2 }; static const u8 regpwm[] = { W83627THF_REG_PWM1, W83627THF_REG_PWM2, W83627THF_REG_PWM3 }; #define W836X7HF_REG_PWM(type, nr) (((type) == w83627hf) ? \ regpwm_627hf[nr] : regpwm[nr]) #define W83627HF_REG_PWM_FREQ 0x5C /* Only for the 627HF */ #define W83637HF_REG_PWM_FREQ1 0x00 /* 697HF/687THF too */ #define W83637HF_REG_PWM_FREQ2 0x02 /* 697HF/687THF too */ #define W83637HF_REG_PWM_FREQ3 0x10 /* 687THF too */ static const u8 W83637HF_REG_PWM_FREQ[] = { W83637HF_REG_PWM_FREQ1, W83637HF_REG_PWM_FREQ2, W83637HF_REG_PWM_FREQ3 }; #define W83627HF_BASE_PWM_FREQ 46870 #define W83781D_REG_I2C_ADDR 0x48 #define W83781D_REG_I2C_SUBADDR 0x4A /* Sensor selection */ #define W83781D_REG_SCFG1 0x5D static const u8 BIT_SCFG1[] = { 0x02, 0x04, 0x08 }; #define W83781D_REG_SCFG2 0x59 static const u8 BIT_SCFG2[] = { 0x10, 0x20, 0x40 }; #define W83781D_DEFAULT_BETA 3435 /* * Conversions. Limit checking is only done on the TO_REG * variants. Note that you should be a bit careful with which arguments * these macros are called: arguments may be evaluated more than once. * Fixing this is just not worth it. */ #define IN_TO_REG(val) (clamp_val((((val) + 8) / 16), 0, 255)) #define IN_FROM_REG(val) ((val) * 16) static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 255; rpm = clamp_val(rpm, 1, 1000000); return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } #define TEMP_MIN (-128000) #define TEMP_MAX ( 127000) /* * TEMP: 0.001C/bit (-128C to +127C) * REG: 1C/bit, two's complement */ static u8 TEMP_TO_REG(long temp) { int ntemp = clamp_val(temp, TEMP_MIN, TEMP_MAX); ntemp += (ntemp < 0 ? -500 : 500); return (u8)(ntemp / 1000); } static int TEMP_FROM_REG(u8 reg) { return (s8)reg * 1000; } #define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==255?0:1350000/((val)*(div))) #define PWM_TO_REG(val) (clamp_val((val), 0, 255)) static inline unsigned long pwm_freq_from_reg_627hf(u8 reg) { unsigned long freq; freq = W83627HF_BASE_PWM_FREQ >> reg; return freq; } static inline u8 pwm_freq_to_reg_627hf(unsigned long val) { u8 i; /* * Only 5 dividers (1 2 4 8 16) * Search for the nearest available frequency */ for (i = 0; i < 4; i++) { if (val > (((W83627HF_BASE_PWM_FREQ >> i) + (W83627HF_BASE_PWM_FREQ >> (i+1))) / 2)) break; } return i; } static inline unsigned long pwm_freq_from_reg(u8 reg) { /* Clock bit 8 -> 180 kHz or 24 MHz */ unsigned long clock = (reg & 0x80) ? 180000UL : 24000000UL; reg &= 0x7f; /* This should not happen but anyway... */ if (reg == 0) reg++; return clock / (reg << 8); } static inline u8 pwm_freq_to_reg(unsigned long val) { /* Minimum divider value is 0x01 and maximum is 0x7F */ if (val >= 93750) /* The highest we can do */ return 0x01; if (val >= 720) /* Use 24 MHz clock */ return 24000000UL / (val << 8); if (val < 6) /* The lowest we can do */ return 0xFF; else /* Use 180 kHz clock */ return 0x80 | (180000UL / (val << 8)); } #define BEEP_MASK_FROM_REG(val) ((val) & 0xff7fff) #define BEEP_MASK_TO_REG(val) ((val) & 0xff7fff) #define DIV_FROM_REG(val) (1 << (val)) static inline u8 DIV_TO_REG(long val) { int i; val = clamp_val(val, 1, 128) >> 1; for (i = 0; i < 7; i++) { if (val == 0) break; val >>= 1; } return (u8)i; } /* * For each registered chip, we need to keep some data in memory. * The structure is dynamically allocated. */ struct w83627hf_data { unsigned short addr; const char *name; struct device *hwmon_dev; struct mutex lock; enum chips type; struct mutex update_lock; bool valid; /* true if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[9]; /* Register value */ u8 in_max[9]; /* Register value */ u8 in_min[9]; /* Register value */ u8 fan[3]; /* Register value */ u8 fan_min[3]; /* Register value */ u16 temp[3]; /* Register value */ u16 temp_max[3]; /* Register value */ u16 temp_max_hyst[3]; /* Register value */ u8 fan_div[3]; /* Register encoding, shifted right */ u8 vid; /* Register encoding, combined */ u32 alarms; /* Register encoding, combined */ u32 beep_mask; /* Register encoding, combined */ u8 pwm[3]; /* Register value */ u8 pwm_enable[3]; /* 1 = manual * 2 = thermal cruise (also called SmartFan I) * 3 = fan speed cruise */ u8 pwm_freq[3]; /* Register value */ u16 sens[3]; /* 1 = pentium diode; 2 = 3904 diode; * 4 = thermistor */ u8 vrm; u8 vrm_ovt; /* Register value, 627THF/637HF/687THF only */ #ifdef CONFIG_PM /* Remember extra register values over suspend/resume */ u8 scfg1; u8 scfg2; #endif }; /* Registers 0x50-0x5f are banked */ static inline void w83627hf_set_bank(struct w83627hf_data *data, u16 reg) { if ((reg & 0x00f0) == 0x50) { outb_p(W83781D_REG_BANK, data->addr + W83781D_ADDR_REG_OFFSET); outb_p(reg >> 8, data->addr + W83781D_DATA_REG_OFFSET); } } /* Not strictly necessary, but play it safe for now */ static inline void w83627hf_reset_bank(struct w83627hf_data *data, u16 reg) { if (reg & 0xff00) { outb_p(W83781D_REG_BANK, data->addr + W83781D_ADDR_REG_OFFSET); outb_p(0, data->addr + W83781D_DATA_REG_OFFSET); } } static int w83627hf_read_value(struct w83627hf_data *data, u16 reg) { int res, word_sized; mutex_lock(&data->lock); word_sized = (((reg & 0xff00) == 0x100) || ((reg & 0xff00) == 0x200)) && (((reg & 0x00ff) == 0x50) || ((reg & 0x00ff) == 0x53) || ((reg & 0x00ff) == 0x55)); w83627hf_set_bank(data, reg); outb_p(reg & 0xff, data->addr + W83781D_ADDR_REG_OFFSET); res = inb_p(data->addr + W83781D_DATA_REG_OFFSET); if (word_sized) { outb_p((reg & 0xff) + 1, data->addr + W83781D_ADDR_REG_OFFSET); res = (res << 8) + inb_p(data->addr + W83781D_DATA_REG_OFFSET); } w83627hf_reset_bank(data, reg); mutex_unlock(&data->lock); return res; } static int w83627hf_write_value(struct w83627hf_data *data, u16 reg, u16 value) { int word_sized; mutex_lock(&data->lock); word_sized = (((reg & 0xff00) == 0x100) || ((reg & 0xff00) == 0x200)) && (((reg & 0x00ff) == 0x53) || ((reg & 0x00ff) == 0x55)); w83627hf_set_bank(data, reg); outb_p(reg & 0xff, data->addr + W83781D_ADDR_REG_OFFSET); if (word_sized) { outb_p(value >> 8, data->addr + W83781D_DATA_REG_OFFSET); outb_p((reg & 0xff) + 1, data->addr + W83781D_ADDR_REG_OFFSET); } outb_p(value & 0xff, data->addr + W83781D_DATA_REG_OFFSET); w83627hf_reset_bank(data, reg); mutex_unlock(&data->lock); return 0; } static void w83627hf_update_fan_div(struct w83627hf_data *data) { int reg; reg = w83627hf_read_value(data, W83781D_REG_VID_FANDIV); data->fan_div[0] = (reg >> 4) & 0x03; data->fan_div[1] = (reg >> 6) & 0x03; if (data->type != w83697hf) { data->fan_div[2] = (w83627hf_read_value(data, W83781D_REG_PIN) >> 6) & 0x03; } reg = w83627hf_read_value(data, W83781D_REG_VBAT); data->fan_div[0] |= (reg >> 3) & 0x04; data->fan_div[1] |= (reg >> 4) & 0x04; if (data->type != w83697hf) data->fan_div[2] |= (reg >> 5) & 0x04; } static struct w83627hf_data *w83627hf_update_device(struct device *dev) { struct w83627hf_data *data = dev_get_drvdata(dev); int i, num_temps = (data->type == w83697hf) ? 2 : 3; int num_pwms = (data->type == w83697hf) ? 2 : 3; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { for (i = 0; i <= 8; i++) { /* skip missing sensors */ if (((data->type == w83697hf) && (i == 1)) || ((data->type != w83627hf && data->type != w83697hf) && (i == 5 || i == 6))) continue; data->in[i] = w83627hf_read_value(data, W83781D_REG_IN(i)); data->in_min[i] = w83627hf_read_value(data, W83781D_REG_IN_MIN(i)); data->in_max[i] = w83627hf_read_value(data, W83781D_REG_IN_MAX(i)); } for (i = 0; i <= 2; i++) { data->fan[i] = w83627hf_read_value(data, W83627HF_REG_FAN(i)); data->fan_min[i] = w83627hf_read_value(data, W83627HF_REG_FAN_MIN(i)); } for (i = 0; i <= 2; i++) { u8 tmp = w83627hf_read_value(data, W836X7HF_REG_PWM(data->type, i)); /* bits 0-3 are reserved in 627THF */ if (data->type == w83627thf) tmp &= 0xf0; data->pwm[i] = tmp; if (i == 1 && (data->type == w83627hf || data->type == w83697hf)) break; } if (data->type == w83627hf) { u8 tmp = w83627hf_read_value(data, W83627HF_REG_PWM_FREQ); data->pwm_freq[0] = tmp & 0x07; data->pwm_freq[1] = (tmp >> 4) & 0x07; } else if (data->type != w83627thf) { for (i = 1; i <= 3; i++) { data->pwm_freq[i - 1] = w83627hf_read_value(data, W83637HF_REG_PWM_FREQ[i - 1]); if (i == 2 && (data->type == w83697hf)) break; } } if (data->type != w83627hf) { for (i = 0; i < num_pwms; i++) { u8 tmp = w83627hf_read_value(data, W83627THF_REG_PWM_ENABLE[i]); data->pwm_enable[i] = ((tmp >> W83627THF_PWM_ENABLE_SHIFT[i]) & 0x03) + 1; } } for (i = 0; i < num_temps; i++) { data->temp[i] = w83627hf_read_value( data, w83627hf_reg_temp[i]); data->temp_max[i] = w83627hf_read_value( data, w83627hf_reg_temp_over[i]); data->temp_max_hyst[i] = w83627hf_read_value( data, w83627hf_reg_temp_hyst[i]); } w83627hf_update_fan_div(data); data->alarms = w83627hf_read_value(data, W83781D_REG_ALARM1) | (w83627hf_read_value(data, W83781D_REG_ALARM2) << 8) | (w83627hf_read_value(data, W83781D_REG_ALARM3) << 16); i = w83627hf_read_value(data, W83781D_REG_BEEP_INTS2); data->beep_mask = (i << 8) | w83627hf_read_value(data, W83781D_REG_BEEP_INTS1) | w83627hf_read_value(data, W83781D_REG_BEEP_INTS3) << 16; data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } #ifdef CONFIG_PM static int w83627hf_suspend(struct device *dev) { struct w83627hf_data *data = w83627hf_update_device(dev); mutex_lock(&data->update_lock); data->scfg1 = w83627hf_read_value(data, W83781D_REG_SCFG1); data->scfg2 = w83627hf_read_value(data, W83781D_REG_SCFG2); mutex_unlock(&data->update_lock); return 0; } static int w83627hf_resume(struct device *dev) { struct w83627hf_data *data = dev_get_drvdata(dev); int i, num_temps = (data->type == w83697hf) ? 2 : 3; /* Restore limits */ mutex_lock(&data->update_lock); for (i = 0; i <= 8; i++) { /* skip missing sensors */ if (((data->type == w83697hf) && (i == 1)) || ((data->type != w83627hf && data->type != w83697hf) && (i == 5 || i == 6))) continue; w83627hf_write_value(data, W83781D_REG_IN_MAX(i), data->in_max[i]); w83627hf_write_value(data, W83781D_REG_IN_MIN(i), data->in_min[i]); } for (i = 0; i <= 2; i++) w83627hf_write_value(data, W83627HF_REG_FAN_MIN(i), data->fan_min[i]); for (i = 0; i < num_temps; i++) { w83627hf_write_value(data, w83627hf_reg_temp_over[i], data->temp_max[i]); w83627hf_write_value(data, w83627hf_reg_temp_hyst[i], data->temp_max_hyst[i]); } /* Fixup BIOS bugs */ if (data->type == w83627thf || data->type == w83637hf || data->type == w83687thf) w83627hf_write_value(data, W83627THF_REG_VRM_OVT_CFG, data->vrm_ovt); w83627hf_write_value(data, W83781D_REG_SCFG1, data->scfg1); w83627hf_write_value(data, W83781D_REG_SCFG2, data->scfg2); /* Force re-reading all values */ data->valid = false; mutex_unlock(&data->update_lock); return 0; } static const struct dev_pm_ops w83627hf_dev_pm_ops = { .suspend = w83627hf_suspend, .resume = w83627hf_resume, }; #define W83627HF_DEV_PM_OPS (&w83627hf_dev_pm_ops) #else #define W83627HF_DEV_PM_OPS NULL #endif /* CONFIG_PM */ static int w83627thf_read_gpio5(struct platform_device *pdev) { struct w83627hf_sio_data *sio_data = dev_get_platdata(&pdev->dev); int res = 0xff, sel; if (superio_enter(sio_data)) { /* * Some other driver reserved the address space for itself. * We don't want to fail driver instantiation because of that, * so display a warning and keep going. */ dev_warn(&pdev->dev, "Can not read VID data: Failed to enable SuperIO access\n"); return res; } superio_select(sio_data, W83627HF_LD_GPIO5); res = 0xff; /* Make sure these GPIO pins are enabled */ if (!(superio_inb(sio_data, W83627THF_GPIO5_EN) & (1<<3))) { dev_dbg(&pdev->dev, "GPIO5 disabled, no VID function\n"); goto exit; } /* * Make sure the pins are configured for input * There must be at least five (VRM 9), and possibly 6 (VRM 10) */ sel = superio_inb(sio_data, W83627THF_GPIO5_IOSR) & 0x3f; if ((sel & 0x1f) != 0x1f) { dev_dbg(&pdev->dev, "GPIO5 not configured for VID " "function\n"); goto exit; } dev_info(&pdev->dev, "Reading VID from GPIO5\n"); res = superio_inb(sio_data, W83627THF_GPIO5_DR) & sel; exit: superio_exit(sio_data); return res; } static int w83687thf_read_vid(struct platform_device *pdev) { struct w83627hf_sio_data *sio_data = dev_get_platdata(&pdev->dev); int res = 0xff; if (superio_enter(sio_data)) { /* * Some other driver reserved the address space for itself. * We don't want to fail driver instantiation because of that, * so display a warning and keep going. */ dev_warn(&pdev->dev, "Can not read VID data: Failed to enable SuperIO access\n"); return res; } superio_select(sio_data, W83627HF_LD_HWM); /* Make sure these GPIO pins are enabled */ if (!(superio_inb(sio_data, W83687THF_VID_EN) & (1 << 2))) { dev_dbg(&pdev->dev, "VID disabled, no VID function\n"); goto exit; } /* Make sure the pins are configured for input */ if (!(superio_inb(sio_data, W83687THF_VID_CFG) & (1 << 4))) { dev_dbg(&pdev->dev, "VID configured as output, " "no VID function\n"); goto exit; } res = superio_inb(sio_data, W83687THF_VID_DATA) & 0x3f; exit: superio_exit(sio_data); return res; } static void w83627hf_init_device(struct platform_device *pdev) { struct w83627hf_data *data = platform_get_drvdata(pdev); int i; enum chips type = data->type; u8 tmp; /* Minimize conflicts with other winbond i2c-only clients... */ /* disable i2c subclients... how to disable main i2c client?? */ /* force i2c address to relatively uncommon address */ if (type == w83627hf) { w83627hf_write_value(data, W83781D_REG_I2C_SUBADDR, 0x89); w83627hf_write_value(data, W83781D_REG_I2C_ADDR, force_i2c); } /* Read VID only once */ if (type == w83627hf || type == w83637hf) { int lo = w83627hf_read_value(data, W83781D_REG_VID_FANDIV); int hi = w83627hf_read_value(data, W83781D_REG_CHIPID); data->vid = (lo & 0x0f) | ((hi & 0x01) << 4); } else if (type == w83627thf) { data->vid = w83627thf_read_gpio5(pdev); } else if (type == w83687thf) { data->vid = w83687thf_read_vid(pdev); } /* Read VRM & OVT Config only once */ if (type == w83627thf || type == w83637hf || type == w83687thf) { data->vrm_ovt = w83627hf_read_value(data, W83627THF_REG_VRM_OVT_CFG); } tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); for (i = 1; i <= 3; i++) { if (!(tmp & BIT_SCFG1[i - 1])) { data->sens[i - 1] = 4; } else { if (w83627hf_read_value (data, W83781D_REG_SCFG2) & BIT_SCFG2[i - 1]) data->sens[i - 1] = 1; else data->sens[i - 1] = 2; } if ((type == w83697hf) && (i == 2)) break; } if(init) { /* Enable temp2 */ tmp = w83627hf_read_value(data, W83627HF_REG_TEMP2_CONFIG); if (tmp & 0x01) { dev_warn(&pdev->dev, "Enabling temp2, readings " "might not make sense\n"); w83627hf_write_value(data, W83627HF_REG_TEMP2_CONFIG, tmp & 0xfe); } /* Enable temp3 */ if (type != w83697hf) { tmp = w83627hf_read_value(data, W83627HF_REG_TEMP3_CONFIG); if (tmp & 0x01) { dev_warn(&pdev->dev, "Enabling temp3, " "readings might not make sense\n"); w83627hf_write_value(data, W83627HF_REG_TEMP3_CONFIG, tmp & 0xfe); } } } /* Start monitoring */ w83627hf_write_value(data, W83781D_REG_CONFIG, (w83627hf_read_value(data, W83781D_REG_CONFIG) & 0xf7) | 0x01); /* Enable VBAT monitoring if needed */ tmp = w83627hf_read_value(data, W83781D_REG_VBAT); if (!(tmp & 0x01)) w83627hf_write_value(data, W83781D_REG_VBAT, tmp | 0x01); } /* use a different set of functions for in0 */ static ssize_t show_in_0(struct w83627hf_data *data, char *buf, u8 reg) { long in0; if ((data->vrm_ovt & 0x01) && (w83627thf == data->type || w83637hf == data->type || w83687thf == data->type)) /* use VRM9 calculation */ in0 = (long)((reg * 488 + 70000 + 50) / 100); else /* use VRM8 (standard) calculation */ in0 = (long)IN_FROM_REG(reg); return sprintf(buf,"%ld\n", in0); } static ssize_t in0_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return show_in_0(data, buf, data->in[0]); } static DEVICE_ATTR_RO(in0_input); static ssize_t in0_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return show_in_0(data, buf, data->in_min[0]); } static ssize_t in0_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if ((data->vrm_ovt & 0x01) && (w83627thf == data->type || w83637hf == data->type || w83687thf == data->type)) /* use VRM9 calculation */ data->in_min[0] = clamp_val(((val * 100) - 70000 + 244) / 488, 0, 255); else /* use VRM8 (standard) calculation */ data->in_min[0] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MIN(0), data->in_min[0]); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(in0_min); static ssize_t in0_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return show_in_0(data, buf, data->in_max[0]); } static ssize_t in0_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if ((data->vrm_ovt & 0x01) && (w83627thf == data->type || w83637hf == data->type || w83687thf == data->type)) /* use VRM9 calculation */ data->in_max[0] = clamp_val(((val * 100) - 70000 + 244) / 488, 0, 255); else /* use VRM8 (standard) calculation */ data->in_max[0] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MAX(0), data->in_max[0]); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(in0_max); static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); int bitnr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0); static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1); static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2); static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3); static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8); static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9); static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 10); static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 16); static SENSOR_DEVICE_ATTR_RO(in8_alarm, alarm, 17); static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7); static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 11); static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5); static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 13); static ssize_t beep_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); int bitnr = to_sensor_dev_attr(attr)->index; return sprintf(buf, "%u\n", (data->beep_mask >> bitnr) & 1); } static ssize_t beep_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); int bitnr = to_sensor_dev_attr(attr)->index; u8 reg; unsigned long bit; int err; err = kstrtoul(buf, 10, &bit); if (err) return err; if (bit & ~1) return -EINVAL; mutex_lock(&data->update_lock); if (bit) data->beep_mask |= (1 << bitnr); else data->beep_mask &= ~(1 << bitnr); if (bitnr < 8) { reg = w83627hf_read_value(data, W83781D_REG_BEEP_INTS1); if (bit) reg |= (1 << bitnr); else reg &= ~(1 << bitnr); w83627hf_write_value(data, W83781D_REG_BEEP_INTS1, reg); } else if (bitnr < 16) { reg = w83627hf_read_value(data, W83781D_REG_BEEP_INTS2); if (bit) reg |= (1 << (bitnr - 8)); else reg &= ~(1 << (bitnr - 8)); w83627hf_write_value(data, W83781D_REG_BEEP_INTS2, reg); } else { reg = w83627hf_read_value(data, W83781D_REG_BEEP_INTS3); if (bit) reg |= (1 << (bitnr - 16)); else reg &= ~(1 << (bitnr - 16)); w83627hf_write_value(data, W83781D_REG_BEEP_INTS3, reg); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(in0_beep, beep, 0); static SENSOR_DEVICE_ATTR_RW(in1_beep, beep, 1); static SENSOR_DEVICE_ATTR_RW(in2_beep, beep, 2); static SENSOR_DEVICE_ATTR_RW(in3_beep, beep, 3); static SENSOR_DEVICE_ATTR_RW(in4_beep, beep, 8); static SENSOR_DEVICE_ATTR_RW(in5_beep, beep, 9); static SENSOR_DEVICE_ATTR_RW(in6_beep, beep, 10); static SENSOR_DEVICE_ATTR_RW(in7_beep, beep, 16); static SENSOR_DEVICE_ATTR_RW(in8_beep, beep, 17); static SENSOR_DEVICE_ATTR_RW(fan1_beep, beep, 6); static SENSOR_DEVICE_ATTR_RW(fan2_beep, beep, 7); static SENSOR_DEVICE_ATTR_RW(fan3_beep, beep, 11); static SENSOR_DEVICE_ATTR_RW(temp1_beep, beep, 4); static SENSOR_DEVICE_ATTR_RW(temp2_beep, beep, 5); static SENSOR_DEVICE_ATTR_RW(temp3_beep, beep, 13); static SENSOR_DEVICE_ATTR_RW(beep_enable, beep, 15); static ssize_t in_input_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long)IN_FROM_REG(data->in[nr])); } static ssize_t in_min_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long)IN_FROM_REG(data->in_min[nr])); } static ssize_t in_min_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_min[nr] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MIN(nr), data->in_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t in_max_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long)IN_FROM_REG(data->in_max[nr])); } static ssize_t in_max_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->in_max[nr] = IN_TO_REG(val); w83627hf_write_value(data, W83781D_REG_IN_MAX(nr), data->in_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(in1_input, in_input, 1); static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1); static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1); static SENSOR_DEVICE_ATTR_RO(in2_input, in_input, 2); static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2); static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2); static SENSOR_DEVICE_ATTR_RO(in3_input, in_input, 3); static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3); static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3); static SENSOR_DEVICE_ATTR_RO(in4_input, in_input, 4); static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4); static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4); static SENSOR_DEVICE_ATTR_RO(in5_input, in_input, 5); static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5); static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5); static SENSOR_DEVICE_ATTR_RO(in6_input, in_input, 6); static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6); static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6); static SENSOR_DEVICE_ATTR_RO(in7_input, in_input, 7); static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7); static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7); static SENSOR_DEVICE_ATTR_RO(in8_input, in_input, 8); static SENSOR_DEVICE_ATTR_RW(in8_min, in_min, 8); static SENSOR_DEVICE_ATTR_RW(in8_max, in_max, 8); static ssize_t fan_input_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", FAN_FROM_REG(data->fan[nr], (long)DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t fan_min_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", FAN_FROM_REG(data->fan_min[nr], (long)DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t fan_min_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); w83627hf_write_value(data, W83627HF_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(fan1_input, fan_input, 0); static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); static SENSOR_DEVICE_ATTR_RO(fan2_input, fan_input, 1); static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); static SENSOR_DEVICE_ATTR_RO(fan3_input, fan_input, 2); static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2); static ssize_t fan_div_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) DIV_FROM_REG(data->fan_div[nr])); } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t fan_div_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long min; u8 reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* Save fan_min */ min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); data->fan_div[nr] = DIV_TO_REG(val); reg = (w83627hf_read_value(data, nr==2 ? W83781D_REG_PIN : W83781D_REG_VID_FANDIV) & (nr==0 ? 0xcf : 0x3f)) | ((data->fan_div[nr] & 0x03) << (nr==0 ? 4 : 6)); w83627hf_write_value(data, nr==2 ? W83781D_REG_PIN : W83781D_REG_VID_FANDIV, reg); reg = (w83627hf_read_value(data, W83781D_REG_VBAT) & ~(1 << (5 + nr))) | ((data->fan_div[nr] & 0x04) << (3 + nr)); w83627hf_write_value(data, W83781D_REG_VBAT, reg); /* Restore fan_min */ data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); w83627hf_write_value(data, W83627HF_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); static SENSOR_DEVICE_ATTR_RW(fan3_div, fan_div, 2); static ssize_t temp_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); u16 tmp = data->temp[nr]; return sprintf(buf, "%ld\n", (nr) ? (long) LM75_TEMP_FROM_REG(tmp) : (long) TEMP_FROM_REG(tmp)); } static ssize_t temp_max_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); u16 tmp = data->temp_max[nr]; return sprintf(buf, "%ld\n", (nr) ? (long) LM75_TEMP_FROM_REG(tmp) : (long) TEMP_FROM_REG(tmp)); } static ssize_t temp_max_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); u16 tmp; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; tmp = (nr) ? LM75_TEMP_TO_REG(val) : TEMP_TO_REG(val); mutex_lock(&data->update_lock); data->temp_max[nr] = tmp; w83627hf_write_value(data, w83627hf_reg_temp_over[nr], tmp); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_max_hyst_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); u16 tmp = data->temp_max_hyst[nr]; return sprintf(buf, "%ld\n", (nr) ? (long) LM75_TEMP_FROM_REG(tmp) : (long) TEMP_FROM_REG(tmp)); } static ssize_t temp_max_hyst_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); u16 tmp; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; tmp = (nr) ? LM75_TEMP_TO_REG(val) : TEMP_TO_REG(val); mutex_lock(&data->update_lock); data->temp_max_hyst[nr] = tmp; w83627hf_write_value(data, w83627hf_reg_temp_hyst[nr], tmp); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_max_hyst, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_max_hyst, 1); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_max_hyst, 2); static ssize_t temp_type_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) data->sens[nr]); } static ssize_t temp_type_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long val; u32 tmp; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); switch (val) { case 1: /* PII/Celeron diode */ tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); w83627hf_write_value(data, W83781D_REG_SCFG1, tmp | BIT_SCFG1[nr]); tmp = w83627hf_read_value(data, W83781D_REG_SCFG2); w83627hf_write_value(data, W83781D_REG_SCFG2, tmp | BIT_SCFG2[nr]); data->sens[nr] = val; break; case 2: /* 3904 */ tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); w83627hf_write_value(data, W83781D_REG_SCFG1, tmp | BIT_SCFG1[nr]); tmp = w83627hf_read_value(data, W83781D_REG_SCFG2); w83627hf_write_value(data, W83781D_REG_SCFG2, tmp & ~BIT_SCFG2[nr]); data->sens[nr] = val; break; case W83781D_DEFAULT_BETA: dev_warn(dev, "Sensor type %d is deprecated, please use 4 " "instead\n", W83781D_DEFAULT_BETA); fallthrough; case 4: /* thermistor */ tmp = w83627hf_read_value(data, W83781D_REG_SCFG1); w83627hf_write_value(data, W83781D_REG_SCFG1, tmp & ~BIT_SCFG1[nr]); data->sens[nr] = val; break; default: dev_err(dev, "Invalid sensor type %ld; must be 1, 2, or 4\n", (long) val); break; } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(temp1_type, temp_type, 0); static SENSOR_DEVICE_ATTR_RW(temp2_type, temp_type, 1); static SENSOR_DEVICE_ATTR_RW(temp3_type, temp_type, 2); static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) data->alarms); } static DEVICE_ATTR_RO(alarms); #define VIN_UNIT_ATTRS(_X_) \ &sensor_dev_attr_in##_X_##_input.dev_attr.attr, \ &sensor_dev_attr_in##_X_##_min.dev_attr.attr, \ &sensor_dev_attr_in##_X_##_max.dev_attr.attr, \ &sensor_dev_attr_in##_X_##_alarm.dev_attr.attr, \ &sensor_dev_attr_in##_X_##_beep.dev_attr.attr #define FAN_UNIT_ATTRS(_X_) \ &sensor_dev_attr_fan##_X_##_input.dev_attr.attr, \ &sensor_dev_attr_fan##_X_##_min.dev_attr.attr, \ &sensor_dev_attr_fan##_X_##_div.dev_attr.attr, \ &sensor_dev_attr_fan##_X_##_alarm.dev_attr.attr, \ &sensor_dev_attr_fan##_X_##_beep.dev_attr.attr #define TEMP_UNIT_ATTRS(_X_) \ &sensor_dev_attr_temp##_X_##_input.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_max.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_max_hyst.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_type.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_alarm.dev_attr.attr, \ &sensor_dev_attr_temp##_X_##_beep.dev_attr.attr static ssize_t beep_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long)BEEP_MASK_FROM_REG(data->beep_mask)); } static ssize_t beep_mask_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* preserve beep enable */ data->beep_mask = (data->beep_mask & 0x8000) | BEEP_MASK_TO_REG(val); w83627hf_write_value(data, W83781D_REG_BEEP_INTS1, data->beep_mask & 0xff); w83627hf_write_value(data, W83781D_REG_BEEP_INTS3, ((data->beep_mask) >> 16) & 0xff); w83627hf_write_value(data, W83781D_REG_BEEP_INTS2, (data->beep_mask >> 8) & 0xff); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(beep_mask); static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) data->pwm[nr]); } static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if (data->type == w83627thf) { /* bits 0-3 are reserved in 627THF */ data->pwm[nr] = PWM_TO_REG(val) & 0xf0; w83627hf_write_value(data, W836X7HF_REG_PWM(data->type, nr), data->pwm[nr] | (w83627hf_read_value(data, W836X7HF_REG_PWM(data->type, nr)) & 0x0f)); } else { data->pwm[nr] = PWM_TO_REG(val); w83627hf_write_value(data, W836X7HF_REG_PWM(data->type, nr), data->pwm[nr]); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0); static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1); static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2); static ssize_t name_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct w83627hf_data *data = dev_get_drvdata(dev); return sprintf(buf, "%s\n", data->name); } static DEVICE_ATTR_RO(name); static struct attribute *w83627hf_attributes[] = { &dev_attr_in0_input.attr, &dev_attr_in0_min.attr, &dev_attr_in0_max.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in0_beep.dev_attr.attr, VIN_UNIT_ATTRS(2), VIN_UNIT_ATTRS(3), VIN_UNIT_ATTRS(4), VIN_UNIT_ATTRS(7), VIN_UNIT_ATTRS(8), FAN_UNIT_ATTRS(1), FAN_UNIT_ATTRS(2), TEMP_UNIT_ATTRS(1), TEMP_UNIT_ATTRS(2), &dev_attr_alarms.attr, &sensor_dev_attr_beep_enable.dev_attr.attr, &dev_attr_beep_mask.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &dev_attr_name.attr, NULL }; static const struct attribute_group w83627hf_group = { .attrs = w83627hf_attributes, }; static ssize_t pwm_freq_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); if (data->type == w83627hf) return sprintf(buf, "%ld\n", pwm_freq_from_reg_627hf(data->pwm_freq[nr])); else return sprintf(buf, "%ld\n", pwm_freq_from_reg(data->pwm_freq[nr])); } static ssize_t pwm_freq_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); static const u8 mask[]={0xF8, 0x8F}; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if (data->type == w83627hf) { data->pwm_freq[nr] = pwm_freq_to_reg_627hf(val); w83627hf_write_value(data, W83627HF_REG_PWM_FREQ, (data->pwm_freq[nr] << (nr*4)) | (w83627hf_read_value(data, W83627HF_REG_PWM_FREQ) & mask[nr])); } else { data->pwm_freq[nr] = pwm_freq_to_reg(val); w83627hf_write_value(data, W83637HF_REG_PWM_FREQ[nr], data->pwm_freq[nr]); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2); static ssize_t cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%ld\n", (long) vid_from_reg(data->vid, data->vrm)); } static DEVICE_ATTR_RO(cpu0_vid); static ssize_t vrm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct w83627hf_data *data = dev_get_drvdata(dev); return sprintf(buf, "%ld\n", (long) data->vrm); } static ssize_t vrm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct w83627hf_data *data = dev_get_drvdata(dev); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 255) return -EINVAL; data->vrm = val; return count; } static DEVICE_ATTR_RW(vrm); static ssize_t pwm_enable_show(struct device *dev, struct device_attribute *devattr, char *buf) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = w83627hf_update_device(dev); return sprintf(buf, "%d\n", data->pwm_enable[nr]); } static ssize_t pwm_enable_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(devattr)->index; struct w83627hf_data *data = dev_get_drvdata(dev); u8 reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (!val || val > 3) /* modes 1, 2 and 3 are supported */ return -EINVAL; mutex_lock(&data->update_lock); data->pwm_enable[nr] = val; reg = w83627hf_read_value(data, W83627THF_REG_PWM_ENABLE[nr]); reg &= ~(0x03 << W83627THF_PWM_ENABLE_SHIFT[nr]); reg |= (val - 1) << W83627THF_PWM_ENABLE_SHIFT[nr]; w83627hf_write_value(data, W83627THF_REG_PWM_ENABLE[nr], reg); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2); static struct attribute *w83627hf_attributes_opt[] = { VIN_UNIT_ATTRS(1), VIN_UNIT_ATTRS(5), VIN_UNIT_ATTRS(6), FAN_UNIT_ATTRS(3), TEMP_UNIT_ATTRS(3), &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm1_freq.dev_attr.attr, &sensor_dev_attr_pwm2_freq.dev_attr.attr, &sensor_dev_attr_pwm3_freq.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, NULL }; static const struct attribute_group w83627hf_group_opt = { .attrs = w83627hf_attributes_opt, }; static int w83627hf_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct w83627hf_sio_data *sio_data = dev_get_platdata(dev); struct w83627hf_data *data; struct resource *res; int err, i; static const char *names[] = { "w83627hf", "w83627thf", "w83697hf", "w83637hf", "w83687thf", }; res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (!devm_request_region(dev, res->start, WINB_REGION_SIZE, DRVNAME)) { dev_err(dev, "Failed to request region 0x%lx-0x%lx\n", (unsigned long)res->start, (unsigned long)(res->start + WINB_REGION_SIZE - 1)); return -EBUSY; } data = devm_kzalloc(dev, sizeof(struct w83627hf_data), GFP_KERNEL); if (!data) return -ENOMEM; data->addr = res->start; data->type = sio_data->type; data->name = names[sio_data->type]; mutex_init(&data->lock); mutex_init(&data->update_lock); platform_set_drvdata(pdev, data); /* Initialize the chip */ w83627hf_init_device(pdev); /* A few vars need to be filled upon startup */ for (i = 0; i <= 2; i++) data->fan_min[i] = w83627hf_read_value( data, W83627HF_REG_FAN_MIN(i)); w83627hf_update_fan_div(data); /* Register common device attributes */ err = sysfs_create_group(&dev->kobj, &w83627hf_group); if (err) return err; /* Register chip-specific device attributes */ if (data->type == w83627hf || data->type == w83697hf) if ((err = device_create_file(dev, &sensor_dev_attr_in5_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in5_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in5_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in5_alarm.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in5_beep.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_alarm.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in6_beep.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm1_freq.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm2_freq.dev_attr))) goto error; if (data->type != w83697hf) if ((err = device_create_file(dev, &sensor_dev_attr_in1_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in1_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in1_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in1_alarm.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_in1_beep.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_min.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_div.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_alarm.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_fan3_beep.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_input.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_max.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_max_hyst.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_alarm.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_beep.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_temp3_type.dev_attr))) goto error; if (data->type != w83697hf && data->vid != 0xff) { /* Convert VID to voltage based on VRM */ data->vrm = vid_which_vrm(); if ((err = device_create_file(dev, &dev_attr_cpu0_vid)) || (err = device_create_file(dev, &dev_attr_vrm))) goto error; } if (data->type == w83627thf || data->type == w83637hf || data->type == w83687thf) { err = device_create_file(dev, &sensor_dev_attr_pwm3.dev_attr); if (err) goto error; } if (data->type == w83637hf || data->type == w83687thf) if ((err = device_create_file(dev, &sensor_dev_attr_pwm1_freq.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm2_freq.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm3_freq.dev_attr))) goto error; if (data->type != w83627hf) if ((err = device_create_file(dev, &sensor_dev_attr_pwm1_enable.dev_attr)) || (err = device_create_file(dev, &sensor_dev_attr_pwm2_enable.dev_attr))) goto error; if (data->type == w83627thf || data->type == w83637hf || data->type == w83687thf) { err = device_create_file(dev, &sensor_dev_attr_pwm3_enable.dev_attr); if (err) goto error; } data->hwmon_dev = hwmon_device_register(dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto error; } return 0; error: sysfs_remove_group(&dev->kobj, &w83627hf_group); sysfs_remove_group(&dev->kobj, &w83627hf_group_opt); return err; } static void w83627hf_remove(struct platform_device *pdev) { struct w83627hf_data *data = platform_get_drvdata(pdev); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&pdev->dev.kobj, &w83627hf_group); sysfs_remove_group(&pdev->dev.kobj, &w83627hf_group_opt); } static struct platform_driver w83627hf_driver = { .driver = { .name = DRVNAME, .pm = W83627HF_DEV_PM_OPS, }, .probe = w83627hf_probe, .remove = w83627hf_remove, }; static int __init w83627hf_find(int sioaddr, unsigned short *addr, struct w83627hf_sio_data *sio_data) { int err; u16 val; static __initconst char *const names[] = { "W83627HF", "W83627THF", "W83697HF", "W83637HF", "W83687THF", }; sio_data->sioaddr = sioaddr; err = superio_enter(sio_data); if (err) return err; err = -ENODEV; val = force_id ? force_id : superio_inb(sio_data, DEVID); switch (val) { case W627_DEVID: sio_data->type = w83627hf; break; case W627THF_DEVID: sio_data->type = w83627thf; break; case W697_DEVID: sio_data->type = w83697hf; break; case W637_DEVID: sio_data->type = w83637hf; break; case W687THF_DEVID: sio_data->type = w83687thf; break; case 0xff: /* No device at all */ goto exit; default: pr_debug(DRVNAME ": Unsupported chip (DEVID=0x%02x)\n", val); goto exit; } superio_select(sio_data, W83627HF_LD_HWM); val = (superio_inb(sio_data, WINB_BASE_REG) << 8) | superio_inb(sio_data, WINB_BASE_REG + 1); *addr = val & WINB_ALIGNMENT; if (*addr == 0) { pr_warn("Base address not set, skipping\n"); goto exit; } val = superio_inb(sio_data, WINB_ACT_REG); if (!(val & 0x01)) { pr_warn("Enabling HWM logical device\n"); superio_outb(sio_data, WINB_ACT_REG, val | 0x01); } err = 0; pr_info(DRVNAME ": Found %s chip at %#x\n", names[sio_data->type], *addr); exit: superio_exit(sio_data); return err; } static int __init w83627hf_device_add(unsigned short address, const struct w83627hf_sio_data *sio_data) { struct resource res = { .start = address + WINB_REGION_OFFSET, .end = address + WINB_REGION_OFFSET + WINB_REGION_SIZE - 1, .name = DRVNAME, .flags = IORESOURCE_IO, }; int err; err = acpi_check_resource_conflict(&res); if (err) goto exit; pdev = platform_device_alloc(DRVNAME, address); if (!pdev) { err = -ENOMEM; pr_err("Device allocation failed\n"); goto exit; } err = platform_device_add_resources(pdev, &res, 1); if (err) { pr_err("Device resource addition failed (%d)\n", err); goto exit_device_put; } err = platform_device_add_data(pdev, sio_data, sizeof(struct w83627hf_sio_data)); if (err) { pr_err("Platform data allocation failed\n"); goto exit_device_put; } err = platform_device_add(pdev); if (err) { pr_err("Device addition failed (%d)\n", err); goto exit_device_put; } return 0; exit_device_put: platform_device_put(pdev); exit: return err; } static int __init sensors_w83627hf_init(void) { int err; unsigned short address; struct w83627hf_sio_data sio_data; if (w83627hf_find(0x2e, &address, &sio_data) && w83627hf_find(0x4e, &address, &sio_data)) return -ENODEV; err = platform_driver_register(&w83627hf_driver); if (err) goto exit; /* Sets global pdev as a side effect */ err = w83627hf_device_add(address, &sio_data); if (err) goto exit_driver; return 0; exit_driver: platform_driver_unregister(&w83627hf_driver); exit: return err; } static void __exit sensors_w83627hf_exit(void) { platform_device_unregister(pdev); platform_driver_unregister(&w83627hf_driver); } MODULE_AUTHOR("Frodo Looijaard , " "Philip Edelbrock , " "and Mark Studebaker "); MODULE_DESCRIPTION("W83627HF driver"); MODULE_LICENSE("GPL"); module_init(sensors_w83627hf_init); module_exit(sensors_w83627hf_exit);