// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2011 Alexander Stein * * The LM95245 is a sensor chip made by TI / National Semiconductor. * It reports up to two temperatures (its own plus an external one). * * This driver is based on lm95241.c */ #include #include #include #include #include #include #include #include static const unsigned short normal_i2c[] = { 0x18, 0x19, 0x29, 0x4c, 0x4d, I2C_CLIENT_END }; /* LM95245 registers */ /* general registers */ #define LM95245_REG_RW_CONFIG1 0x03 #define LM95245_REG_RW_CONVERS_RATE 0x04 #define LM95245_REG_W_ONE_SHOT 0x0F /* diode configuration */ #define LM95245_REG_RW_CONFIG2 0xBF #define LM95245_REG_RW_REMOTE_OFFH 0x11 #define LM95245_REG_RW_REMOTE_OFFL 0x12 /* status registers */ #define LM95245_REG_R_STATUS1 0x02 #define LM95245_REG_R_STATUS2 0x33 /* limit registers */ #define LM95245_REG_RW_REMOTE_OS_LIMIT 0x07 #define LM95245_REG_RW_LOCAL_OS_TCRIT_LIMIT 0x20 #define LM95245_REG_RW_REMOTE_TCRIT_LIMIT 0x19 #define LM95245_REG_RW_COMMON_HYSTERESIS 0x21 /* temperature signed */ #define LM95245_REG_R_LOCAL_TEMPH_S 0x00 #define LM95245_REG_R_LOCAL_TEMPL_S 0x30 #define LM95245_REG_R_REMOTE_TEMPH_S 0x01 #define LM95245_REG_R_REMOTE_TEMPL_S 0x10 /* temperature unsigned */ #define LM95245_REG_R_REMOTE_TEMPH_U 0x31 #define LM95245_REG_R_REMOTE_TEMPL_U 0x32 /* id registers */ #define LM95245_REG_R_MAN_ID 0xFE #define LM95245_REG_R_CHIP_ID 0xFF /* LM95245 specific bitfields */ #define CFG_STOP 0x40 #define CFG_REMOTE_TCRIT_MASK 0x10 #define CFG_REMOTE_OS_MASK 0x08 #define CFG_LOCAL_TCRIT_MASK 0x04 #define CFG_LOCAL_OS_MASK 0x02 #define CFG2_OS_A0 0x40 #define CFG2_DIODE_FAULT_OS 0x20 #define CFG2_DIODE_FAULT_TCRIT 0x10 #define CFG2_REMOTE_TT 0x08 #define CFG2_REMOTE_FILTER_DIS 0x00 #define CFG2_REMOTE_FILTER_EN 0x06 /* conversation rate in ms */ #define RATE_CR0063 0x00 #define RATE_CR0364 0x01 #define RATE_CR1000 0x02 #define RATE_CR2500 0x03 #define STATUS1_ROS 0x10 #define STATUS1_DIODE_FAULT 0x04 #define STATUS1_RTCRIT 0x02 #define STATUS1_LOC 0x01 #define MANUFACTURER_ID 0x01 #define LM95235_REVISION 0xB1 #define LM95245_REVISION 0xB3 /* Client data (each client gets its own) */ struct lm95245_data { struct regmap *regmap; struct mutex update_lock; int interval; /* in msecs */ }; /* Conversions */ static int temp_from_reg_unsigned(u8 val_h, u8 val_l) { return val_h * 1000 + val_l * 1000 / 256; } static int temp_from_reg_signed(u8 val_h, u8 val_l) { if (val_h & 0x80) return (val_h - 0x100) * 1000; return temp_from_reg_unsigned(val_h, val_l); } static int lm95245_read_conversion_rate(struct lm95245_data *data) { unsigned int rate; int ret; ret = regmap_read(data->regmap, LM95245_REG_RW_CONVERS_RATE, &rate); if (ret < 0) return ret; switch (rate) { case RATE_CR0063: data->interval = 63; break; case RATE_CR0364: data->interval = 364; break; case RATE_CR1000: data->interval = 1000; break; case RATE_CR2500: default: data->interval = 2500; break; } return 0; } static int lm95245_set_conversion_rate(struct lm95245_data *data, long interval) { int ret, rate; if (interval <= 63) { interval = 63; rate = RATE_CR0063; } else if (interval <= 364) { interval = 364; rate = RATE_CR0364; } else if (interval <= 1000) { interval = 1000; rate = RATE_CR1000; } else { interval = 2500; rate = RATE_CR2500; } ret = regmap_write(data->regmap, LM95245_REG_RW_CONVERS_RATE, rate); if (ret < 0) return ret; data->interval = interval; return 0; } static int lm95245_read_temp(struct device *dev, u32 attr, int channel, long *val) { struct lm95245_data *data = dev_get_drvdata(dev); struct regmap *regmap = data->regmap; unsigned int regs[2]; unsigned int regval; u8 regvals[2]; int ret; switch (attr) { case hwmon_temp_input: regs[0] = channel ? LM95245_REG_R_REMOTE_TEMPL_S : LM95245_REG_R_LOCAL_TEMPL_S; regs[1] = channel ? LM95245_REG_R_REMOTE_TEMPH_S : LM95245_REG_R_LOCAL_TEMPH_S; ret = regmap_multi_reg_read(regmap, regs, regvals, 2); if (ret < 0) return ret; /* * Local temp is always signed. * Remote temp has both signed and unsigned data. * Use signed calculation for remote if signed bit is set * or if reported temperature is below signed limit. */ if (!channel || (regvals[1] & 0x80) || regvals[1] < 0x7f) { *val = temp_from_reg_signed(regvals[1], regvals[0]); return 0; } ret = regmap_bulk_read(regmap, LM95245_REG_R_REMOTE_TEMPH_U, regvals, 2); if (ret) return ret; *val = temp_from_reg_unsigned(regvals[0], regvals[1]); return 0; case hwmon_temp_max: ret = regmap_read(regmap, LM95245_REG_RW_REMOTE_OS_LIMIT, ®val); if (ret < 0) return ret; *val = regval * 1000; return 0; case hwmon_temp_crit: regs[0] = channel ? LM95245_REG_RW_REMOTE_TCRIT_LIMIT : LM95245_REG_RW_LOCAL_OS_TCRIT_LIMIT; ret = regmap_read(regmap, regs[0], ®val); if (ret < 0) return ret; *val = regval * 1000; return 0; case hwmon_temp_max_hyst: regs[0] = LM95245_REG_RW_REMOTE_OS_LIMIT; regs[1] = LM95245_REG_RW_COMMON_HYSTERESIS; ret = regmap_multi_reg_read(regmap, regs, regvals, 2); if (ret < 0) return ret; *val = (regvals[0] - regvals[1]) * 1000; return 0; case hwmon_temp_crit_hyst: regs[0] = channel ? LM95245_REG_RW_REMOTE_TCRIT_LIMIT : LM95245_REG_RW_LOCAL_OS_TCRIT_LIMIT; regs[1] = LM95245_REG_RW_COMMON_HYSTERESIS; ret = regmap_multi_reg_read(regmap, regs, regvals, 2); if (ret < 0) return ret; *val = (regvals[0] - regvals[1]) * 1000; return 0; case hwmon_temp_type: ret = regmap_read(regmap, LM95245_REG_RW_CONFIG2, ®val); if (ret < 0) return ret; *val = (regval & CFG2_REMOTE_TT) ? 1 : 2; return 0; case hwmon_temp_offset: ret = regmap_bulk_read(regmap, LM95245_REG_RW_REMOTE_OFFH, regvals, 2); if (ret < 0) return ret; *val = temp_from_reg_signed(regvals[0], regvals[1]); return 0; case hwmon_temp_max_alarm: ret = regmap_read(regmap, LM95245_REG_R_STATUS1, ®val); if (ret < 0) return ret; *val = !!(regval & STATUS1_ROS); return 0; case hwmon_temp_crit_alarm: ret = regmap_read(regmap, LM95245_REG_R_STATUS1, ®val); if (ret < 0) return ret; *val = !!(regval & (channel ? STATUS1_RTCRIT : STATUS1_LOC)); return 0; case hwmon_temp_fault: ret = regmap_read(regmap, LM95245_REG_R_STATUS1, ®val); if (ret < 0) return ret; *val = !!(regval & STATUS1_DIODE_FAULT); return 0; default: return -EOPNOTSUPP; } } static int lm95245_write_temp(struct device *dev, u32 attr, int channel, long val) { struct lm95245_data *data = dev_get_drvdata(dev); struct regmap *regmap = data->regmap; unsigned int regval; u8 regvals[2]; int ret, reg; switch (attr) { case hwmon_temp_max: val = clamp_val(val / 1000, 0, 255); ret = regmap_write(regmap, LM95245_REG_RW_REMOTE_OS_LIMIT, val); return ret; case hwmon_temp_crit: reg = channel ? LM95245_REG_RW_REMOTE_TCRIT_LIMIT : LM95245_REG_RW_LOCAL_OS_TCRIT_LIMIT; val = clamp_val(val / 1000, 0, channel ? 255 : 127); ret = regmap_write(regmap, reg, val); return ret; case hwmon_temp_crit_hyst: mutex_lock(&data->update_lock); ret = regmap_read(regmap, LM95245_REG_RW_LOCAL_OS_TCRIT_LIMIT, ®val); if (ret < 0) { mutex_unlock(&data->update_lock); return ret; } /* Clamp to reasonable range to prevent overflow */ val = clamp_val(val, -1000000, 1000000); val = regval - val / 1000; val = clamp_val(val, 0, 31); ret = regmap_write(regmap, LM95245_REG_RW_COMMON_HYSTERESIS, val); mutex_unlock(&data->update_lock); return ret; case hwmon_temp_offset: val = clamp_val(val, -128000, 127875); val = val * 256 / 1000; regvals[0] = val >> 8; regvals[1] = val & 0xe0; ret = regmap_bulk_write(regmap, LM95245_REG_RW_REMOTE_OFFH, regvals, 2); return ret; case hwmon_temp_type: if (val != 1 && val != 2) return -EINVAL; ret = regmap_update_bits(regmap, LM95245_REG_RW_CONFIG2, CFG2_REMOTE_TT, val == 1 ? CFG2_REMOTE_TT : 0); return ret; default: return -EOPNOTSUPP; } } static int lm95245_read_chip(struct device *dev, u32 attr, int channel, long *val) { struct lm95245_data *data = dev_get_drvdata(dev); switch (attr) { case hwmon_chip_update_interval: *val = data->interval; return 0; default: return -EOPNOTSUPP; } } static int lm95245_write_chip(struct device *dev, u32 attr, int channel, long val) { struct lm95245_data *data = dev_get_drvdata(dev); int ret; switch (attr) { case hwmon_chip_update_interval: mutex_lock(&data->update_lock); ret = lm95245_set_conversion_rate(data, val); mutex_unlock(&data->update_lock); return ret; default: return -EOPNOTSUPP; } } static int lm95245_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_chip: return lm95245_read_chip(dev, attr, channel, val); case hwmon_temp: return lm95245_read_temp(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static int lm95245_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { switch (type) { case hwmon_chip: return lm95245_write_chip(dev, attr, channel, val); case hwmon_temp: return lm95245_write_temp(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static umode_t lm95245_temp_is_visible(const void *data, u32 attr, int channel) { switch (attr) { case hwmon_temp_input: case hwmon_temp_max_alarm: case hwmon_temp_max_hyst: case hwmon_temp_crit_alarm: case hwmon_temp_fault: return 0444; case hwmon_temp_type: case hwmon_temp_max: case hwmon_temp_crit: case hwmon_temp_offset: return 0644; case hwmon_temp_crit_hyst: return (channel == 0) ? 0644 : 0444; default: return 0; } } static umode_t lm95245_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_chip: switch (attr) { case hwmon_chip_update_interval: return 0644; default: return 0; } case hwmon_temp: return lm95245_temp_is_visible(data, attr, channel); default: return 0; } } /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm95245_detect(struct i2c_client *new_client, struct i2c_board_info *info) { struct i2c_adapter *adapter = new_client->adapter; int address = new_client->addr; const char *name; int rev, id; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; id = i2c_smbus_read_byte_data(new_client, LM95245_REG_R_MAN_ID); if (id != MANUFACTURER_ID) return -ENODEV; rev = i2c_smbus_read_byte_data(new_client, LM95245_REG_R_CHIP_ID); switch (rev) { case LM95235_REVISION: if (address != 0x18 && address != 0x29 && address != 0x4c) return -ENODEV; name = "lm95235"; break; case LM95245_REVISION: name = "lm95245"; break; default: return -ENODEV; } strscpy(info->type, name, I2C_NAME_SIZE); return 0; } static int lm95245_init_client(struct lm95245_data *data) { int ret; ret = lm95245_read_conversion_rate(data); if (ret < 0) return ret; return regmap_update_bits(data->regmap, LM95245_REG_RW_CONFIG1, CFG_STOP, 0); } static bool lm95245_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case LM95245_REG_RW_CONFIG1: case LM95245_REG_RW_CONVERS_RATE: case LM95245_REG_W_ONE_SHOT: case LM95245_REG_RW_CONFIG2: case LM95245_REG_RW_REMOTE_OFFH: case LM95245_REG_RW_REMOTE_OFFL: case LM95245_REG_RW_REMOTE_OS_LIMIT: case LM95245_REG_RW_LOCAL_OS_TCRIT_LIMIT: case LM95245_REG_RW_REMOTE_TCRIT_LIMIT: case LM95245_REG_RW_COMMON_HYSTERESIS: return true; default: return false; } } static bool lm95245_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case LM95245_REG_R_STATUS1: case LM95245_REG_R_STATUS2: case LM95245_REG_R_LOCAL_TEMPH_S: case LM95245_REG_R_LOCAL_TEMPL_S: case LM95245_REG_R_REMOTE_TEMPH_S: case LM95245_REG_R_REMOTE_TEMPL_S: case LM95245_REG_R_REMOTE_TEMPH_U: case LM95245_REG_R_REMOTE_TEMPL_U: return true; default: return false; } } static const struct regmap_config lm95245_regmap_config = { .reg_bits = 8, .val_bits = 8, .writeable_reg = lm95245_is_writeable_reg, .volatile_reg = lm95245_is_volatile_reg, .cache_type = REGCACHE_MAPLE, .use_single_read = true, .use_single_write = true, }; static const struct hwmon_channel_info * const lm95245_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_UPDATE_INTERVAL), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_CRIT_ALARM, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_CRIT | HWMON_T_CRIT_HYST | HWMON_T_FAULT | HWMON_T_MAX_ALARM | HWMON_T_CRIT_ALARM | HWMON_T_TYPE | HWMON_T_OFFSET), NULL }; static const struct hwmon_ops lm95245_hwmon_ops = { .is_visible = lm95245_is_visible, .read = lm95245_read, .write = lm95245_write, }; static const struct hwmon_chip_info lm95245_chip_info = { .ops = &lm95245_hwmon_ops, .info = lm95245_info, }; static int lm95245_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct lm95245_data *data; struct device *hwmon_dev; int ret; data = devm_kzalloc(dev, sizeof(struct lm95245_data), GFP_KERNEL); if (!data) return -ENOMEM; data->regmap = devm_regmap_init_i2c(client, &lm95245_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); mutex_init(&data->update_lock); /* Initialize the LM95245 chip */ ret = lm95245_init_client(data); if (ret < 0) return ret; hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &lm95245_chip_info, NULL); return PTR_ERR_OR_ZERO(hwmon_dev); } /* Driver data (common to all clients) */ static const struct i2c_device_id lm95245_id[] = { { "lm95235" }, { "lm95245" }, { } }; MODULE_DEVICE_TABLE(i2c, lm95245_id); static const struct of_device_id __maybe_unused lm95245_of_match[] = { { .compatible = "national,lm95235" }, { .compatible = "national,lm95245" }, { }, }; MODULE_DEVICE_TABLE(of, lm95245_of_match); static struct i2c_driver lm95245_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm95245", .of_match_table = of_match_ptr(lm95245_of_match), }, .probe = lm95245_probe, .id_table = lm95245_id, .detect = lm95245_detect, .address_list = normal_i2c, }; module_i2c_driver(lm95245_driver); MODULE_AUTHOR("Alexander Stein "); MODULE_DESCRIPTION("LM95235/LM95245 sensor driver"); MODULE_LICENSE("GPL");