/* * fschmd.c * * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes, * Scylla, Heracles, Heimdall, Hades and Syleus chips * * Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6 * (candidate) fschmd drivers: * Copyright (C) 2006 Thilo Cestonaro * <thilo.cestonaro.external@fujitsu-siemens.com> * Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch> * Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de> * Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de> * Copyright (C) 2000 Hermann Jung <hej@odn.de> */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/sysfs.h> #include <linux/dmi.h> #include <linux/fs.h> #include <linux/watchdog.h> #include <linux/miscdevice.h> #include <linux/uaccess.h> #include <linux/kref.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END }; /* Insmod parameters */ static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl }; /* * The FSCHMD registers and other defines */ /* chip identification */ #define FSCHMD_REG_IDENT_0 0x00 #define FSCHMD_REG_IDENT_1 0x01 #define FSCHMD_REG_IDENT_2 0x02 #define FSCHMD_REG_REVISION 0x03 /* global control and status */ #define FSCHMD_REG_EVENT_STATE 0x04 #define FSCHMD_REG_CONTROL 0x05 #define FSCHMD_CONTROL_ALERT_LED 0x01 /* watchdog */ static const u8 FSCHMD_REG_WDOG_CONTROL[7] = { 0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 }; static const u8 FSCHMD_REG_WDOG_STATE[7] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 }; static const u8 FSCHMD_REG_WDOG_PRESET[7] = { 0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a }; #define FSCHMD_WDOG_CONTROL_TRIGGER 0x10 #define FSCHMD_WDOG_CONTROL_STARTED 0x10 /* the same as trigger */ #define FSCHMD_WDOG_CONTROL_STOP 0x20 #define FSCHMD_WDOG_CONTROL_RESOLUTION 0x40 #define FSCHMD_WDOG_STATE_CARDRESET 0x02 /* voltages, weird order is to keep the same order as the old drivers */ static const u8 FSCHMD_REG_VOLT[7][6] = { { 0x45, 0x42, 0x48 }, /* pos */ { 0x45, 0x42, 0x48 }, /* her */ { 0x45, 0x42, 0x48 }, /* scy */ { 0x45, 0x42, 0x48 }, /* hrc */ { 0x45, 0x42, 0x48 }, /* hmd */ { 0x21, 0x20, 0x22 }, /* hds */ { 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 }, /* syl */ }; static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 }; /* * minimum pwm at which the fan is driven (pwm can by increased depending on * the temp. Notice that for the scy some fans share there minimum speed. * Also notice that with the scy the sensor order is different than with the * other chips, this order was in the 2.4 driver and kept for consistency. */ static const u8 FSCHMD_REG_FAN_MIN[7][7] = { { 0x55, 0x65 }, /* pos */ { 0x55, 0x65, 0xb5 }, /* her */ { 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 }, /* scy */ { 0x55, 0x65, 0xa5, 0xb5 }, /* hrc */ { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hmd */ { 0x55, 0x65, 0xa5, 0xb5, 0xc5 }, /* hds */ { 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 }, /* syl */ }; /* actual fan speed */ static const u8 FSCHMD_REG_FAN_ACT[7][7] = { { 0x0e, 0x6b, 0xab }, /* pos */ { 0x0e, 0x6b, 0xbb }, /* her */ { 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb }, /* scy */ { 0x0e, 0x6b, 0xab, 0xbb }, /* hrc */ { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hmd */ { 0x5b, 0x6b, 0xab, 0xbb, 0xcb }, /* hds */ { 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 }, /* syl */ }; /* fan status registers */ static const u8 FSCHMD_REG_FAN_STATE[7][7] = { { 0x0d, 0x62, 0xa2 }, /* pos */ { 0x0d, 0x62, 0xb2 }, /* her */ { 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 }, /* scy */ { 0x0d, 0x62, 0xa2, 0xb2 }, /* hrc */ { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hmd */ { 0x52, 0x62, 0xa2, 0xb2, 0xc2 }, /* hds */ { 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 }, /* syl */ }; /* fan ripple / divider registers */ static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = { { 0x0f, 0x6f, 0xaf }, /* pos */ { 0x0f, 0x6f, 0xbf }, /* her */ { 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf }, /* scy */ { 0x0f, 0x6f, 0xaf, 0xbf }, /* hrc */ { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hmd */ { 0x5f, 0x6f, 0xaf, 0xbf, 0xcf }, /* hds */ { 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 }, /* syl */ }; static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 }; /* Fan status register bitmasks */ #define FSCHMD_FAN_ALARM 0x04 /* called fault by FSC! */ #define FSCHMD_FAN_NOT_PRESENT 0x08 #define FSCHMD_FAN_DISABLED 0x80 /* actual temperature registers */ static const u8 FSCHMD_REG_TEMP_ACT[7][11] = { { 0x64, 0x32, 0x35 }, /* pos */ { 0x64, 0x32, 0x35 }, /* her */ { 0x64, 0xD0, 0x32, 0x35 }, /* scy */ { 0x64, 0x32, 0x35 }, /* hrc */ { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hmd */ { 0x70, 0x80, 0x90, 0xd0, 0xe0 }, /* hds */ { 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8, /* syl */ 0xb8, 0xc8, 0xd8, 0xe8, 0xf8 }, }; /* temperature state registers */ static const u8 FSCHMD_REG_TEMP_STATE[7][11] = { { 0x71, 0x81, 0x91 }, /* pos */ { 0x71, 0x81, 0x91 }, /* her */ { 0x71, 0xd1, 0x81, 0x91 }, /* scy */ { 0x71, 0x81, 0x91 }, /* hrc */ { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hmd */ { 0x71, 0x81, 0x91, 0xd1, 0xe1 }, /* hds */ { 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9, /* syl */ 0xb9, 0xc9, 0xd9, 0xe9, 0xf9 }, }; /* * temperature high limit registers, FSC does not document these. Proven to be * there with field testing on the fscher and fschrc, already supported / used * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers * at these addresses, but doesn't want to confirm they are the same as with * the fscher?? */ static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = { { 0, 0, 0 }, /* pos */ { 0x76, 0x86, 0x96 }, /* her */ { 0x76, 0xd6, 0x86, 0x96 }, /* scy */ { 0x76, 0x86, 0x96 }, /* hrc */ { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hmd */ { 0x76, 0x86, 0x96, 0xd6, 0xe6 }, /* hds */ { 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa, /* syl */ 0xba, 0xca, 0xda, 0xea, 0xfa }, }; /* * These were found through experimenting with an fscher, currently they are * not used, but we keep them around for future reference. * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc), * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence * the fan speed. * static const u8 FSCHER_REG_TEMP_AUTOP1[] = { 0x73, 0x83, 0x93 }; * static const u8 FSCHER_REG_TEMP_AUTOP2[] = { 0x75, 0x85, 0x95 }; */ static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 }; /* temp status register bitmasks */ #define FSCHMD_TEMP_WORKING 0x01 #define FSCHMD_TEMP_ALERT 0x02 #define FSCHMD_TEMP_DISABLED 0x80 /* there only really is an alarm if the sensor is working and alert == 1 */ #define FSCHMD_TEMP_ALARM_MASK \ (FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT) /* * Functions declarations */ static int fschmd_probe(struct i2c_client *client, const struct i2c_device_id *id); static int fschmd_detect(struct i2c_client *client, struct i2c_board_info *info); static int fschmd_remove(struct i2c_client *client); static struct fschmd_data *fschmd_update_device(struct device *dev); /* * Driver data (common to all clients) */ static const struct i2c_device_id fschmd_id[] = { { "fscpos", fscpos }, { "fscher", fscher }, { "fscscy", fscscy }, { "fschrc", fschrc }, { "fschmd", fschmd }, { "fschds", fschds }, { "fscsyl", fscsyl }, { } }; MODULE_DEVICE_TABLE(i2c, fschmd_id); static struct i2c_driver fschmd_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "fschmd", }, .probe = fschmd_probe, .remove = fschmd_remove, .id_table = fschmd_id, .detect = fschmd_detect, .address_list = normal_i2c, }; /* * Client data (each client gets its own) */ struct fschmd_data { struct i2c_client *client; struct device *hwmon_dev; struct mutex update_lock; struct mutex watchdog_lock; struct list_head list; /* member of the watchdog_data_list */ struct kref kref; struct miscdevice watchdog_miscdev; enum chips kind; unsigned long watchdog_is_open; char watchdog_expect_close; char watchdog_name[10]; /* must be unique to avoid sysfs conflict */ char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ /* register values */ u8 revision; /* chip revision */ u8 global_control; /* global control register */ u8 watchdog_control; /* watchdog control register */ u8 watchdog_state; /* watchdog status register */ u8 watchdog_preset; /* watchdog counter preset on trigger val */ u8 volt[6]; /* voltage */ u8 temp_act[11]; /* temperature */ u8 temp_status[11]; /* status of sensor */ u8 temp_max[11]; /* high temp limit, notice: undocumented! */ u8 fan_act[7]; /* fans revolutions per second */ u8 fan_status[7]; /* fan status */ u8 fan_min[7]; /* fan min value for rps */ u8 fan_ripple[7]; /* divider for rps */ }; /* * Global variables to hold information read from special DMI tables, which are * available on FSC machines with an fscher or later chip. There is no need to * protect these with a lock as they are only modified from our attach function * which always gets called with the i2c-core lock held and never accessed * before the attach function is done with them. */ static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 }; static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 }; static int dmi_vref = -1; /* * Somewhat ugly :( global data pointer list with all fschmd devices, so that * we can find our device data as when using misc_register there is no other * method to get to ones device data from the open fop. */ static LIST_HEAD(watchdog_data_list); /* Note this lock not only protect list access, but also data.kref access */ static DEFINE_MUTEX(watchdog_data_mutex); /* * Release our data struct when we're detached from the i2c client *and* all * references to our watchdog device are released */ static void fschmd_release_resources(struct kref *ref) { struct fschmd_data *data = container_of(ref, struct fschmd_data, kref); kfree(data); } /* * Sysfs attr show / store functions */ static ssize_t show_in_value(struct device *dev, struct device_attribute *devattr, char *buf) { const int max_reading[3] = { 14200, 6600, 3300 }; int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); if (data->kind == fscher || data->kind >= fschrc) return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref * dmi_mult[index]) / 255 + dmi_offset[index]); else return sprintf(buf, "%d\n", (data->volt[index] * max_reading[index] + 128) / 255); } #define TEMP_FROM_REG(val) (((val) - 128) * 1000) static ssize_t show_temp_value(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index])); } static ssize_t show_temp_max(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index])); } static ssize_t store_temp_max(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = dev_get_drvdata(dev); long v; int err; err = kstrtol(buf, 10, &v); if (err) return err; v = SENSORS_LIMIT(v / 1000, -128, 127) + 128; mutex_lock(&data->update_lock); i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_TEMP_LIMIT[data->kind][index], v); data->temp_max[index] = v; mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp_fault(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); /* bit 0 set means sensor working ok, so no fault! */ if (data->temp_status[index] & FSCHMD_TEMP_WORKING) return sprintf(buf, "0\n"); else return sprintf(buf, "1\n"); } static ssize_t show_temp_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) == FSCHMD_TEMP_ALARM_MASK) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } #define RPM_FROM_REG(val) ((val) * 60) static ssize_t show_fan_value(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index])); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); /* bits 2..7 reserved => mask with 3 */ return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3)); } static ssize_t store_fan_div(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { u8 reg; int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = dev_get_drvdata(dev); /* supported values: 2, 4, 8 */ unsigned long v; int err; err = kstrtoul(buf, 10, &v); if (err) return err; switch (v) { case 2: v = 1; break; case 4: v = 2; break; case 8: v = 3; break; default: dev_err(dev, "fan_div value %lu not supported. " "Choose one of 2, 4 or 8!\n", v); return -EINVAL; } mutex_lock(&data->update_lock); reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_FAN_RIPPLE[data->kind][index]); /* bits 2..7 reserved => mask with 0x03 */ reg &= ~0x03; reg |= v; i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg); data->fan_ripple[index] = reg; mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); if (data->fan_status[index] & FSCHMD_FAN_ALARM) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t show_fan_fault(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t show_pwm_auto_point1_pwm(struct device *dev, struct device_attribute *devattr, char *buf) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = fschmd_update_device(dev); int val = data->fan_min[index]; /* 0 = allow turning off (except on the syl), 1-255 = 50-100% */ if (val || data->kind == fscsyl) val = val / 2 + 128; return sprintf(buf, "%d\n", val); } static ssize_t store_pwm_auto_point1_pwm(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int index = to_sensor_dev_attr(devattr)->index; struct fschmd_data *data = dev_get_drvdata(dev); unsigned long v; int err; err = kstrtoul(buf, 10, &v); if (err) return err; /* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */ if (v || data->kind == fscsyl) { v = SENSORS_LIMIT(v, 128, 255); v = (v - 128) * 2 + 1; } mutex_lock(&data->update_lock); i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_FAN_MIN[data->kind][index], v); data->fan_min[index] = v; mutex_unlock(&data->update_lock); return count; } /* * The FSC hwmon family has the ability to force an attached alert led to flash * from software, we export this as an alert_led sysfs attr */ static ssize_t show_alert_led(struct device *dev, struct device_attribute *devattr, char *buf) { struct fschmd_data *data = fschmd_update_device(dev); if (data->global_control & FSCHMD_CONTROL_ALERT_LED) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static ssize_t store_alert_led(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { u8 reg; struct fschmd_data *data = dev_get_drvdata(dev); unsigned long v; int err; err = kstrtoul(buf, 10, &v); if (err) return err; mutex_lock(&data->update_lock); reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL); if (v) reg |= FSCHMD_CONTROL_ALERT_LED; else reg &= ~FSCHMD_CONTROL_ALERT_LED; i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg); data->global_control = reg; mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(alert_led, 0644, show_alert_led, store_alert_led); static struct sensor_device_attribute fschmd_attr[] = { SENSOR_ATTR(in0_input, 0444, show_in_value, NULL, 0), SENSOR_ATTR(in1_input, 0444, show_in_value, NULL, 1), SENSOR_ATTR(in2_input, 0444, show_in_value, NULL, 2), SENSOR_ATTR(in3_input, 0444, show_in_value, NULL, 3), SENSOR_ATTR(in4_input, 0444, show_in_value, NULL, 4), SENSOR_ATTR(in5_input, 0444, show_in_value, NULL, 5), }; static struct sensor_device_attribute fschmd_temp_attr[] = { SENSOR_ATTR(temp1_input, 0444, show_temp_value, NULL, 0), SENSOR_ATTR(temp1_max, 0644, show_temp_max, store_temp_max, 0), SENSOR_ATTR(temp1_fault, 0444, show_temp_fault, NULL, 0), SENSOR_ATTR(temp1_alarm, 0444, show_temp_alarm, NULL, 0), SENSOR_ATTR(temp2_input, 0444, show_temp_value, NULL, 1), SENSOR_ATTR(temp2_max, 0644, show_temp_max, store_temp_max, 1), SENSOR_ATTR(temp2_fault, 0444, show_temp_fault, NULL, 1), SENSOR_ATTR(temp2_alarm, 0444, show_temp_alarm, NULL, 1), SENSOR_ATTR(temp3_input, 0444, show_temp_value, NULL, 2), SENSOR_ATTR(temp3_max, 0644, show_temp_max, store_temp_max, 2), SENSOR_ATTR(temp3_fault, 0444, show_temp_fault, NULL, 2), SENSOR_ATTR(temp3_alarm, 0444, show_temp_alarm, NULL, 2), SENSOR_ATTR(temp4_input, 0444, show_temp_value, NULL, 3), SENSOR_ATTR(temp4_max, 0644, show_temp_max, store_temp_max, 3), SENSOR_ATTR(temp4_fault, 0444, show_temp_fault, NULL, 3), SENSOR_ATTR(temp4_alarm, 0444, show_temp_alarm, NULL, 3), SENSOR_ATTR(temp5_input, 0444, show_temp_value, NULL, 4), SENSOR_ATTR(temp5_max, 0644, show_temp_max, store_temp_max, 4), SENSOR_ATTR(temp5_fault, 0444, show_temp_fault, NULL, 4), SENSOR_ATTR(temp5_alarm, 0444, show_temp_alarm, NULL, 4), SENSOR_ATTR(temp6_input, 0444, show_temp_value, NULL, 5), SENSOR_ATTR(temp6_max, 0644, show_temp_max, store_temp_max, 5), SENSOR_ATTR(temp6_fault, 0444, show_temp_fault, NULL, 5), SENSOR_ATTR(temp6_alarm, 0444, show_temp_alarm, NULL, 5), SENSOR_ATTR(temp7_input, 0444, show_temp_value, NULL, 6), SENSOR_ATTR(temp7_max, 0644, show_temp_max, store_temp_max, 6), SENSOR_ATTR(temp7_fault, 0444, show_temp_fault, NULL, 6), SENSOR_ATTR(temp7_alarm, 0444, show_temp_alarm, NULL, 6), SENSOR_ATTR(temp8_input, 0444, show_temp_value, NULL, 7), SENSOR_ATTR(temp8_max, 0644, show_temp_max, store_temp_max, 7), SENSOR_ATTR(temp8_fault, 0444, show_temp_fault, NULL, 7), SENSOR_ATTR(temp8_alarm, 0444, show_temp_alarm, NULL, 7), SENSOR_ATTR(temp9_input, 0444, show_temp_value, NULL, 8), SENSOR_ATTR(temp9_max, 0644, show_temp_max, store_temp_max, 8), SENSOR_ATTR(temp9_fault, 0444, show_temp_fault, NULL, 8), SENSOR_ATTR(temp9_alarm, 0444, show_temp_alarm, NULL, 8), SENSOR_ATTR(temp10_input, 0444, show_temp_value, NULL, 9), SENSOR_ATTR(temp10_max, 0644, show_temp_max, store_temp_max, 9), SENSOR_ATTR(temp10_fault, 0444, show_temp_fault, NULL, 9), SENSOR_ATTR(temp10_alarm, 0444, show_temp_alarm, NULL, 9), SENSOR_ATTR(temp11_input, 0444, show_temp_value, NULL, 10), SENSOR_ATTR(temp11_max, 0644, show_temp_max, store_temp_max, 10), SENSOR_ATTR(temp11_fault, 0444, show_temp_fault, NULL, 10), SENSOR_ATTR(temp11_alarm, 0444, show_temp_alarm, NULL, 10), }; static struct sensor_device_attribute fschmd_fan_attr[] = { SENSOR_ATTR(fan1_input, 0444, show_fan_value, NULL, 0), SENSOR_ATTR(fan1_div, 0644, show_fan_div, store_fan_div, 0), SENSOR_ATTR(fan1_alarm, 0444, show_fan_alarm, NULL, 0), SENSOR_ATTR(fan1_fault, 0444, show_fan_fault, NULL, 0), SENSOR_ATTR(pwm1_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm, store_pwm_auto_point1_pwm, 0), SENSOR_ATTR(fan2_input, 0444, show_fan_value, NULL, 1), SENSOR_ATTR(fan2_div, 0644, show_fan_div, store_fan_div, 1), SENSOR_ATTR(fan2_alarm, 0444, show_fan_alarm, NULL, 1), SENSOR_ATTR(fan2_fault, 0444, show_fan_fault, NULL, 1), SENSOR_ATTR(pwm2_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm, store_pwm_auto_point1_pwm, 1), SENSOR_ATTR(fan3_input, 0444, show_fan_value, NULL, 2), SENSOR_ATTR(fan3_div, 0644, show_fan_div, store_fan_div, 2), SENSOR_ATTR(fan3_alarm, 0444, show_fan_alarm, NULL, 2), SENSOR_ATTR(fan3_fault, 0444, show_fan_fault, NULL, 2), SENSOR_ATTR(pwm3_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm, store_pwm_auto_point1_pwm, 2), SENSOR_ATTR(fan4_input, 0444, show_fan_value, NULL, 3), SENSOR_ATTR(fan4_div, 0644, show_fan_div, store_fan_div, 3), SENSOR_ATTR(fan4_alarm, 0444, show_fan_alarm, NULL, 3), SENSOR_ATTR(fan4_fault, 0444, show_fan_fault, NULL, 3), SENSOR_ATTR(pwm4_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm, store_pwm_auto_point1_pwm, 3), SENSOR_ATTR(fan5_input, 0444, show_fan_value, NULL, 4), SENSOR_ATTR(fan5_div, 0644, show_fan_div, store_fan_div, 4), SENSOR_ATTR(fan5_alarm, 0444, show_fan_alarm, NULL, 4), SENSOR_ATTR(fan5_fault, 0444, show_fan_fault, NULL, 4), SENSOR_ATTR(pwm5_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm, store_pwm_auto_point1_pwm, 4), SENSOR_ATTR(fan6_input, 0444, show_fan_value, NULL, 5), SENSOR_ATTR(fan6_div, 0644, show_fan_div, store_fan_div, 5), SENSOR_ATTR(fan6_alarm, 0444, show_fan_alarm, NULL, 5), SENSOR_ATTR(fan6_fault, 0444, show_fan_fault, NULL, 5), SENSOR_ATTR(pwm6_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm, store_pwm_auto_point1_pwm, 5), SENSOR_ATTR(fan7_input, 0444, show_fan_value, NULL, 6), SENSOR_ATTR(fan7_div, 0644, show_fan_div, store_fan_div, 6), SENSOR_ATTR(fan7_alarm, 0444, show_fan_alarm, NULL, 6), SENSOR_ATTR(fan7_fault, 0444, show_fan_fault, NULL, 6), SENSOR_ATTR(pwm7_auto_point1_pwm, 0644, show_pwm_auto_point1_pwm, store_pwm_auto_point1_pwm, 6), }; /* * Watchdog routines */ static int watchdog_set_timeout(struct fschmd_data *data, int timeout) { int ret, resolution; int kind = data->kind + 1; /* 0-x array index -> 1-x module param */ /* 2 second or 60 second resolution? */ if (timeout <= 510 || kind == fscpos || kind == fscscy) resolution = 2; else resolution = 60; if (timeout < resolution || timeout > (resolution * 255)) return -EINVAL; mutex_lock(&data->watchdog_lock); if (!data->client) { ret = -ENODEV; goto leave; } if (resolution == 2) data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION; else data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION; data->watchdog_preset = DIV_ROUND_UP(timeout, resolution); /* Write new timeout value */ i2c_smbus_write_byte_data(data->client, FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset); /* Write new control register, do not trigger! */ i2c_smbus_write_byte_data(data->client, FSCHMD_REG_WDOG_CONTROL[data->kind], data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER); ret = data->watchdog_preset * resolution; leave: mutex_unlock(&data->watchdog_lock); return ret; } static int watchdog_get_timeout(struct fschmd_data *data) { int timeout; mutex_lock(&data->watchdog_lock); if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION) timeout = data->watchdog_preset * 60; else timeout = data->watchdog_preset * 2; mutex_unlock(&data->watchdog_lock); return timeout; } static int watchdog_trigger(struct fschmd_data *data) { int ret = 0; mutex_lock(&data->watchdog_lock); if (!data->client) { ret = -ENODEV; goto leave; } data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER; i2c_smbus_write_byte_data(data->client, FSCHMD_REG_WDOG_CONTROL[data->kind], data->watchdog_control); leave: mutex_unlock(&data->watchdog_lock); return ret; } static int watchdog_stop(struct fschmd_data *data) { int ret = 0; mutex_lock(&data->watchdog_lock); if (!data->client) { ret = -ENODEV; goto leave; } data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED; /* * Don't store the stop flag in our watchdog control register copy, as * its a write only bit (read always returns 0) */ i2c_smbus_write_byte_data(data->client, FSCHMD_REG_WDOG_CONTROL[data->kind], data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP); leave: mutex_unlock(&data->watchdog_lock); return ret; } static int watchdog_open(struct inode *inode, struct file *filp) { struct fschmd_data *pos, *data = NULL; int watchdog_is_open; /* * We get called from drivers/char/misc.c with misc_mtx hold, and we * call misc_register() from fschmd_probe() with watchdog_data_mutex * hold, as misc_register() takes the misc_mtx lock, this is a possible * deadlock, so we use mutex_trylock here. */ if (!mutex_trylock(&watchdog_data_mutex)) return -ERESTARTSYS; list_for_each_entry(pos, &watchdog_data_list, list) { if (pos->watchdog_miscdev.minor == iminor(inode)) { data = pos; break; } } /* Note we can never not have found data, so we don't check for this */ watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open); if (!watchdog_is_open) kref_get(&data->kref); mutex_unlock(&watchdog_data_mutex); if (watchdog_is_open) return -EBUSY; /* Start the watchdog */ watchdog_trigger(data); filp->private_data = data; return nonseekable_open(inode, filp); } static int watchdog_release(struct inode *inode, struct file *filp) { struct fschmd_data *data = filp->private_data; if (data->watchdog_expect_close) { watchdog_stop(data); data->watchdog_expect_close = 0; } else { watchdog_trigger(data); dev_crit(&data->client->dev, "unexpected close, not stopping watchdog!\n"); } clear_bit(0, &data->watchdog_is_open); mutex_lock(&watchdog_data_mutex); kref_put(&data->kref, fschmd_release_resources); mutex_unlock(&watchdog_data_mutex); return 0; } static ssize_t watchdog_write(struct file *filp, const char __user *buf, size_t count, loff_t *offset) { int ret; struct fschmd_data *data = filp->private_data; if (count) { if (!nowayout) { size_t i; /* Clear it in case it was set with a previous write */ data->watchdog_expect_close = 0; for (i = 0; i != count; i++) { char c; if (get_user(c, buf + i)) return -EFAULT; if (c == 'V') data->watchdog_expect_close = 1; } } ret = watchdog_trigger(data); if (ret < 0) return ret; } return count; } static long watchdog_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct watchdog_info ident = { .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | WDIOF_CARDRESET, .identity = "FSC watchdog" }; int i, ret = 0; struct fschmd_data *data = filp->private_data; switch (cmd) { case WDIOC_GETSUPPORT: ident.firmware_version = data->revision; if (!nowayout) ident.options |= WDIOF_MAGICCLOSE; if (copy_to_user((void __user *)arg, &ident, sizeof(ident))) ret = -EFAULT; break; case WDIOC_GETSTATUS: ret = put_user(0, (int __user *)arg); break; case WDIOC_GETBOOTSTATUS: if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET) ret = put_user(WDIOF_CARDRESET, (int __user *)arg); else ret = put_user(0, (int __user *)arg); break; case WDIOC_KEEPALIVE: ret = watchdog_trigger(data); break; case WDIOC_GETTIMEOUT: i = watchdog_get_timeout(data); ret = put_user(i, (int __user *)arg); break; case WDIOC_SETTIMEOUT: if (get_user(i, (int __user *)arg)) { ret = -EFAULT; break; } ret = watchdog_set_timeout(data, i); if (ret > 0) ret = put_user(ret, (int __user *)arg); break; case WDIOC_SETOPTIONS: if (get_user(i, (int __user *)arg)) { ret = -EFAULT; break; } if (i & WDIOS_DISABLECARD) ret = watchdog_stop(data); else if (i & WDIOS_ENABLECARD) ret = watchdog_trigger(data); else ret = -EINVAL; break; default: ret = -ENOTTY; } return ret; } static const struct file_operations watchdog_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .open = watchdog_open, .release = watchdog_release, .write = watchdog_write, .unlocked_ioctl = watchdog_ioctl, }; /* * Detect, register, unregister and update device functions */ /* * DMI decode routine to read voltage scaling factors from special DMI tables, * which are available on FSC machines with an fscher or later chip. */ static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy) { int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0; /* * dmi code ugliness, we get passed the address of the contents of * a complete DMI record, but in the form of a dmi_header pointer, in * reality this address holds header->length bytes of which the header * are the first 4 bytes */ u8 *dmi_data = (u8 *)header; /* We are looking for OEM-specific type 185 */ if (header->type != 185) return; /* * we are looking for what Siemens calls "subtype" 19, the subtype * is stored in byte 5 of the dmi block */ if (header->length < 5 || dmi_data[4] != 19) return; /* * After the subtype comes 1 unknown byte and then blocks of 5 bytes, * consisting of what Siemens calls an "Entity" number, followed by * 2 16-bit words in LSB first order */ for (i = 6; (i + 4) < header->length; i += 5) { /* entity 1 - 3: voltage multiplier and offset */ if (dmi_data[i] >= 1 && dmi_data[i] <= 3) { /* Our in sensors order and the DMI order differ */ const int shuffle[3] = { 1, 0, 2 }; int in = shuffle[dmi_data[i] - 1]; /* Check for twice the same entity */ if (found & (1 << in)) return; mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8); offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8); found |= 1 << in; } /* entity 7: reference voltage */ if (dmi_data[i] == 7) { /* Check for twice the same entity */ if (found & 0x08) return; vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8); found |= 0x08; } } if (found == 0x0F) { for (i = 0; i < 3; i++) { dmi_mult[i] = mult[i] * 10; dmi_offset[i] = offset[i] * 10; } /* * According to the docs there should be separate dmi entries * for the mult's and offsets of in3-5 of the syl, but on * my test machine these are not present */ dmi_mult[3] = dmi_mult[2]; dmi_mult[4] = dmi_mult[1]; dmi_mult[5] = dmi_mult[2]; dmi_offset[3] = dmi_offset[2]; dmi_offset[4] = dmi_offset[1]; dmi_offset[5] = dmi_offset[2]; dmi_vref = vref; } } static int fschmd_detect(struct i2c_client *client, struct i2c_board_info *info) { enum chips kind; struct i2c_adapter *adapter = client->adapter; char id[4]; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* Detect & Identify the chip */ id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0); id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1); id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2); id[3] = '\0'; if (!strcmp(id, "PEG")) kind = fscpos; else if (!strcmp(id, "HER")) kind = fscher; else if (!strcmp(id, "SCY")) kind = fscscy; else if (!strcmp(id, "HRC")) kind = fschrc; else if (!strcmp(id, "HMD")) kind = fschmd; else if (!strcmp(id, "HDS")) kind = fschds; else if (!strcmp(id, "SYL")) kind = fscsyl; else return -ENODEV; strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE); return 0; } static int fschmd_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct fschmd_data *data; const char * const names[7] = { "Poseidon", "Hermes", "Scylla", "Heracles", "Heimdall", "Hades", "Syleus" }; const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 }; int i, err; enum chips kind = id->driver_data; data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); mutex_init(&data->watchdog_lock); INIT_LIST_HEAD(&data->list); kref_init(&data->kref); /* * Store client pointer in our data struct for watchdog usage * (where the client is found through a data ptr instead of the * otherway around) */ data->client = client; data->kind = kind; if (kind == fscpos) { /* * The Poseidon has hardwired temp limits, fill these * in for the alarm resetting code */ data->temp_max[0] = 70 + 128; data->temp_max[1] = 50 + 128; data->temp_max[2] = 50 + 128; } /* Read the special DMI table for fscher and newer chips */ if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) { dmi_walk(fschmd_dmi_decode, NULL); if (dmi_vref == -1) { dev_warn(&client->dev, "Couldn't get voltage scaling factors from " "BIOS DMI table, using builtin defaults\n"); dmi_vref = 33; } } /* Read in some never changing registers */ data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION); data->global_control = i2c_smbus_read_byte_data(client, FSCHMD_REG_CONTROL); data->watchdog_control = i2c_smbus_read_byte_data(client, FSCHMD_REG_WDOG_CONTROL[data->kind]); data->watchdog_state = i2c_smbus_read_byte_data(client, FSCHMD_REG_WDOG_STATE[data->kind]); data->watchdog_preset = i2c_smbus_read_byte_data(client, FSCHMD_REG_WDOG_PRESET[data->kind]); err = device_create_file(&client->dev, &dev_attr_alert_led); if (err) goto exit_detach; for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) { err = device_create_file(&client->dev, &fschmd_attr[i].dev_attr); if (err) goto exit_detach; } for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) { /* Poseidon doesn't have TEMP_LIMIT registers */ if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show == show_temp_max) continue; if (kind == fscsyl) { if (i % 4 == 0) data->temp_status[i / 4] = i2c_smbus_read_byte_data(client, FSCHMD_REG_TEMP_STATE [data->kind][i / 4]); if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED) continue; } err = device_create_file(&client->dev, &fschmd_temp_attr[i].dev_attr); if (err) goto exit_detach; } for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) { /* Poseidon doesn't have a FAN_MIN register for its 3rd fan */ if (kind == fscpos && !strcmp(fschmd_fan_attr[i].dev_attr.attr.name, "pwm3_auto_point1_pwm")) continue; if (kind == fscsyl) { if (i % 5 == 0) data->fan_status[i / 5] = i2c_smbus_read_byte_data(client, FSCHMD_REG_FAN_STATE [data->kind][i / 5]); if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED) continue; } err = device_create_file(&client->dev, &fschmd_fan_attr[i].dev_attr); if (err) goto exit_detach; } data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); data->hwmon_dev = NULL; goto exit_detach; } /* * We take the data_mutex lock early so that watchdog_open() cannot * run when misc_register() has completed, but we've not yet added * our data to the watchdog_data_list (and set the default timeout) */ mutex_lock(&watchdog_data_mutex); for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) { /* Register our watchdog part */ snprintf(data->watchdog_name, sizeof(data->watchdog_name), "watchdog%c", (i == 0) ? '\0' : ('0' + i)); data->watchdog_miscdev.name = data->watchdog_name; data->watchdog_miscdev.fops = &watchdog_fops; data->watchdog_miscdev.minor = watchdog_minors[i]; err = misc_register(&data->watchdog_miscdev); if (err == -EBUSY) continue; if (err) { data->watchdog_miscdev.minor = 0; dev_err(&client->dev, "Registering watchdog chardev: %d\n", err); break; } list_add(&data->list, &watchdog_data_list); watchdog_set_timeout(data, 60); dev_info(&client->dev, "Registered watchdog chardev major 10, minor: %d\n", watchdog_minors[i]); break; } if (i == ARRAY_SIZE(watchdog_minors)) { data->watchdog_miscdev.minor = 0; dev_warn(&client->dev, "Couldn't register watchdog chardev " "(due to no free minor)\n"); } mutex_unlock(&watchdog_data_mutex); dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n", names[data->kind], (int) data->revision); return 0; exit_detach: fschmd_remove(client); /* will also free data for us */ return err; } static int fschmd_remove(struct i2c_client *client) { struct fschmd_data *data = i2c_get_clientdata(client); int i; /* Unregister the watchdog (if registered) */ if (data->watchdog_miscdev.minor) { misc_deregister(&data->watchdog_miscdev); if (data->watchdog_is_open) { dev_warn(&client->dev, "i2c client detached with watchdog open! " "Stopping watchdog.\n"); watchdog_stop(data); } mutex_lock(&watchdog_data_mutex); list_del(&data->list); mutex_unlock(&watchdog_data_mutex); /* Tell the watchdog code the client is gone */ mutex_lock(&data->watchdog_lock); data->client = NULL; mutex_unlock(&data->watchdog_lock); } /* * Check if registered in case we're called from fschmd_detect * to cleanup after an error */ if (data->hwmon_dev) hwmon_device_unregister(data->hwmon_dev); device_remove_file(&client->dev, &dev_attr_alert_led); for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++) device_remove_file(&client->dev, &fschmd_attr[i].dev_attr); for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) device_remove_file(&client->dev, &fschmd_temp_attr[i].dev_attr); for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) device_remove_file(&client->dev, &fschmd_fan_attr[i].dev_attr); mutex_lock(&watchdog_data_mutex); kref_put(&data->kref, fschmd_release_resources); mutex_unlock(&watchdog_data_mutex); return 0; } static struct fschmd_data *fschmd_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct fschmd_data *data = i2c_get_clientdata(client); int i; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) { data->temp_act[i] = i2c_smbus_read_byte_data(client, FSCHMD_REG_TEMP_ACT[data->kind][i]); data->temp_status[i] = i2c_smbus_read_byte_data(client, FSCHMD_REG_TEMP_STATE[data->kind][i]); /* The fscpos doesn't have TEMP_LIMIT registers */ if (FSCHMD_REG_TEMP_LIMIT[data->kind][i]) data->temp_max[i] = i2c_smbus_read_byte_data( client, FSCHMD_REG_TEMP_LIMIT[data->kind][i]); /* * reset alarm if the alarm condition is gone, * the chip doesn't do this itself */ if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) == FSCHMD_TEMP_ALARM_MASK && data->temp_act[i] < data->temp_max[i]) i2c_smbus_write_byte_data(client, FSCHMD_REG_TEMP_STATE[data->kind][i], data->temp_status[i]); } for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) { data->fan_act[i] = i2c_smbus_read_byte_data(client, FSCHMD_REG_FAN_ACT[data->kind][i]); data->fan_status[i] = i2c_smbus_read_byte_data(client, FSCHMD_REG_FAN_STATE[data->kind][i]); data->fan_ripple[i] = i2c_smbus_read_byte_data(client, FSCHMD_REG_FAN_RIPPLE[data->kind][i]); /* The fscpos third fan doesn't have a fan_min */ if (FSCHMD_REG_FAN_MIN[data->kind][i]) data->fan_min[i] = i2c_smbus_read_byte_data( client, FSCHMD_REG_FAN_MIN[data->kind][i]); /* reset fan status if speed is back to > 0 */ if ((data->fan_status[i] & FSCHMD_FAN_ALARM) && data->fan_act[i]) i2c_smbus_write_byte_data(client, FSCHMD_REG_FAN_STATE[data->kind][i], data->fan_status[i]); } for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) data->volt[i] = i2c_smbus_read_byte_data(client, FSCHMD_REG_VOLT[data->kind][i]); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } module_i2c_driver(fschmd_driver); MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades " "and Syleus driver"); MODULE_LICENSE("GPL");