/* * coretemp.c - Linux kernel module for hardware monitoring * * Copyright (C) 2007 Rudolf Marek * * Inspired from many hwmon drivers * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301 USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRVNAME "coretemp" /* * force_tjmax only matters when TjMax can't be read from the CPU itself. * When set, it replaces the driver's suboptimal heuristic. */ static int force_tjmax; module_param_named(tjmax, force_tjmax, int, 0444); MODULE_PARM_DESC(tjmax, "TjMax value in degrees Celsius"); #define BASE_SYSFS_ATTR_NO 2 /* Sysfs Base attr no for coretemp */ #define NUM_REAL_CORES 32 /* Number of Real cores per cpu */ #define CORETEMP_NAME_LENGTH 19 /* String Length of attrs */ #define MAX_CORE_ATTRS 4 /* Maximum no of basic attrs */ #define TOTAL_ATTRS (MAX_CORE_ATTRS + 1) #define MAX_CORE_DATA (NUM_REAL_CORES + BASE_SYSFS_ATTR_NO) #define TO_PHYS_ID(cpu) (cpu_data(cpu).phys_proc_id) #define TO_CORE_ID(cpu) (cpu_data(cpu).cpu_core_id) #define TO_ATTR_NO(cpu) (TO_CORE_ID(cpu) + BASE_SYSFS_ATTR_NO) #ifdef CONFIG_SMP #define for_each_sibling(i, cpu) for_each_cpu(i, cpu_sibling_mask(cpu)) #else #define for_each_sibling(i, cpu) for (i = 0; false; ) #endif /* * Per-Core Temperature Data * @last_updated: The time when the current temperature value was updated * earlier (in jiffies). * @cpu_core_id: The CPU Core from which temperature values should be read * This value is passed as "id" field to rdmsr/wrmsr functions. * @status_reg: One of IA32_THERM_STATUS or IA32_PACKAGE_THERM_STATUS, * from where the temperature values should be read. * @attr_size: Total number of pre-core attrs displayed in the sysfs. * @is_pkg_data: If this is 1, the temp_data holds pkgtemp data. * Otherwise, temp_data holds coretemp data. * @valid: If this is 1, the current temperature is valid. */ struct temp_data { int temp; int ttarget; int tjmax; unsigned long last_updated; unsigned int cpu; u32 cpu_core_id; u32 status_reg; int attr_size; bool is_pkg_data; bool valid; struct sensor_device_attribute sd_attrs[TOTAL_ATTRS]; char attr_name[TOTAL_ATTRS][CORETEMP_NAME_LENGTH]; struct mutex update_lock; }; /* Platform Data per Physical CPU */ struct platform_data { struct device *hwmon_dev; u16 phys_proc_id; struct temp_data *core_data[MAX_CORE_DATA]; struct device_attribute name_attr; }; struct pdev_entry { struct list_head list; struct platform_device *pdev; u16 phys_proc_id; }; static LIST_HEAD(pdev_list); static DEFINE_MUTEX(pdev_list_mutex); static ssize_t show_name(struct device *dev, struct device_attribute *devattr, char *buf) { return sprintf(buf, "%s\n", DRVNAME); } static ssize_t show_label(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct platform_data *pdata = dev_get_drvdata(dev); struct temp_data *tdata = pdata->core_data[attr->index]; if (tdata->is_pkg_data) return sprintf(buf, "Physical id %u\n", pdata->phys_proc_id); return sprintf(buf, "Core %u\n", tdata->cpu_core_id); } static ssize_t show_crit_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { u32 eax, edx; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct platform_data *pdata = dev_get_drvdata(dev); struct temp_data *tdata = pdata->core_data[attr->index]; rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx); return sprintf(buf, "%d\n", (eax >> 5) & 1); } static ssize_t show_tjmax(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct platform_data *pdata = dev_get_drvdata(dev); return sprintf(buf, "%d\n", pdata->core_data[attr->index]->tjmax); } static ssize_t show_ttarget(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct platform_data *pdata = dev_get_drvdata(dev); return sprintf(buf, "%d\n", pdata->core_data[attr->index]->ttarget); } static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { u32 eax, edx; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct platform_data *pdata = dev_get_drvdata(dev); struct temp_data *tdata = pdata->core_data[attr->index]; mutex_lock(&tdata->update_lock); /* Check whether the time interval has elapsed */ if (!tdata->valid || time_after(jiffies, tdata->last_updated + HZ)) { rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx); tdata->valid = 0; /* Check whether the data is valid */ if (eax & 0x80000000) { tdata->temp = tdata->tjmax - ((eax >> 16) & 0x7f) * 1000; tdata->valid = 1; } tdata->last_updated = jiffies; } mutex_unlock(&tdata->update_lock); return tdata->valid ? sprintf(buf, "%d\n", tdata->temp) : -EAGAIN; } struct tjmax_pci { unsigned int device; int tjmax; }; static const struct tjmax_pci tjmax_pci_table[] = { { 0x0708, 110000 }, /* CE41x0 (Sodaville ) */ { 0x0c72, 102000 }, /* Atom S1240 (Centerton) */ { 0x0c73, 95000 }, /* Atom S1220 (Centerton) */ { 0x0c75, 95000 }, /* Atom S1260 (Centerton) */ }; struct tjmax { char const *id; int tjmax; }; static const struct tjmax tjmax_table[] = { { "CPU 230", 100000 }, /* Model 0x1c, stepping 2 */ { "CPU 330", 125000 }, /* Model 0x1c, stepping 2 */ }; struct tjmax_model { u8 model; u8 mask; int tjmax; }; #define ANY 0xff static const struct tjmax_model tjmax_model_table[] = { { 0x1c, 10, 100000 }, /* D4xx, K4xx, N4xx, D5xx, K5xx, N5xx */ { 0x1c, ANY, 90000 }, /* Z5xx, N2xx, possibly others * Note: Also matches 230 and 330, * which are covered by tjmax_table */ { 0x26, ANY, 90000 }, /* Atom Tunnel Creek (Exx), Lincroft (Z6xx) * Note: TjMax for E6xxT is 110C, but CPU type * is undetectable by software */ { 0x27, ANY, 90000 }, /* Atom Medfield (Z2460) */ { 0x35, ANY, 90000 }, /* Atom Clover Trail/Cloverview (Z27x0) */ { 0x36, ANY, 100000 }, /* Atom Cedar Trail/Cedarview (N2xxx, D2xxx) * Also matches S12x0 (stepping 9), covered by * PCI table */ }; static int adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev) { /* The 100C is default for both mobile and non mobile CPUs */ int tjmax = 100000; int tjmax_ee = 85000; int usemsr_ee = 1; int err; u32 eax, edx; int i; struct pci_dev *host_bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)); /* * Explicit tjmax table entries override heuristics. * First try PCI host bridge IDs, followed by model ID strings * and model/stepping information. */ if (host_bridge && host_bridge->vendor == PCI_VENDOR_ID_INTEL) { for (i = 0; i < ARRAY_SIZE(tjmax_pci_table); i++) { if (host_bridge->device == tjmax_pci_table[i].device) return tjmax_pci_table[i].tjmax; } } for (i = 0; i < ARRAY_SIZE(tjmax_table); i++) { if (strstr(c->x86_model_id, tjmax_table[i].id)) return tjmax_table[i].tjmax; } for (i = 0; i < ARRAY_SIZE(tjmax_model_table); i++) { const struct tjmax_model *tm = &tjmax_model_table[i]; if (c->x86_model == tm->model && (tm->mask == ANY || c->x86_mask == tm->mask)) return tm->tjmax; } /* Early chips have no MSR for TjMax */ if (c->x86_model == 0xf && c->x86_mask < 4) usemsr_ee = 0; if (c->x86_model > 0xe && usemsr_ee) { u8 platform_id; /* * Now we can detect the mobile CPU using Intel provided table * http://softwarecommunity.intel.com/Wiki/Mobility/720.htm * For Core2 cores, check MSR 0x17, bit 28 1 = Mobile CPU */ err = rdmsr_safe_on_cpu(id, 0x17, &eax, &edx); if (err) { dev_warn(dev, "Unable to access MSR 0x17, assuming desktop" " CPU\n"); usemsr_ee = 0; } else if (c->x86_model < 0x17 && !(eax & 0x10000000)) { /* * Trust bit 28 up to Penryn, I could not find any * documentation on that; if you happen to know * someone at Intel please ask */ usemsr_ee = 0; } else { /* Platform ID bits 52:50 (EDX starts at bit 32) */ platform_id = (edx >> 18) & 0x7; /* * Mobile Penryn CPU seems to be platform ID 7 or 5 * (guesswork) */ if (c->x86_model == 0x17 && (platform_id == 5 || platform_id == 7)) { /* * If MSR EE bit is set, set it to 90 degrees C, * otherwise 105 degrees C */ tjmax_ee = 90000; tjmax = 105000; } } } if (usemsr_ee) { err = rdmsr_safe_on_cpu(id, 0xee, &eax, &edx); if (err) { dev_warn(dev, "Unable to access MSR 0xEE, for Tjmax, left" " at default\n"); } else if (eax & 0x40000000) { tjmax = tjmax_ee; } } else if (tjmax == 100000) { /* * If we don't use msr EE it means we are desktop CPU * (with exeception of Atom) */ dev_warn(dev, "Using relative temperature scale!\n"); } return tjmax; } static bool cpu_has_tjmax(struct cpuinfo_x86 *c) { u8 model = c->x86_model; return model > 0xe && model != 0x1c && model != 0x26 && model != 0x27 && model != 0x35 && model != 0x36; } static int get_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev) { int err; u32 eax, edx; u32 val; /* * A new feature of current Intel(R) processors, the * IA32_TEMPERATURE_TARGET contains the TjMax value */ err = rdmsr_safe_on_cpu(id, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx); if (err) { if (cpu_has_tjmax(c)) dev_warn(dev, "Unable to read TjMax from CPU %u\n", id); } else { val = (eax >> 16) & 0x7f; /* * If the TjMax is not plausible, an assumption * will be used */ if (val >= 85) { dev_dbg(dev, "TjMax is %d degrees C\n", val); return val * 1000; } } if (force_tjmax) { dev_notice(dev, "TjMax forced to %d degrees C by user\n", force_tjmax); return force_tjmax * 1000; } /* * An assumption is made for early CPUs and unreadable MSR. * NOTE: the calculated value may not be correct. */ return adjust_tjmax(c, id, dev); } static int create_name_attr(struct platform_data *pdata, struct device *dev) { sysfs_attr_init(&pdata->name_attr.attr); pdata->name_attr.attr.name = "name"; pdata->name_attr.attr.mode = S_IRUGO; pdata->name_attr.show = show_name; return device_create_file(dev, &pdata->name_attr); } static int create_core_attrs(struct temp_data *tdata, struct device *dev, int attr_no) { int err, i; static ssize_t (*const rd_ptr[TOTAL_ATTRS]) (struct device *dev, struct device_attribute *devattr, char *buf) = { show_label, show_crit_alarm, show_temp, show_tjmax, show_ttarget }; static const char *const names[TOTAL_ATTRS] = { "temp%d_label", "temp%d_crit_alarm", "temp%d_input", "temp%d_crit", "temp%d_max" }; for (i = 0; i < tdata->attr_size; i++) { snprintf(tdata->attr_name[i], CORETEMP_NAME_LENGTH, names[i], attr_no); sysfs_attr_init(&tdata->sd_attrs[i].dev_attr.attr); tdata->sd_attrs[i].dev_attr.attr.name = tdata->attr_name[i]; tdata->sd_attrs[i].dev_attr.attr.mode = S_IRUGO; tdata->sd_attrs[i].dev_attr.show = rd_ptr[i]; tdata->sd_attrs[i].index = attr_no; err = device_create_file(dev, &tdata->sd_attrs[i].dev_attr); if (err) goto exit_free; } return 0; exit_free: while (--i >= 0) device_remove_file(dev, &tdata->sd_attrs[i].dev_attr); return err; } static int chk_ucode_version(unsigned int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); /* * Check if we have problem with errata AE18 of Core processors: * Readings might stop update when processor visited too deep sleep, * fixed for stepping D0 (6EC). */ if (c->x86_model == 0xe && c->x86_mask < 0xc && c->microcode < 0x39) { pr_err("Errata AE18 not fixed, update BIOS or microcode of the CPU!\n"); return -ENODEV; } return 0; } static struct platform_device *coretemp_get_pdev(unsigned int cpu) { u16 phys_proc_id = TO_PHYS_ID(cpu); struct pdev_entry *p; mutex_lock(&pdev_list_mutex); list_for_each_entry(p, &pdev_list, list) if (p->phys_proc_id == phys_proc_id) { mutex_unlock(&pdev_list_mutex); return p->pdev; } mutex_unlock(&pdev_list_mutex); return NULL; } static struct temp_data *init_temp_data(unsigned int cpu, int pkg_flag) { struct temp_data *tdata; tdata = kzalloc(sizeof(struct temp_data), GFP_KERNEL); if (!tdata) return NULL; tdata->status_reg = pkg_flag ? MSR_IA32_PACKAGE_THERM_STATUS : MSR_IA32_THERM_STATUS; tdata->is_pkg_data = pkg_flag; tdata->cpu = cpu; tdata->cpu_core_id = TO_CORE_ID(cpu); tdata->attr_size = MAX_CORE_ATTRS; mutex_init(&tdata->update_lock); return tdata; } static int create_core_data(struct platform_device *pdev, unsigned int cpu, int pkg_flag) { struct temp_data *tdata; struct platform_data *pdata = platform_get_drvdata(pdev); struct cpuinfo_x86 *c = &cpu_data(cpu); u32 eax, edx; int err, attr_no; /* * Find attr number for sysfs: * We map the attr number to core id of the CPU * The attr number is always core id + 2 * The Pkgtemp will always show up as temp1_*, if available */ attr_no = pkg_flag ? 1 : TO_ATTR_NO(cpu); if (attr_no > MAX_CORE_DATA - 1) return -ERANGE; /* * Provide a single set of attributes for all HT siblings of a core * to avoid duplicate sensors (the processor ID and core ID of all * HT siblings of a core are the same). * Skip if a HT sibling of this core is already registered. * This is not an error. */ if (pdata->core_data[attr_no] != NULL) return 0; tdata = init_temp_data(cpu, pkg_flag); if (!tdata) return -ENOMEM; /* Test if we can access the status register */ err = rdmsr_safe_on_cpu(cpu, tdata->status_reg, &eax, &edx); if (err) goto exit_free; /* We can access status register. Get Critical Temperature */ tdata->tjmax = get_tjmax(c, cpu, &pdev->dev); /* * Read the still undocumented bits 8:15 of IA32_TEMPERATURE_TARGET. * The target temperature is available on older CPUs but not in this * register. Atoms don't have the register at all. */ if (c->x86_model > 0xe && c->x86_model != 0x1c) { err = rdmsr_safe_on_cpu(cpu, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx); if (!err) { tdata->ttarget = tdata->tjmax - ((eax >> 8) & 0xff) * 1000; tdata->attr_size++; } } pdata->core_data[attr_no] = tdata; /* Create sysfs interfaces */ err = create_core_attrs(tdata, &pdev->dev, attr_no); if (err) goto exit_free; return 0; exit_free: pdata->core_data[attr_no] = NULL; kfree(tdata); return err; } static void coretemp_add_core(unsigned int cpu, int pkg_flag) { struct platform_device *pdev = coretemp_get_pdev(cpu); int err; if (!pdev) return; err = create_core_data(pdev, cpu, pkg_flag); if (err) dev_err(&pdev->dev, "Adding Core %u failed\n", cpu); } static void coretemp_remove_core(struct platform_data *pdata, struct device *dev, int indx) { int i; struct temp_data *tdata = pdata->core_data[indx]; /* Remove the sysfs attributes */ for (i = 0; i < tdata->attr_size; i++) device_remove_file(dev, &tdata->sd_attrs[i].dev_attr); kfree(pdata->core_data[indx]); pdata->core_data[indx] = NULL; } static int coretemp_probe(struct platform_device *pdev) { struct platform_data *pdata; int err; /* Initialize the per-package data structures */ pdata = kzalloc(sizeof(struct platform_data), GFP_KERNEL); if (!pdata) return -ENOMEM; err = create_name_attr(pdata, &pdev->dev); if (err) goto exit_free; pdata->phys_proc_id = pdev->id; platform_set_drvdata(pdev, pdata); pdata->hwmon_dev = hwmon_device_register(&pdev->dev); if (IS_ERR(pdata->hwmon_dev)) { err = PTR_ERR(pdata->hwmon_dev); dev_err(&pdev->dev, "Class registration failed (%d)\n", err); goto exit_name; } return 0; exit_name: device_remove_file(&pdev->dev, &pdata->name_attr); exit_free: kfree(pdata); return err; } static int coretemp_remove(struct platform_device *pdev) { struct platform_data *pdata = platform_get_drvdata(pdev); int i; for (i = MAX_CORE_DATA - 1; i >= 0; --i) if (pdata->core_data[i]) coretemp_remove_core(pdata, &pdev->dev, i); device_remove_file(&pdev->dev, &pdata->name_attr); hwmon_device_unregister(pdata->hwmon_dev); kfree(pdata); return 0; } static struct platform_driver coretemp_driver = { .driver = { .owner = THIS_MODULE, .name = DRVNAME, }, .probe = coretemp_probe, .remove = coretemp_remove, }; static int coretemp_device_add(unsigned int cpu) { int err; struct platform_device *pdev; struct pdev_entry *pdev_entry; mutex_lock(&pdev_list_mutex); pdev = platform_device_alloc(DRVNAME, TO_PHYS_ID(cpu)); if (!pdev) { err = -ENOMEM; pr_err("Device allocation failed\n"); goto exit; } pdev_entry = kzalloc(sizeof(struct pdev_entry), GFP_KERNEL); if (!pdev_entry) { err = -ENOMEM; goto exit_device_put; } err = platform_device_add(pdev); if (err) { pr_err("Device addition failed (%d)\n", err); goto exit_device_free; } pdev_entry->pdev = pdev; pdev_entry->phys_proc_id = pdev->id; list_add_tail(&pdev_entry->list, &pdev_list); mutex_unlock(&pdev_list_mutex); return 0; exit_device_free: kfree(pdev_entry); exit_device_put: platform_device_put(pdev); exit: mutex_unlock(&pdev_list_mutex); return err; } static void coretemp_device_remove(unsigned int cpu) { struct pdev_entry *p, *n; u16 phys_proc_id = TO_PHYS_ID(cpu); mutex_lock(&pdev_list_mutex); list_for_each_entry_safe(p, n, &pdev_list, list) { if (p->phys_proc_id != phys_proc_id) continue; platform_device_unregister(p->pdev); list_del(&p->list); kfree(p); } mutex_unlock(&pdev_list_mutex); } static bool is_any_core_online(struct platform_data *pdata) { int i; /* Find online cores, except pkgtemp data */ for (i = MAX_CORE_DATA - 1; i >= 0; --i) { if (pdata->core_data[i] && !pdata->core_data[i]->is_pkg_data) { return true; } } return false; } static void get_core_online(unsigned int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); struct platform_device *pdev = coretemp_get_pdev(cpu); int err; /* * CPUID.06H.EAX[0] indicates whether the CPU has thermal * sensors. We check this bit only, all the early CPUs * without thermal sensors will be filtered out. */ if (!cpu_has(c, X86_FEATURE_DTHERM)) return; if (!pdev) { /* Check the microcode version of the CPU */ if (chk_ucode_version(cpu)) return; /* * Alright, we have DTS support. * We are bringing the _first_ core in this pkg * online. So, initialize per-pkg data structures and * then bring this core online. */ err = coretemp_device_add(cpu); if (err) return; /* * Check whether pkgtemp support is available. * If so, add interfaces for pkgtemp. */ if (cpu_has(c, X86_FEATURE_PTS)) coretemp_add_core(cpu, 1); } /* * Physical CPU device already exists. * So, just add interfaces for this core. */ coretemp_add_core(cpu, 0); } static void put_core_offline(unsigned int cpu) { int i, indx; struct platform_data *pdata; struct platform_device *pdev = coretemp_get_pdev(cpu); /* If the physical CPU device does not exist, just return */ if (!pdev) return; pdata = platform_get_drvdata(pdev); indx = TO_ATTR_NO(cpu); /* The core id is too big, just return */ if (indx > MAX_CORE_DATA - 1) return; if (pdata->core_data[indx] && pdata->core_data[indx]->cpu == cpu) coretemp_remove_core(pdata, &pdev->dev, indx); /* * If a HT sibling of a core is taken offline, but another HT sibling * of the same core is still online, register the alternate sibling. * This ensures that exactly one set of attributes is provided as long * as at least one HT sibling of a core is online. */ for_each_sibling(i, cpu) { if (i != cpu) { get_core_online(i); /* * Display temperature sensor data for one HT sibling * per core only, so abort the loop after one such * sibling has been found. */ break; } } /* * If all cores in this pkg are offline, remove the device. * coretemp_device_remove calls unregister_platform_device, * which in turn calls coretemp_remove. This removes the * pkgtemp entry and does other clean ups. */ if (!is_any_core_online(pdata)) coretemp_device_remove(cpu); } static int coretemp_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long) hcpu; switch (action) { case CPU_ONLINE: case CPU_DOWN_FAILED: get_core_online(cpu); break; case CPU_DOWN_PREPARE: put_core_offline(cpu); break; } return NOTIFY_OK; } static struct notifier_block coretemp_cpu_notifier __refdata = { .notifier_call = coretemp_cpu_callback, }; static const struct x86_cpu_id __initconst coretemp_ids[] = { { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_DTHERM }, {} }; MODULE_DEVICE_TABLE(x86cpu, coretemp_ids); static int __init coretemp_init(void) { int i, err; /* * CPUID.06H.EAX[0] indicates whether the CPU has thermal * sensors. We check this bit only, all the early CPUs * without thermal sensors will be filtered out. */ if (!x86_match_cpu(coretemp_ids)) return -ENODEV; err = platform_driver_register(&coretemp_driver); if (err) goto exit; get_online_cpus(); for_each_online_cpu(i) get_core_online(i); #ifndef CONFIG_HOTPLUG_CPU if (list_empty(&pdev_list)) { put_online_cpus(); err = -ENODEV; goto exit_driver_unreg; } #endif register_hotcpu_notifier(&coretemp_cpu_notifier); put_online_cpus(); return 0; #ifndef CONFIG_HOTPLUG_CPU exit_driver_unreg: platform_driver_unregister(&coretemp_driver); #endif exit: return err; } static void __exit coretemp_exit(void) { struct pdev_entry *p, *n; get_online_cpus(); unregister_hotcpu_notifier(&coretemp_cpu_notifier); mutex_lock(&pdev_list_mutex); list_for_each_entry_safe(p, n, &pdev_list, list) { platform_device_unregister(p->pdev); list_del(&p->list); kfree(p); } mutex_unlock(&pdev_list_mutex); put_online_cpus(); platform_driver_unregister(&coretemp_driver); } MODULE_AUTHOR("Rudolf Marek "); MODULE_DESCRIPTION("Intel Core temperature monitor"); MODULE_LICENSE("GPL"); module_init(coretemp_init) module_exit(coretemp_exit)