/* * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; enum asc7621_type { asc7621, asc7621a }; #define INTERVAL_HIGH (HZ + HZ / 2) #define INTERVAL_LOW (1 * 60 * HZ) #define PRI_NONE 0 #define PRI_LOW 1 #define PRI_HIGH 2 #define FIRST_CHIP asc7621 #define LAST_CHIP asc7621a struct asc7621_chip { char *name; enum asc7621_type chip_type; u8 company_reg; u8 company_id; u8 verstep_reg; u8 verstep_id; const unsigned short *addresses; }; static struct asc7621_chip asc7621_chips[] = { { .name = "asc7621", .chip_type = asc7621, .company_reg = 0x3e, .company_id = 0x61, .verstep_reg = 0x3f, .verstep_id = 0x6c, .addresses = normal_i2c, }, { .name = "asc7621a", .chip_type = asc7621a, .company_reg = 0x3e, .company_id = 0x61, .verstep_reg = 0x3f, .verstep_id = 0x6d, .addresses = normal_i2c, }, }; /* * Defines the highest register to be used, not the count. * The actual count will probably be smaller because of gaps * in the implementation (unused register locations). * This define will safely set the array size of both the parameter * and data arrays. * This comes from the data sheet register description table. */ #define LAST_REGISTER 0xff struct asc7621_data { struct i2c_client client; struct device *class_dev; struct mutex update_lock; int valid; /* !=0 if following fields are valid */ unsigned long last_high_reading; /* In jiffies */ unsigned long last_low_reading; /* In jiffies */ /* * Registers we care about occupy the corresponding index * in the array. Registers we don't care about are left * at 0. */ u8 reg[LAST_REGISTER + 1]; }; /* * Macro to get the parent asc7621_param structure * from a sensor_device_attribute passed into the * show/store functions. */ #define to_asc7621_param(_sda) \ container_of(_sda, struct asc7621_param, sda) /* * Each parameter to be retrieved needs an asc7621_param structure * allocated. It contains the sensor_device_attribute structure * and the control info needed to retrieve the value from the register map. */ struct asc7621_param { struct sensor_device_attribute sda; u8 priority; u8 msb[3]; u8 lsb[3]; u8 mask[3]; u8 shift[3]; }; /* * This is the map that ultimately indicates whether we'll be * retrieving a register value or not, and at what frequency. */ static u8 asc7621_register_priorities[255]; static struct asc7621_data *asc7621_update_device(struct device *dev); static inline u8 read_byte(struct i2c_client *client, u8 reg) { int res = i2c_smbus_read_byte_data(client, reg); if (res < 0) { dev_err(&client->dev, "Unable to read from register 0x%02x.\n", reg); return 0; }; return res & 0xff; } static inline int write_byte(struct i2c_client *client, u8 reg, u8 data) { int res = i2c_smbus_write_byte_data(client, reg, data); if (res < 0) { dev_err(&client->dev, "Unable to write value 0x%02x to register 0x%02x.\n", data, reg); }; return res; } /* * Data Handlers * Each function handles the formatting, storage * and retrieval of like parameters. */ #define SETUP_SHOW_data_param(d, a) \ struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ struct asc7621_data *data = asc7621_update_device(d); \ struct asc7621_param *param = to_asc7621_param(sda) #define SETUP_STORE_data_param(d, a) \ struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ struct i2c_client *client = to_i2c_client(d); \ struct asc7621_data *data = i2c_get_clientdata(client); \ struct asc7621_param *param = to_asc7621_param(sda) /* * u8 is just what it sounds like...an unsigned byte with no * special formatting. */ static ssize_t show_u8(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); return sprintf(buf, "%u\n", data->reg[param->msb[0]]); } static ssize_t store_u8(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; if (kstrtol(buf, 10, &reqval)) return -EINVAL; reqval = SENSORS_LIMIT(reqval, 0, 255); mutex_lock(&data->update_lock); data->reg[param->msb[0]] = reqval; write_byte(client, param->msb[0], reqval); mutex_unlock(&data->update_lock); return count; } /* * Many of the config values occupy only a few bits of a register. */ static ssize_t show_bitmask(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); return sprintf(buf, "%u\n", (data->reg[param->msb[0]] >> param-> shift[0]) & param->mask[0]); } static ssize_t store_bitmask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; u8 currval; if (kstrtol(buf, 10, &reqval)) return -EINVAL; reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]); reqval = (reqval & param->mask[0]) << param->shift[0]; mutex_lock(&data->update_lock); currval = read_byte(client, param->msb[0]); reqval |= (currval & ~(param->mask[0] << param->shift[0])); data->reg[param->msb[0]] = reqval; write_byte(client, param->msb[0], reqval); mutex_unlock(&data->update_lock); return count; } /* * 16 bit fan rpm values * reported by the device as the number of 11.111us periods (90khz) * between full fan rotations. Therefore... * RPM = (90000 * 60) / register value */ static ssize_t show_fan16(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u16 regval; mutex_lock(&data->update_lock); regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]]; mutex_unlock(&data->update_lock); return sprintf(buf, "%u\n", (regval == 0 ? -1 : (regval) == 0xffff ? 0 : 5400000 / regval)); } static ssize_t store_fan16(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; if (kstrtol(buf, 10, &reqval)) return -EINVAL; /* * If a minimum RPM of zero is requested, then we set the register to * 0xffff. This value allows the fan to be stopped completely without * generating an alarm. */ reqval = (reqval <= 0 ? 0xffff : SENSORS_LIMIT(5400000 / reqval, 0, 0xfffe)); mutex_lock(&data->update_lock); data->reg[param->msb[0]] = (reqval >> 8) & 0xff; data->reg[param->lsb[0]] = reqval & 0xff; write_byte(client, param->msb[0], data->reg[param->msb[0]]); write_byte(client, param->lsb[0], data->reg[param->lsb[0]]); mutex_unlock(&data->update_lock); return count; } /* * Voltages are scaled in the device so that the nominal voltage * is 3/4ths of the 0-255 range (i.e. 192). * If all voltages are 'normal' then all voltage registers will * read 0xC0. * * The data sheet provides us with the 3/4 scale value for each voltage * which is stored in in_scaling. The sda->index parameter value provides * the index into in_scaling. * * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts * respectively. That doesn't mean that's what the motherboard provides. :) */ static int asc7621_in_scaling[] = { 2500, 2250, 3300, 5000, 12000 }; static ssize_t show_in10(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u16 regval; u8 nr = sda->index; mutex_lock(&data->update_lock); regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]); mutex_unlock(&data->update_lock); /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */ regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2); return sprintf(buf, "%u\n", regval); } /* 8 bit voltage values (the mins and maxs) */ static ssize_t show_in8(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 nr = sda->index; return sprintf(buf, "%u\n", ((data->reg[param->msb[0]] * asc7621_in_scaling[nr]) / 0xc0)); } static ssize_t store_in8(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; u8 nr = sda->index; if (kstrtol(buf, 10, &reqval)) return -EINVAL; reqval = SENSORS_LIMIT(reqval, 0, 0xffff); reqval = reqval * 0xc0 / asc7621_in_scaling[nr]; reqval = SENSORS_LIMIT(reqval, 0, 0xff); mutex_lock(&data->update_lock); data->reg[param->msb[0]] = reqval; write_byte(client, param->msb[0], reqval); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp8(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000); } static ssize_t store_temp8(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; s8 temp; if (kstrtol(buf, 10, &reqval)) return -EINVAL; reqval = SENSORS_LIMIT(reqval, -127000, 127000); temp = reqval / 1000; mutex_lock(&data->update_lock); data->reg[param->msb[0]] = temp; write_byte(client, param->msb[0], temp); mutex_unlock(&data->update_lock); return count; } /* * Temperatures that occupy 2 bytes always have the whole * number of degrees in the MSB with some part of the LSB * indicating fractional degrees. */ /* mmmmmmmm.llxxxxxx */ static ssize_t show_temp10(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 msb, lsb; int temp; mutex_lock(&data->update_lock); msb = data->reg[param->msb[0]]; lsb = (data->reg[param->lsb[0]] >> 6) & 0x03; temp = (((s8) msb) * 1000) + (lsb * 250); mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", temp); } /* mmmmmm.ll */ static ssize_t show_temp62(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 regval = data->reg[param->msb[0]]; int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250); return sprintf(buf, "%d\n", temp); } static ssize_t store_temp62(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval, i, f; s8 temp; if (kstrtol(buf, 10, &reqval)) return -EINVAL; reqval = SENSORS_LIMIT(reqval, -32000, 31750); i = reqval / 1000; f = reqval - (i * 1000); temp = i << 2; temp |= f / 250; mutex_lock(&data->update_lock); data->reg[param->msb[0]] = temp; write_byte(client, param->msb[0], temp); mutex_unlock(&data->update_lock); return count; } /* * The aSC7621 doesn't provide an "auto_point2". Instead, you * specify the auto_point1 and a range. To keep with the sysfs * hwmon specs, we synthesize the auto_point_2 from them. */ static u32 asc7621_range_map[] = { 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000, 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000, }; static ssize_t show_ap2_temp(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); long auto_point1; u8 regval; int temp; mutex_lock(&data->update_lock); auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000; regval = ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]); temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)]; mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", temp); } static ssize_t store_ap2_temp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval, auto_point1; int i; u8 currval, newval = 0; if (kstrtol(buf, 10, &reqval)) return -EINVAL; mutex_lock(&data->update_lock); auto_point1 = data->reg[param->msb[1]] * 1000; reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000); for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) { if (reqval >= auto_point1 + asc7621_range_map[i]) { newval = i; break; } } newval = (newval & param->mask[0]) << param->shift[0]; currval = read_byte(client, param->msb[0]); newval |= (currval & ~(param->mask[0] << param->shift[0])); data->reg[param->msb[0]] = newval; write_byte(client, param->msb[0], newval); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_ac(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 config, altbit, regval; u8 map[] = { 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10, 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f }; mutex_lock(&data->update_lock); config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; regval = config | (altbit << 3); mutex_unlock(&data->update_lock); return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]); } static ssize_t store_pwm_ac(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); unsigned long reqval; u8 currval, config, altbit, newval; u16 map[] = { 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06, 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, }; if (kstrtoul(buf, 10, &reqval)) return -EINVAL; if (reqval > 31) return -EINVAL; reqval = map[reqval]; if (reqval == 0xff) return -EINVAL; config = reqval & 0x07; altbit = (reqval >> 3) & 0x01; config = (config & param->mask[0]) << param->shift[0]; altbit = (altbit & param->mask[1]) << param->shift[1]; mutex_lock(&data->update_lock); currval = read_byte(client, param->msb[0]); newval = config | (currval & ~(param->mask[0] << param->shift[0])); newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); data->reg[param->msb[0]] = newval; write_byte(client, param->msb[0], newval); mutex_unlock(&data->update_lock); return count; } static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 config, altbit, minoff, val, newval; mutex_lock(&data->update_lock); config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2]; mutex_unlock(&data->update_lock); val = config | (altbit << 3); newval = 0; if (val == 3 || val >= 10) newval = 255; else if (val == 4) newval = 0; else if (val == 7) newval = 1; else if (minoff == 1) newval = 2; else newval = 3; return sprintf(buf, "%u\n", newval); } static ssize_t store_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; u8 currval, config, altbit, newval, minoff = 255; if (kstrtol(buf, 10, &reqval)) return -EINVAL; switch (reqval) { case 0: newval = 0x04; break; case 1: newval = 0x07; break; case 2: newval = 0x00; minoff = 1; break; case 3: newval = 0x00; minoff = 0; break; case 255: newval = 0x03; break; default: return -EINVAL; } config = newval & 0x07; altbit = (newval >> 3) & 0x01; mutex_lock(&data->update_lock); config = (config & param->mask[0]) << param->shift[0]; altbit = (altbit & param->mask[1]) << param->shift[1]; currval = read_byte(client, param->msb[0]); newval = config | (currval & ~(param->mask[0] << param->shift[0])); newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); data->reg[param->msb[0]] = newval; write_byte(client, param->msb[0], newval); if (minoff < 255) { minoff = (minoff & param->mask[2]) << param->shift[2]; currval = read_byte(client, param->msb[2]); newval = minoff | (currval & ~(param->mask[2] << param->shift[2])); data->reg[param->msb[2]] = newval; write_byte(client, param->msb[2], newval); } mutex_unlock(&data->update_lock); return count; } static u32 asc7621_pwm_freq_map[] = { 10, 15, 23, 30, 38, 47, 62, 94, 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000 }; static ssize_t show_pwm_freq(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 regval = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; regval = SENSORS_LIMIT(regval, 0, 15); return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]); } static ssize_t store_pwm_freq(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); unsigned long reqval; u8 currval, newval = 255; int i; if (kstrtoul(buf, 10, &reqval)) return -EINVAL; for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) { if (reqval == asc7621_pwm_freq_map[i]) { newval = i; break; } } if (newval == 255) return -EINVAL; newval = (newval & param->mask[0]) << param->shift[0]; mutex_lock(&data->update_lock); currval = read_byte(client, param->msb[0]); newval |= (currval & ~(param->mask[0] << param->shift[0])); data->reg[param->msb[0]] = newval; write_byte(client, param->msb[0], newval); mutex_unlock(&data->update_lock); return count; } static u32 asc7621_pwm_auto_spinup_map[] = { 0, 100, 250, 400, 700, 1000, 2000, 4000 }; static ssize_t show_pwm_ast(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 regval = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; regval = SENSORS_LIMIT(regval, 0, 7); return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]); } static ssize_t store_pwm_ast(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; u8 currval, newval = 255; u32 i; if (kstrtol(buf, 10, &reqval)) return -EINVAL; for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) { if (reqval == asc7621_pwm_auto_spinup_map[i]) { newval = i; break; } } if (newval == 255) return -EINVAL; newval = (newval & param->mask[0]) << param->shift[0]; mutex_lock(&data->update_lock); currval = read_byte(client, param->msb[0]); newval |= (currval & ~(param->mask[0] << param->shift[0])); data->reg[param->msb[0]] = newval; write_byte(client, param->msb[0], newval); mutex_unlock(&data->update_lock); return count; } static u32 asc7621_temp_smoothing_time_map[] = { 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800 }; static ssize_t show_temp_st(struct device *dev, struct device_attribute *attr, char *buf) { SETUP_SHOW_data_param(dev, attr); u8 regval = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; regval = SENSORS_LIMIT(regval, 0, 7); return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]); } static ssize_t store_temp_st(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { SETUP_STORE_data_param(dev, attr); long reqval; u8 currval, newval = 255; u32 i; if (kstrtol(buf, 10, &reqval)) return -EINVAL; for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) { if (reqval == asc7621_temp_smoothing_time_map[i]) { newval = i; break; } } if (newval == 255) return -EINVAL; newval = (newval & param->mask[0]) << param->shift[0]; mutex_lock(&data->update_lock); currval = read_byte(client, param->msb[0]); newval |= (currval & ~(param->mask[0] << param->shift[0])); data->reg[param->msb[0]] = newval; write_byte(client, param->msb[0], newval); mutex_unlock(&data->update_lock); return count; } /* * End of data handlers * * These defines do nothing more than make the table easier * to read when wrapped at column 80. */ /* * Creates a variable length array inititalizer. * VAA(1,3,5,7) would produce {1,3,5,7} */ #define VAA(args...) {args} #define PREAD(name, n, pri, rm, rl, m, s, r) \ {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \ .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ .shift[0] = s,} #define PWRITE(name, n, pri, rm, rl, m, s, r) \ {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ .shift[0] = s,} /* * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift * were created using the VAA macro. */ #define PWRITEM(name, n, pri, rm, rl, m, s, r) \ {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,} static struct asc7621_param asc7621_params[] = { PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10), PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10), PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10), PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10), PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10), PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8), PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8), PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8), PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8), PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8), PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8), PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8), PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8), PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8), PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8), PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask), PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask), PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask), PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask), PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask), PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16), PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16), PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16), PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16), PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16), PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16), PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16), PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16), PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask), PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask), PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask), PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask), PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10), PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10), PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10), PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10), PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10), PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10), PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10), PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10), PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8), PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8), PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8), PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8), PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8), PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8), PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8), PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8), PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask), PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask), PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask), PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask), PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask), PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask), PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask), PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask), PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask), PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask), PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask), PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask), PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st), PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st), PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st), PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st), PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, bitmask), PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, bitmask), PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, bitmask), PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, bitmask), PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, bitmask), PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, bitmask), PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, bitmask), PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, bitmask), PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8), PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8), PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8), PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8), PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0), VAA(0x0f), VAA(4), ap2_temp), PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0), VAA(0x0f), VAA(4), ap2_temp), PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0), VAA(0x0f), VAA(4), ap2_temp), PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0), VAA(0x0f), VAA(4), ap2_temp), PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8), PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8), PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8), PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8), PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask), PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask), PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask), PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask), PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62), PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62), PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8), PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8), PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8), PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask), PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask), PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask), PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0), VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable), PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0), VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable), PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0), VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable), PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0), VAA(0x07, 0x01), VAA(5, 3), pwm_ac), PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0), VAA(0x07, 0x01), VAA(5, 3), pwm_ac), PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0), VAA(0x07, 0x01), VAA(5, 3), pwm_ac), PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8), PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8), PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8), PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8), PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8), PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8), PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq), PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq), PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq), PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask), PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask), PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask), PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast), PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast), PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast), PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask), PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask), PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask), PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask), PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask), PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask), }; static struct asc7621_data *asc7621_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct asc7621_data *data = i2c_get_clientdata(client); int i; /* * The asc7621 chips guarantee consistent reads of multi-byte values * regardless of the order of the reads. No special logic is needed * so we can just read the registers in whatever order they appear * in the asc7621_params array. */ mutex_lock(&data->update_lock); /* Read all the high priority registers */ if (!data->valid || time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) { for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) { if (asc7621_register_priorities[i] == PRI_HIGH) { data->reg[i] = i2c_smbus_read_byte_data(client, i) & 0xff; } } data->last_high_reading = jiffies; }; /* last_reading */ /* Read all the low priority registers. */ if (!data->valid || time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) { for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { if (asc7621_register_priorities[i] == PRI_LOW) { data->reg[i] = i2c_smbus_read_byte_data(client, i) & 0xff; } } data->last_low_reading = jiffies; }; /* last_reading */ data->valid = 1; mutex_unlock(&data->update_lock); return data; } /* * Standard detection and initialization below * * Helper function that checks if an address is valid * for a particular chip. */ static inline int valid_address_for_chip(int chip_type, int address) { int i; for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END; i++) { if (asc7621_chips[chip_type].addresses[i] == address) return 1; } return 0; } static void asc7621_init_client(struct i2c_client *client) { int value; /* Warn if part was not "READY" */ value = read_byte(client, 0x40); if (value & 0x02) { dev_err(&client->dev, "Client (%d,0x%02x) config is locked.\n", i2c_adapter_id(client->adapter), client->addr); }; if (!(value & 0x04)) { dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n", i2c_adapter_id(client->adapter), client->addr); }; /* * Start monitoring * * Try to clear LOCK, Set START, save everything else */ value = (value & ~0x02) | 0x01; write_byte(client, 0x40, value & 0xff); } static int asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct asc7621_data *data; int i, err; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data), GFP_KERNEL); if (data == NULL) return -ENOMEM; i2c_set_clientdata(client, data); data->valid = 0; mutex_init(&data->update_lock); /* Initialize the asc7621 chip */ asc7621_init_client(client); /* Create the sysfs entries */ for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { err = device_create_file(&client->dev, &(asc7621_params[i].sda.dev_attr)); if (err) goto exit_remove; } data->class_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->class_dev)) { err = PTR_ERR(data->class_dev); goto exit_remove; } return 0; exit_remove: for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { device_remove_file(&client->dev, &(asc7621_params[i].sda.dev_attr)); } return err; } static int asc7621_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int company, verstep, chip_index; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) { if (!valid_address_for_chip(chip_index, client->addr)) continue; company = read_byte(client, asc7621_chips[chip_index].company_reg); verstep = read_byte(client, asc7621_chips[chip_index].verstep_reg); if (company == asc7621_chips[chip_index].company_id && verstep == asc7621_chips[chip_index].verstep_id) { strlcpy(info->type, asc7621_chips[chip_index].name, I2C_NAME_SIZE); dev_info(&adapter->dev, "Matched %s at 0x%02x\n", asc7621_chips[chip_index].name, client->addr); return 0; } } return -ENODEV; } static int asc7621_remove(struct i2c_client *client) { struct asc7621_data *data = i2c_get_clientdata(client); int i; hwmon_device_unregister(data->class_dev); for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { device_remove_file(&client->dev, &(asc7621_params[i].sda.dev_attr)); } return 0; } static const struct i2c_device_id asc7621_id[] = { {"asc7621", asc7621}, {"asc7621a", asc7621a}, {}, }; MODULE_DEVICE_TABLE(i2c, asc7621_id); static struct i2c_driver asc7621_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "asc7621", }, .probe = asc7621_probe, .remove = asc7621_remove, .id_table = asc7621_id, .detect = asc7621_detect, .address_list = normal_i2c, }; static int __init sm_asc7621_init(void) { int i, j; /* * Collect all the registers needed into a single array. * This way, if a register isn't actually used for anything, * we don't retrieve it. */ for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++) asc7621_register_priorities[asc7621_params[i].msb[j]] = asc7621_params[i].priority; for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++) asc7621_register_priorities[asc7621_params[i].lsb[j]] = asc7621_params[i].priority; } return i2c_add_driver(&asc7621_driver); } static void __exit sm_asc7621_exit(void) { i2c_del_driver(&asc7621_driver); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("George Joseph"); MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver"); module_init(sm_asc7621_init); module_exit(sm_asc7621_exit);