// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_pt.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_drm_client.h" #include "xe_gt.h" #include "xe_gt_tlb_invalidation.h" #include "xe_migrate.h" #include "xe_pt_types.h" #include "xe_pt_walk.h" #include "xe_res_cursor.h" #include "xe_trace.h" #include "xe_ttm_stolen_mgr.h" #include "xe_vm.h" struct xe_pt_dir { struct xe_pt pt; /** @dir: Directory structure for the xe_pt_walk functionality */ struct xe_ptw_dir dir; }; #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr)) #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr) #else #define xe_pt_set_addr(__xe_pt, __addr) #define xe_pt_addr(__xe_pt) 0ull #endif static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48}; static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48}; #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1) static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt) { return container_of(pt, struct xe_pt_dir, pt); } static struct xe_pt *xe_pt_entry(struct xe_pt_dir *pt_dir, unsigned int index) { return container_of(pt_dir->dir.entries[index], struct xe_pt, base); } static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm, unsigned int level) { u16 pat_index = tile_to_xe(tile)->pat.idx[XE_CACHE_WB]; u8 id = tile->id; if (!vm->scratch_bo[id]) return 0; if (level > 0) return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo, 0, pat_index); return vm->pt_ops->pte_encode_bo(vm->scratch_bo[id], 0, pat_index, 0); } /** * xe_pt_create() - Create a page-table. * @vm: The vm to create for. * @tile: The tile to create for. * @level: The page-table level. * * Allocate and initialize a single struct xe_pt metadata structure. Also * create the corresponding page-table bo, but don't initialize it. If the * level is grater than zero, then it's assumed to be a directory page- * table and the directory structure is also allocated and initialized to * NULL pointers. * * Return: A valid struct xe_pt pointer on success, Pointer error code on * error. */ struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile, unsigned int level) { struct xe_pt *pt; struct xe_bo *bo; size_t size; int err; size = !level ? sizeof(struct xe_pt) : sizeof(struct xe_pt_dir) + XE_PDES * sizeof(struct xe_ptw *); pt = kzalloc(size, GFP_KERNEL); if (!pt) return ERR_PTR(-ENOMEM); bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K, ttm_bo_type_kernel, XE_BO_CREATE_VRAM_IF_DGFX(tile) | XE_BO_CREATE_IGNORE_MIN_PAGE_SIZE_BIT | XE_BO_CREATE_PINNED_BIT | XE_BO_CREATE_NO_RESV_EVICT | XE_BO_PAGETABLE); if (IS_ERR(bo)) { err = PTR_ERR(bo); goto err_kfree; } pt->bo = bo; pt->level = level; pt->base.dir = level ? &as_xe_pt_dir(pt)->dir : NULL; if (vm->xef) xe_drm_client_add_bo(vm->xef->client, pt->bo); xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL); return pt; err_kfree: kfree(pt); return ERR_PTR(err); } /** * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero * entries. * @tile: The tile the scratch pagetable of which to use. * @vm: The vm we populate for. * @pt: The pagetable the bo of which to initialize. * * Populate the page-table bo of @pt with entries pointing into the tile's * scratch page-table tree if any. Otherwise populate with zeros. */ void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm, struct xe_pt *pt) { struct iosys_map *map = &pt->bo->vmap; u64 empty; int i; if (!vm->scratch_bo[tile->id]) { /* * FIXME: Some memory is allocated already allocated to zero? * Find out which memory that is and avoid this memset... */ xe_map_memset(vm->xe, map, 0, 0, SZ_4K); } else { empty = __xe_pt_empty_pte(tile, vm, pt->level); for (i = 0; i < XE_PDES; i++) xe_pt_write(vm->xe, map, i, empty); } } /** * xe_pt_shift() - Return the ilog2 value of the size of the address range of * a page-table at a certain level. * @level: The level. * * Return: The ilog2 value of the size of the address range of a page-table * at level @level. */ unsigned int xe_pt_shift(unsigned int level) { return XE_PTE_SHIFT + XE_PDE_SHIFT * level; } /** * xe_pt_destroy() - Destroy a page-table tree. * @pt: The root of the page-table tree to destroy. * @flags: vm flags. Currently unused. * @deferred: List head of lockless list for deferred putting. NULL for * immediate putting. * * Puts the page-table bo, recursively calls xe_pt_destroy on all children * and finally frees @pt. TODO: Can we remove the @flags argument? */ void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred) { int i; if (!pt) return; XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list)); xe_bo_unpin(pt->bo); xe_bo_put_deferred(pt->bo, deferred); if (pt->level > 0 && pt->num_live) { struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); for (i = 0; i < XE_PDES; i++) { if (xe_pt_entry(pt_dir, i)) xe_pt_destroy(xe_pt_entry(pt_dir, i), flags, deferred); } } kfree(pt); } /** * xe_pt_create_scratch() - Setup a scratch memory pagetable tree for the * given tile and vm. * @xe: xe device. * @tile: tile to set up for. * @vm: vm to set up for. * * Sets up a pagetable tree with one page-table per level and a single * leaf bo. All pagetable entries point to the single page-table or, * for L0, the single bo one level below. * * Return: 0 on success, negative error code on error. */ int xe_pt_create_scratch(struct xe_device *xe, struct xe_tile *tile, struct xe_vm *vm) { u8 id = tile->id; unsigned int flags; int i; /* * So we don't need to worry about 64K TLB hints when dealing with * scratch entires, rather keep the scratch page in system memory on * platforms where 64K pages are needed for VRAM. */ flags = XE_BO_CREATE_PINNED_BIT; if (vm->flags & XE_VM_FLAG_64K) flags |= XE_BO_CREATE_SYSTEM_BIT; else flags |= XE_BO_CREATE_VRAM_IF_DGFX(tile); vm->scratch_bo[id] = xe_bo_create_pin_map(xe, tile, vm, SZ_4K, ttm_bo_type_kernel, flags); if (IS_ERR(vm->scratch_bo[id])) return PTR_ERR(vm->scratch_bo[id]); xe_map_memset(vm->xe, &vm->scratch_bo[id]->vmap, 0, 0, vm->scratch_bo[id]->size); for (i = 0; i < vm->pt_root[id]->level; i++) { vm->scratch_pt[id][i] = xe_pt_create(vm, tile, i); if (IS_ERR(vm->scratch_pt[id][i])) return PTR_ERR(vm->scratch_pt[id][i]); xe_pt_populate_empty(tile, vm, vm->scratch_pt[id][i]); } return 0; } /** * DOC: Pagetable building * * Below we use the term "page-table" for both page-directories, containing * pointers to lower level page-directories or page-tables, and level 0 * page-tables that contain only page-table-entries pointing to memory pages. * * When inserting an address range in an already existing page-table tree * there will typically be a set of page-tables that are shared with other * address ranges, and a set that are private to this address range. * The set of shared page-tables can be at most two per level, * and those can't be updated immediately because the entries of those * page-tables may still be in use by the gpu for other mappings. Therefore * when inserting entries into those, we instead stage those insertions by * adding insertion data into struct xe_vm_pgtable_update structures. This * data, (subtrees for the cpu and page-table-entries for the gpu) is then * added in a separate commit step. CPU-data is committed while still under the * vm lock, the object lock and for userptr, the notifier lock in read mode. * The GPU async data is committed either by the GPU or CPU after fulfilling * relevant dependencies. * For non-shared page-tables (and, in fact, for shared ones that aren't * existing at the time of staging), we add the data in-place without the * special update structures. This private part of the page-table tree will * remain disconnected from the vm page-table tree until data is committed to * the shared page tables of the vm tree in the commit phase. */ struct xe_pt_update { /** @update: The update structure we're building for this parent. */ struct xe_vm_pgtable_update *update; /** @parent: The parent. Used to detect a parent change. */ struct xe_pt *parent; /** @preexisting: Whether the parent was pre-existing or allocated */ bool preexisting; }; struct xe_pt_stage_bind_walk { /** base: The base class. */ struct xe_pt_walk base; /* Input parameters for the walk */ /** @vm: The vm we're building for. */ struct xe_vm *vm; /** @tile: The tile we're building for. */ struct xe_tile *tile; /** @default_pte: PTE flag only template. No address is associated */ u64 default_pte; /** @dma_offset: DMA offset to add to the PTE. */ u64 dma_offset; /** * @needs_64k: This address range enforces 64K alignment and * granularity. */ bool needs_64K; /** * @vma: VMA being mapped */ struct xe_vma *vma; /* Also input, but is updated during the walk*/ /** @curs: The DMA address cursor. */ struct xe_res_cursor *curs; /** @va_curs_start: The Virtual address coresponding to @curs->start */ u64 va_curs_start; /* Output */ struct xe_walk_update { /** @wupd.entries: Caller provided storage. */ struct xe_vm_pgtable_update *entries; /** @wupd.num_used_entries: Number of update @entries used. */ unsigned int num_used_entries; /** @wupd.updates: Tracks the update entry at a given level */ struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1]; } wupd; /* Walk state */ /** * @l0_end_addr: The end address of the current l0 leaf. Used for * 64K granularity detection. */ u64 l0_end_addr; /** @addr_64K: The start address of the current 64K chunk. */ u64 addr_64K; /** @found_64: Whether @add_64K actually points to a 64K chunk. */ bool found_64K; }; static int xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent, pgoff_t offset, bool alloc_entries) { struct xe_pt_update *upd = &wupd->updates[parent->level]; struct xe_vm_pgtable_update *entry; /* * For *each level*, we could only have one active * struct xt_pt_update at any one time. Once we move on to a * new parent and page-directory, the old one is complete, and * updates are either already stored in the build tree or in * @wupd->entries */ if (likely(upd->parent == parent)) return 0; upd->parent = parent; upd->preexisting = true; if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1) return -EINVAL; entry = wupd->entries + wupd->num_used_entries++; upd->update = entry; entry->ofs = offset; entry->pt_bo = parent->bo; entry->pt = parent; entry->flags = 0; entry->qwords = 0; if (alloc_entries) { entry->pt_entries = kmalloc_array(XE_PDES, sizeof(*entry->pt_entries), GFP_KERNEL); if (!entry->pt_entries) return -ENOMEM; } return 0; } /* * NOTE: This is a very frequently called function so we allow ourselves * to annotate (using branch prediction hints) the fastpath of updating a * non-pre-existing pagetable with leaf ptes. */ static int xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent, pgoff_t offset, struct xe_pt *xe_child, u64 pte) { struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level]; struct xe_pt_update *child_upd = xe_child ? &xe_walk->wupd.updates[xe_child->level] : NULL; int ret; ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true); if (unlikely(ret)) return ret; /* * Register this new pagetable so that it won't be recognized as * a shared pagetable by a subsequent insertion. */ if (unlikely(child_upd)) { child_upd->update = NULL; child_upd->parent = xe_child; child_upd->preexisting = false; } if (likely(!upd->preexisting)) { /* Continue building a non-connected subtree. */ struct iosys_map *map = &parent->bo->vmap; if (unlikely(xe_child)) parent->base.dir->entries[offset] = &xe_child->base; xe_pt_write(xe_walk->vm->xe, map, offset, pte); parent->num_live++; } else { /* Shared pt. Stage update. */ unsigned int idx; struct xe_vm_pgtable_update *entry = upd->update; idx = offset - entry->ofs; entry->pt_entries[idx].pt = xe_child; entry->pt_entries[idx].pte = pte; entry->qwords++; } return 0; } static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level, struct xe_pt_stage_bind_walk *xe_walk) { u64 size, dma; if (level > MAX_HUGEPTE_LEVEL) return false; /* Does the virtual range requested cover a huge pte? */ if (!xe_pt_covers(addr, next, level, &xe_walk->base)) return false; /* Does the DMA segment cover the whole pte? */ if (next - xe_walk->va_curs_start > xe_walk->curs->size) return false; /* null VMA's do not have dma addresses */ if (xe_vma_is_null(xe_walk->vma)) return true; /* Is the DMA address huge PTE size aligned? */ size = next - addr; dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs); return IS_ALIGNED(dma, size); } /* * Scan the requested mapping to check whether it can be done entirely * with 64K PTEs. */ static bool xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) { struct xe_res_cursor curs = *xe_walk->curs; if (!IS_ALIGNED(addr, SZ_64K)) return false; if (next > xe_walk->l0_end_addr) return false; /* null VMA's do not have dma addresses */ if (xe_vma_is_null(xe_walk->vma)) return true; xe_res_next(&curs, addr - xe_walk->va_curs_start); for (; addr < next; addr += SZ_64K) { if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K) return false; xe_res_next(&curs, SZ_64K); } return addr == next; } /* * For non-compact "normal" 4K level-0 pagetables, we want to try to group * addresses together in 64K-contigous regions to add a 64K TLB hint for the * device to the PTE. * This function determines whether the address is part of such a * segment. For VRAM in normal pagetables, this is strictly necessary on * some devices. */ static bool xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk) { /* Address is within an already found 64k region */ if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K) return true; xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk); xe_walk->addr_64K = addr; return xe_walk->found_64K; } static int xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset, unsigned int level, u64 addr, u64 next, struct xe_ptw **child, enum page_walk_action *action, struct xe_pt_walk *walk) { struct xe_pt_stage_bind_walk *xe_walk = container_of(walk, typeof(*xe_walk), base); u16 pat_index = xe_walk->vma->pat_index; struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base); struct xe_vm *vm = xe_walk->vm; struct xe_pt *xe_child; bool covers; int ret = 0; u64 pte; /* Is this a leaf entry ?*/ if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) { struct xe_res_cursor *curs = xe_walk->curs; bool is_null = xe_vma_is_null(xe_walk->vma); XE_WARN_ON(xe_walk->va_curs_start != addr); pte = vm->pt_ops->pte_encode_vma(is_null ? 0 : xe_res_dma(curs) + xe_walk->dma_offset, xe_walk->vma, pat_index, level); pte |= xe_walk->default_pte; /* * Set the XE_PTE_PS64 hint if possible, otherwise if * this device *requires* 64K PTE size for VRAM, fail. */ if (level == 0 && !xe_parent->is_compact) { if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) pte |= XE_PTE_PS64; else if (XE_WARN_ON(xe_walk->needs_64K)) return -EINVAL; } ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte); if (unlikely(ret)) return ret; if (!is_null) xe_res_next(curs, next - addr); xe_walk->va_curs_start = next; xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level); *action = ACTION_CONTINUE; return ret; } /* * Descending to lower level. Determine if we need to allocate a * new page table or -directory, which we do if there is no * previous one or there is one we can completely replace. */ if (level == 1) { walk->shifts = xe_normal_pt_shifts; xe_walk->l0_end_addr = next; } covers = xe_pt_covers(addr, next, level, &xe_walk->base); if (covers || !*child) { u64 flags = 0; xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1); if (IS_ERR(xe_child)) return PTR_ERR(xe_child); xe_pt_set_addr(xe_child, round_down(addr, 1ull << walk->shifts[level])); if (!covers) xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child); *child = &xe_child->base; /* * Prefer the compact pagetable layout for L0 if possible. * TODO: Suballocate the pt bo to avoid wasting a lot of * memory. */ if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 && covers && xe_pt_scan_64K(addr, next, xe_walk)) { walk->shifts = xe_compact_pt_shifts; flags |= XE_PDE_64K; xe_child->is_compact = true; } pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags; ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child, pte); } *action = ACTION_SUBTREE; return ret; } static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = { .pt_entry = xe_pt_stage_bind_entry, }; /** * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address * range. * @tile: The tile we're building for. * @vma: The vma indicating the address range. * @entries: Storage for the update entries used for connecting the tree to * the main tree at commit time. * @num_entries: On output contains the number of @entries used. * * This function builds a disconnected page-table tree for a given address * range. The tree is connected to the main vm tree for the gpu using * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind(). * The function builds xe_vm_pgtable_update structures for already existing * shared page-tables, and non-existing shared and non-shared page-tables * are built and populated directly. * * Return 0 on success, negative error code on error. */ static int xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma, struct xe_vm_pgtable_update *entries, u32 *num_entries) { struct xe_device *xe = tile_to_xe(tile); struct xe_bo *bo = xe_vma_bo(vma); bool is_devmem = !xe_vma_is_userptr(vma) && bo && (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)); struct xe_res_cursor curs; struct xe_pt_stage_bind_walk xe_walk = { .base = { .ops = &xe_pt_stage_bind_ops, .shifts = xe_normal_pt_shifts, .max_level = XE_PT_HIGHEST_LEVEL, }, .vm = xe_vma_vm(vma), .tile = tile, .curs = &curs, .va_curs_start = xe_vma_start(vma), .vma = vma, .wupd.entries = entries, .needs_64K = (xe_vma_vm(vma)->flags & XE_VM_FLAG_64K) && is_devmem, }; struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; int ret; if (vma && (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) && (is_devmem || !IS_DGFX(xe))) xe_walk.default_pte |= XE_USM_PPGTT_PTE_AE; if (is_devmem) { xe_walk.default_pte |= XE_PPGTT_PTE_DM; xe_walk.dma_offset = vram_region_gpu_offset(bo->ttm.resource); } if (!xe_vma_has_no_bo(vma) && xe_bo_is_stolen(bo)) xe_walk.dma_offset = xe_ttm_stolen_gpu_offset(xe_bo_device(bo)); xe_bo_assert_held(bo); if (!xe_vma_is_null(vma)) { if (xe_vma_is_userptr(vma)) xe_res_first_sg(vma->userptr.sg, 0, xe_vma_size(vma), &curs); else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo)) xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma), xe_vma_size(vma), &curs); else xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma), xe_vma_size(vma), &curs); } else { curs.size = xe_vma_size(vma); } ret = xe_pt_walk_range(&pt->base, pt->level, xe_vma_start(vma), xe_vma_end(vma), &xe_walk.base); *num_entries = xe_walk.wupd.num_used_entries; return ret; } /** * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a * shared pagetable. * @addr: The start address within the non-shared pagetable. * @end: The end address within the non-shared pagetable. * @level: The level of the non-shared pagetable. * @walk: Walk info. The function adjusts the walk action. * @action: next action to perform (see enum page_walk_action) * @offset: Ignored on input, First non-shared entry on output. * @end_offset: Ignored on input, Last non-shared entry + 1 on output. * * A non-shared page-table has some entries that belong to the address range * and others that don't. This function determines the entries that belong * fully to the address range. Depending on level, some entries may * partially belong to the address range (that can't happen at level 0). * The function detects that and adjust those offsets to not include those * partial entries. Iff it does detect partial entries, we know that there must * be shared page tables also at lower levels, so it adjusts the walk action * accordingly. * * Return: true if there were non-shared entries, false otherwise. */ static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level, struct xe_pt_walk *walk, enum page_walk_action *action, pgoff_t *offset, pgoff_t *end_offset) { u64 size = 1ull << walk->shifts[level]; *offset = xe_pt_offset(addr, level, walk); *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset; if (!level) return true; /* * If addr or next are not size aligned, there are shared pts at lower * level, so in that case traverse down the subtree */ *action = ACTION_CONTINUE; if (!IS_ALIGNED(addr, size)) { *action = ACTION_SUBTREE; (*offset)++; } if (!IS_ALIGNED(end, size)) { *action = ACTION_SUBTREE; (*end_offset)--; } return *end_offset > *offset; } struct xe_pt_zap_ptes_walk { /** @base: The walk base-class */ struct xe_pt_walk base; /* Input parameters for the walk */ /** @tile: The tile we're building for */ struct xe_tile *tile; /* Output */ /** @needs_invalidate: Whether we need to invalidate TLB*/ bool needs_invalidate; }; static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset, unsigned int level, u64 addr, u64 next, struct xe_ptw **child, enum page_walk_action *action, struct xe_pt_walk *walk) { struct xe_pt_zap_ptes_walk *xe_walk = container_of(walk, typeof(*xe_walk), base); struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); pgoff_t end_offset; XE_WARN_ON(!*child); XE_WARN_ON(!level && xe_child->is_compact); /* * Note that we're called from an entry callback, and we're dealing * with the child of that entry rather than the parent, so need to * adjust level down. */ if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset, &end_offset)) { xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap, offset * sizeof(u64), 0, (end_offset - offset) * sizeof(u64)); xe_walk->needs_invalidate = true; } return 0; } static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = { .pt_entry = xe_pt_zap_ptes_entry, }; /** * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range * @tile: The tile we're zapping for. * @vma: GPU VMA detailing address range. * * Eviction and Userptr invalidation needs to be able to zap the * gpu ptes of a given address range in pagefaulting mode. * In order to be able to do that, that function needs access to the shared * page-table entrieaso it can either clear the leaf PTEs or * clear the pointers to lower-level page-tables. The caller is required * to hold the necessary locks to ensure neither the page-table connectivity * nor the page-table entries of the range is updated from under us. * * Return: Whether ptes were actually updated and a TLB invalidation is * required. */ bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma) { struct xe_pt_zap_ptes_walk xe_walk = { .base = { .ops = &xe_pt_zap_ptes_ops, .shifts = xe_normal_pt_shifts, .max_level = XE_PT_HIGHEST_LEVEL, }, .tile = tile, }; struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; if (!(vma->tile_present & BIT(tile->id))) return false; (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), xe_vma_end(vma), &xe_walk.base); return xe_walk.needs_invalidate; } static void xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, struct iosys_map *map, void *data, u32 qword_ofs, u32 num_qwords, const struct xe_vm_pgtable_update *update) { struct xe_pt_entry *ptes = update->pt_entries; u64 *ptr = data; u32 i; for (i = 0; i < num_qwords; i++) { if (map) xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * sizeof(u64), u64, ptes[i].pte); else ptr[i] = ptes[i].pte; } } static void xe_pt_abort_bind(struct xe_vma *vma, struct xe_vm_pgtable_update *entries, u32 num_entries) { u32 i, j; for (i = 0; i < num_entries; i++) { if (!entries[i].pt_entries) continue; for (j = 0; j < entries[i].qwords; j++) xe_pt_destroy(entries[i].pt_entries[j].pt, xe_vma_vm(vma)->flags, NULL); kfree(entries[i].pt_entries); } } static void xe_pt_commit_locks_assert(struct xe_vma *vma) { struct xe_vm *vm = xe_vma_vm(vma); lockdep_assert_held(&vm->lock); if (xe_vma_is_userptr(vma)) lockdep_assert_held_read(&vm->userptr.notifier_lock); else if (!xe_vma_is_null(vma)) dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv); xe_vm_assert_held(vm); } static void xe_pt_commit_bind(struct xe_vma *vma, struct xe_vm_pgtable_update *entries, u32 num_entries, bool rebind, struct llist_head *deferred) { u32 i, j; xe_pt_commit_locks_assert(vma); for (i = 0; i < num_entries; i++) { struct xe_pt *pt = entries[i].pt; struct xe_pt_dir *pt_dir; if (!rebind) pt->num_live += entries[i].qwords; if (!pt->level) { kfree(entries[i].pt_entries); continue; } pt_dir = as_xe_pt_dir(pt); for (j = 0; j < entries[i].qwords; j++) { u32 j_ = j + entries[i].ofs; struct xe_pt *newpte = entries[i].pt_entries[j].pt; if (xe_pt_entry(pt_dir, j_)) xe_pt_destroy(xe_pt_entry(pt_dir, j_), xe_vma_vm(vma)->flags, deferred); pt_dir->dir.entries[j_] = &newpte->base; } kfree(entries[i].pt_entries); } } static int xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma, struct xe_vm_pgtable_update *entries, u32 *num_entries, bool rebind) { int err; *num_entries = 0; err = xe_pt_stage_bind(tile, vma, entries, num_entries); if (!err) xe_tile_assert(tile, *num_entries); else /* abort! */ xe_pt_abort_bind(vma, entries, *num_entries); return err; } static void xe_vm_dbg_print_entries(struct xe_device *xe, const struct xe_vm_pgtable_update *entries, unsigned int num_entries) #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)) { unsigned int i; vm_dbg(&xe->drm, "%u entries to update\n", num_entries); for (i = 0; i < num_entries; i++) { const struct xe_vm_pgtable_update *entry = &entries[i]; struct xe_pt *xe_pt = entry->pt; u64 page_size = 1ull << xe_pt_shift(xe_pt->level); u64 end; u64 start; xe_assert(xe, !entry->pt->is_compact); start = entry->ofs * page_size; end = start + page_size * entry->qwords; vm_dbg(&xe->drm, "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n", i, xe_pt->level, entry->ofs, entry->qwords, xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0); } } #else {} #endif #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT static int xe_pt_userptr_inject_eagain(struct xe_vma *vma) { u32 divisor = vma->userptr.divisor ? vma->userptr.divisor : 2; static u32 count; if (count++ % divisor == divisor - 1) { struct xe_vm *vm = xe_vma_vm(vma); vma->userptr.divisor = divisor << 1; spin_lock(&vm->userptr.invalidated_lock); list_move_tail(&vma->userptr.invalidate_link, &vm->userptr.invalidated); spin_unlock(&vm->userptr.invalidated_lock); return true; } return false; } #else static bool xe_pt_userptr_inject_eagain(struct xe_vma *vma) { return false; } #endif /** * struct xe_pt_migrate_pt_update - Callback argument for pre-commit callbacks * @base: Base we derive from. * @bind: Whether this is a bind or an unbind operation. A bind operation * makes the pre-commit callback error with -EAGAIN if it detects a * pending invalidation. * @locked: Whether the pre-commit callback locked the userptr notifier lock * and it needs unlocking. */ struct xe_pt_migrate_pt_update { struct xe_migrate_pt_update base; bool bind; bool locked; }; /* * This function adds the needed dependencies to a page-table update job * to make sure racing jobs for separate bind engines don't race writing * to the same page-table range, wreaking havoc. Initially use a single * fence for the entire VM. An optimization would use smaller granularity. */ static int xe_pt_vm_dependencies(struct xe_sched_job *job, struct xe_range_fence_tree *rftree, u64 start, u64 last) { struct xe_range_fence *rtfence; struct dma_fence *fence; int err; rtfence = xe_range_fence_tree_first(rftree, start, last); while (rtfence) { fence = rtfence->fence; if (!dma_fence_is_signaled(fence)) { /* * Is this a CPU update? GPU is busy updating, so return * an error */ if (!job) return -ETIME; dma_fence_get(fence); err = drm_sched_job_add_dependency(&job->drm, fence); if (err) return err; } rtfence = xe_range_fence_tree_next(rtfence, start, last); } return 0; } static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update) { struct xe_range_fence_tree *rftree = &xe_vma_vm(pt_update->vma)->rftree[pt_update->tile_id]; return xe_pt_vm_dependencies(pt_update->job, rftree, pt_update->start, pt_update->last); } static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update) { struct xe_pt_migrate_pt_update *userptr_update = container_of(pt_update, typeof(*userptr_update), base); struct xe_vma *vma = pt_update->vma; unsigned long notifier_seq = vma->userptr.notifier_seq; struct xe_vm *vm = xe_vma_vm(vma); int err = xe_pt_vm_dependencies(pt_update->job, &vm->rftree[pt_update->tile_id], pt_update->start, pt_update->last); if (err) return err; userptr_update->locked = false; /* * Wait until nobody is running the invalidation notifier, and * since we're exiting the loop holding the notifier lock, * nobody can proceed invalidating either. * * Note that we don't update the vma->userptr.notifier_seq since * we don't update the userptr pages. */ do { down_read(&vm->userptr.notifier_lock); if (!mmu_interval_read_retry(&vma->userptr.notifier, notifier_seq)) break; up_read(&vm->userptr.notifier_lock); if (userptr_update->bind) return -EAGAIN; notifier_seq = mmu_interval_read_begin(&vma->userptr.notifier); } while (true); /* Inject errors to test_whether they are handled correctly */ if (userptr_update->bind && xe_pt_userptr_inject_eagain(vma)) { up_read(&vm->userptr.notifier_lock); return -EAGAIN; } userptr_update->locked = true; return 0; } static const struct xe_migrate_pt_update_ops bind_ops = { .populate = xe_vm_populate_pgtable, .pre_commit = xe_pt_pre_commit, }; static const struct xe_migrate_pt_update_ops userptr_bind_ops = { .populate = xe_vm_populate_pgtable, .pre_commit = xe_pt_userptr_pre_commit, }; struct invalidation_fence { struct xe_gt_tlb_invalidation_fence base; struct xe_gt *gt; struct xe_vma *vma; struct dma_fence *fence; struct dma_fence_cb cb; struct work_struct work; }; static const char * invalidation_fence_get_driver_name(struct dma_fence *dma_fence) { return "xe"; } static const char * invalidation_fence_get_timeline_name(struct dma_fence *dma_fence) { return "invalidation_fence"; } static const struct dma_fence_ops invalidation_fence_ops = { .get_driver_name = invalidation_fence_get_driver_name, .get_timeline_name = invalidation_fence_get_timeline_name, }; static void invalidation_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) { struct invalidation_fence *ifence = container_of(cb, struct invalidation_fence, cb); trace_xe_gt_tlb_invalidation_fence_cb(&ifence->base); if (!ifence->fence->error) { queue_work(system_wq, &ifence->work); } else { ifence->base.base.error = ifence->fence->error; dma_fence_signal(&ifence->base.base); dma_fence_put(&ifence->base.base); } dma_fence_put(ifence->fence); } static void invalidation_fence_work_func(struct work_struct *w) { struct invalidation_fence *ifence = container_of(w, struct invalidation_fence, work); trace_xe_gt_tlb_invalidation_fence_work_func(&ifence->base); xe_gt_tlb_invalidation_vma(ifence->gt, &ifence->base, ifence->vma); } static int invalidation_fence_init(struct xe_gt *gt, struct invalidation_fence *ifence, struct dma_fence *fence, struct xe_vma *vma) { int ret; trace_xe_gt_tlb_invalidation_fence_create(&ifence->base); spin_lock_irq(>->tlb_invalidation.lock); dma_fence_init(&ifence->base.base, &invalidation_fence_ops, >->tlb_invalidation.lock, gt->tlb_invalidation.fence_context, ++gt->tlb_invalidation.fence_seqno); spin_unlock_irq(>->tlb_invalidation.lock); INIT_LIST_HEAD(&ifence->base.link); dma_fence_get(&ifence->base.base); /* Ref for caller */ ifence->fence = fence; ifence->gt = gt; ifence->vma = vma; INIT_WORK(&ifence->work, invalidation_fence_work_func); ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb); if (ret == -ENOENT) { dma_fence_put(ifence->fence); /* Usually dropped in CB */ invalidation_fence_work_func(&ifence->work); } else if (ret) { dma_fence_put(&ifence->base.base); /* Caller ref */ dma_fence_put(&ifence->base.base); /* Creation ref */ } xe_gt_assert(gt, !ret || ret == -ENOENT); return ret && ret != -ENOENT ? ret : 0; } static void xe_pt_calc_rfence_interval(struct xe_vma *vma, struct xe_pt_migrate_pt_update *update, struct xe_vm_pgtable_update *entries, u32 num_entries) { int i, level = 0; for (i = 0; i < num_entries; i++) { const struct xe_vm_pgtable_update *entry = &entries[i]; if (entry->pt->level > level) level = entry->pt->level; } /* Greedy (non-optimal) calculation but simple */ update->base.start = ALIGN_DOWN(xe_vma_start(vma), 0x1ull << xe_pt_shift(level)); update->base.last = ALIGN(xe_vma_end(vma), 0x1ull << xe_pt_shift(level)) - 1; } /** * __xe_pt_bind_vma() - Build and connect a page-table tree for the vma * address range. * @tile: The tile to bind for. * @vma: The vma to bind. * @q: The exec_queue with which to do pipelined page-table updates. * @syncs: Entries to sync on before binding the built tree to the live vm tree. * @num_syncs: Number of @sync entries. * @rebind: Whether we're rebinding this vma to the same address range without * an unbind in-between. * * This function builds a page-table tree (see xe_pt_stage_bind() for more * information on page-table building), and the xe_vm_pgtable_update entries * abstracting the operations needed to attach it to the main vm tree. It * then takes the relevant locks and updates the metadata side of the main * vm tree and submits the operations for pipelined attachment of the * gpu page-table to the vm main tree, (which can be done either by the * cpu and the GPU). * * Return: A valid dma-fence representing the pipelined attachment operation * on success, an error pointer on error. */ struct dma_fence * __xe_pt_bind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, struct xe_sync_entry *syncs, u32 num_syncs, bool rebind) { struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; struct xe_pt_migrate_pt_update bind_pt_update = { .base = { .ops = xe_vma_is_userptr(vma) ? &userptr_bind_ops : &bind_ops, .vma = vma, .tile_id = tile->id, }, .bind = true, }; struct xe_vm *vm = xe_vma_vm(vma); u32 num_entries; struct dma_fence *fence; struct invalidation_fence *ifence = NULL; struct xe_range_fence *rfence; int err; bind_pt_update.locked = false; xe_bo_assert_held(xe_vma_bo(vma)); xe_vm_assert_held(vm); vm_dbg(&xe_vma_vm(vma)->xe->drm, "Preparing bind, with range [%llx...%llx) engine %p.\n", xe_vma_start(vma), xe_vma_end(vma), q); err = xe_pt_prepare_bind(tile, vma, entries, &num_entries, rebind); if (err) goto err; xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); xe_pt_calc_rfence_interval(vma, &bind_pt_update, entries, num_entries); /* * If rebind, we have to invalidate TLB on !LR vms to invalidate * cached PTEs point to freed memory. on LR vms this is done * automatically when the context is re-enabled by the rebind worker, * or in fault mode it was invalidated on PTE zapping. * * If !rebind, and scratch enabled VMs, there is a chance the scratch * PTE is already cached in the TLB so it needs to be invalidated. * on !LR VMs this is done in the ring ops preceding a batch, but on * non-faulting LR, in particular on user-space batch buffer chaining, * it needs to be done here. */ if ((rebind && !xe_vm_in_lr_mode(vm) && !vm->batch_invalidate_tlb) || (!rebind && vm->scratch_bo[tile->id] && xe_vm_in_preempt_fence_mode(vm))) { ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); if (!ifence) return ERR_PTR(-ENOMEM); } rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); if (!rfence) { kfree(ifence); return ERR_PTR(-ENOMEM); } fence = xe_migrate_update_pgtables(tile->migrate, vm, xe_vma_bo(vma), q, entries, num_entries, syncs, num_syncs, &bind_pt_update.base); if (!IS_ERR(fence)) { bool last_munmap_rebind = vma->gpuva.flags & XE_VMA_LAST_REBIND; LLIST_HEAD(deferred); int err; err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, &xe_range_fence_kfree_ops, bind_pt_update.base.start, bind_pt_update.base.last, fence); if (err) dma_fence_wait(fence, false); /* TLB invalidation must be done before signaling rebind */ if (ifence) { int err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma); if (err) { dma_fence_put(fence); kfree(ifence); return ERR_PTR(err); } fence = &ifence->base.base; } /* add shared fence now for pagetable delayed destroy */ dma_resv_add_fence(xe_vm_resv(vm), fence, !rebind && last_munmap_rebind ? DMA_RESV_USAGE_KERNEL : DMA_RESV_USAGE_BOOKKEEP); if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, DMA_RESV_USAGE_BOOKKEEP); xe_pt_commit_bind(vma, entries, num_entries, rebind, bind_pt_update.locked ? &deferred : NULL); /* This vma is live (again?) now */ vma->tile_present |= BIT(tile->id); if (bind_pt_update.locked) { vma->userptr.initial_bind = true; up_read(&vm->userptr.notifier_lock); xe_bo_put_commit(&deferred); } if (!rebind && last_munmap_rebind && xe_vm_in_preempt_fence_mode(vm)) xe_vm_queue_rebind_worker(vm); } else { kfree(rfence); kfree(ifence); if (bind_pt_update.locked) up_read(&vm->userptr.notifier_lock); xe_pt_abort_bind(vma, entries, num_entries); } return fence; err: return ERR_PTR(err); } struct xe_pt_stage_unbind_walk { /** @base: The pagewalk base-class. */ struct xe_pt_walk base; /* Input parameters for the walk */ /** @tile: The tile we're unbinding from. */ struct xe_tile *tile; /** * @modified_start: Walk range start, modified to include any * shared pagetables that we're the only user of and can thus * treat as private. */ u64 modified_start; /** @modified_end: Walk range start, modified like @modified_start. */ u64 modified_end; /* Output */ /* @wupd: Structure to track the page-table updates we're building */ struct xe_walk_update wupd; }; /* * Check whether this range is the only one populating this pagetable, * and in that case, update the walk range checks so that higher levels don't * view us as a shared pagetable. */ static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level, const struct xe_pt *child, enum page_walk_action *action, struct xe_pt_walk *walk) { struct xe_pt_stage_unbind_walk *xe_walk = container_of(walk, typeof(*xe_walk), base); unsigned int shift = walk->shifts[level]; u64 size = 1ull << shift; if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) && ((next - addr) >> shift) == child->num_live) { u64 size = 1ull << walk->shifts[level + 1]; *action = ACTION_CONTINUE; if (xe_walk->modified_start >= addr) xe_walk->modified_start = round_down(addr, size); if (xe_walk->modified_end <= next) xe_walk->modified_end = round_up(next, size); return true; } return false; } static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset, unsigned int level, u64 addr, u64 next, struct xe_ptw **child, enum page_walk_action *action, struct xe_pt_walk *walk) { struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); XE_WARN_ON(!*child); XE_WARN_ON(!level && xe_child->is_compact); xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk); return 0; } static int xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset, unsigned int level, u64 addr, u64 next, struct xe_ptw **child, enum page_walk_action *action, struct xe_pt_walk *walk) { struct xe_pt_stage_unbind_walk *xe_walk = container_of(walk, typeof(*xe_walk), base); struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base); pgoff_t end_offset; u64 size = 1ull << walk->shifts[--level]; if (!IS_ALIGNED(addr, size)) addr = xe_walk->modified_start; if (!IS_ALIGNED(next, size)) next = xe_walk->modified_end; /* Parent == *child is the root pt. Don't kill it. */ if (parent != *child && xe_pt_check_kill(addr, next, level, xe_child, action, walk)) return 0; if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset, &end_offset)) return 0; (void)xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, false); xe_walk->wupd.updates[level].update->qwords = end_offset - offset; return 0; } static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = { .pt_entry = xe_pt_stage_unbind_entry, .pt_post_descend = xe_pt_stage_unbind_post_descend, }; /** * xe_pt_stage_unbind() - Build page-table update structures for an unbind * operation * @tile: The tile we're unbinding for. * @vma: The vma we're unbinding. * @entries: Caller-provided storage for the update structures. * * Builds page-table update structures for an unbind operation. The function * will attempt to remove all page-tables that we're the only user * of, and for that to work, the unbind operation must be committed in the * same critical section that blocks racing binds to the same page-table tree. * * Return: The number of entries used. */ static unsigned int xe_pt_stage_unbind(struct xe_tile *tile, struct xe_vma *vma, struct xe_vm_pgtable_update *entries) { struct xe_pt_stage_unbind_walk xe_walk = { .base = { .ops = &xe_pt_stage_unbind_ops, .shifts = xe_normal_pt_shifts, .max_level = XE_PT_HIGHEST_LEVEL, }, .tile = tile, .modified_start = xe_vma_start(vma), .modified_end = xe_vma_end(vma), .wupd.entries = entries, }; struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id]; (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma), xe_vma_end(vma), &xe_walk.base); return xe_walk.wupd.num_used_entries; } static void xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile, struct iosys_map *map, void *ptr, u32 qword_ofs, u32 num_qwords, const struct xe_vm_pgtable_update *update) { struct xe_vma *vma = pt_update->vma; u64 empty = __xe_pt_empty_pte(tile, xe_vma_vm(vma), update->pt->level); int i; if (map && map->is_iomem) for (i = 0; i < num_qwords; ++i) xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) * sizeof(u64), u64, empty); else if (map) memset64(map->vaddr + qword_ofs * sizeof(u64), empty, num_qwords); else memset64(ptr, empty, num_qwords); } static void xe_pt_commit_unbind(struct xe_vma *vma, struct xe_vm_pgtable_update *entries, u32 num_entries, struct llist_head *deferred) { u32 j; xe_pt_commit_locks_assert(vma); for (j = 0; j < num_entries; ++j) { struct xe_vm_pgtable_update *entry = &entries[j]; struct xe_pt *pt = entry->pt; pt->num_live -= entry->qwords; if (pt->level) { struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt); u32 i; for (i = entry->ofs; i < entry->ofs + entry->qwords; i++) { if (xe_pt_entry(pt_dir, i)) xe_pt_destroy(xe_pt_entry(pt_dir, i), xe_vma_vm(vma)->flags, deferred); pt_dir->dir.entries[i] = NULL; } } } } static const struct xe_migrate_pt_update_ops unbind_ops = { .populate = xe_migrate_clear_pgtable_callback, .pre_commit = xe_pt_pre_commit, }; static const struct xe_migrate_pt_update_ops userptr_unbind_ops = { .populate = xe_migrate_clear_pgtable_callback, .pre_commit = xe_pt_userptr_pre_commit, }; /** * __xe_pt_unbind_vma() - Disconnect and free a page-table tree for the vma * address range. * @tile: The tile to unbind for. * @vma: The vma to unbind. * @q: The exec_queue with which to do pipelined page-table updates. * @syncs: Entries to sync on before disconnecting the tree to be destroyed. * @num_syncs: Number of @sync entries. * * This function builds a the xe_vm_pgtable_update entries abstracting the * operations needed to detach the page-table tree to be destroyed from the * man vm tree. * It then takes the relevant locks and submits the operations for * pipelined detachment of the gpu page-table from the vm main tree, * (which can be done either by the cpu and the GPU), Finally it frees the * detached page-table tree. * * Return: A valid dma-fence representing the pipelined detachment operation * on success, an error pointer on error. */ struct dma_fence * __xe_pt_unbind_vma(struct xe_tile *tile, struct xe_vma *vma, struct xe_exec_queue *q, struct xe_sync_entry *syncs, u32 num_syncs) { struct xe_vm_pgtable_update entries[XE_VM_MAX_LEVEL * 2 + 1]; struct xe_pt_migrate_pt_update unbind_pt_update = { .base = { .ops = xe_vma_is_userptr(vma) ? &userptr_unbind_ops : &unbind_ops, .vma = vma, .tile_id = tile->id, }, }; struct xe_vm *vm = xe_vma_vm(vma); u32 num_entries; struct dma_fence *fence = NULL; struct invalidation_fence *ifence; struct xe_range_fence *rfence; LLIST_HEAD(deferred); xe_bo_assert_held(xe_vma_bo(vma)); xe_vm_assert_held(vm); vm_dbg(&xe_vma_vm(vma)->xe->drm, "Preparing unbind, with range [%llx...%llx) engine %p.\n", xe_vma_start(vma), xe_vma_end(vma), q); num_entries = xe_pt_stage_unbind(tile, vma, entries); xe_tile_assert(tile, num_entries <= ARRAY_SIZE(entries)); xe_vm_dbg_print_entries(tile_to_xe(tile), entries, num_entries); xe_pt_calc_rfence_interval(vma, &unbind_pt_update, entries, num_entries); ifence = kzalloc(sizeof(*ifence), GFP_KERNEL); if (!ifence) return ERR_PTR(-ENOMEM); rfence = kzalloc(sizeof(*rfence), GFP_KERNEL); if (!rfence) { kfree(ifence); return ERR_PTR(-ENOMEM); } /* * Even if we were already evicted and unbind to destroy, we need to * clear again here. The eviction may have updated pagetables at a * lower level, because it needs to be more conservative. */ fence = xe_migrate_update_pgtables(tile->migrate, vm, NULL, q ? q : vm->q[tile->id], entries, num_entries, syncs, num_syncs, &unbind_pt_update.base); if (!IS_ERR(fence)) { int err; err = xe_range_fence_insert(&vm->rftree[tile->id], rfence, &xe_range_fence_kfree_ops, unbind_pt_update.base.start, unbind_pt_update.base.last, fence); if (err) dma_fence_wait(fence, false); /* TLB invalidation must be done before signaling unbind */ err = invalidation_fence_init(tile->primary_gt, ifence, fence, vma); if (err) { dma_fence_put(fence); kfree(ifence); return ERR_PTR(err); } fence = &ifence->base.base; /* add shared fence now for pagetable delayed destroy */ dma_resv_add_fence(xe_vm_resv(vm), fence, DMA_RESV_USAGE_BOOKKEEP); /* This fence will be installed by caller when doing eviction */ if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence, DMA_RESV_USAGE_BOOKKEEP); xe_pt_commit_unbind(vma, entries, num_entries, unbind_pt_update.locked ? &deferred : NULL); vma->tile_present &= ~BIT(tile->id); } else { kfree(rfence); kfree(ifence); } if (!vma->tile_present) list_del_init(&vma->combined_links.rebind); if (unbind_pt_update.locked) { xe_tile_assert(tile, xe_vma_is_userptr(vma)); if (!vma->tile_present) { spin_lock(&vm->userptr.invalidated_lock); list_del_init(&vma->userptr.invalidate_link); spin_unlock(&vm->userptr.invalidated_lock); } up_read(&vm->userptr.notifier_lock); xe_bo_put_commit(&deferred); } return fence; }