// SPDX-License-Identifier: MIT /* * Copyright © 2024 Intel Corporation */ #include #include #include #include #include #include #include #include "xe_hmm.h" #include "xe_vm.h" #include "xe_bo.h" static u64 xe_npages_in_range(unsigned long start, unsigned long end) { return (end - start) >> PAGE_SHIFT; } /** * xe_mark_range_accessed() - mark a range is accessed, so core mm * have such information for memory eviction or write back to * hard disk * @range: the range to mark * @write: if write to this range, we mark pages in this range * as dirty */ static void xe_mark_range_accessed(struct hmm_range *range, bool write) { struct page *page; u64 i, npages; npages = xe_npages_in_range(range->start, range->end); for (i = 0; i < npages; i++) { page = hmm_pfn_to_page(range->hmm_pfns[i]); if (write) set_page_dirty_lock(page); mark_page_accessed(page); } } static int xe_alloc_sg(struct xe_device *xe, struct sg_table *st, struct hmm_range *range, struct rw_semaphore *notifier_sem) { unsigned long i, npages, hmm_pfn; unsigned long num_chunks = 0; int ret; /* HMM docs says this is needed. */ ret = down_read_interruptible(notifier_sem); if (ret) return ret; if (mmu_interval_read_retry(range->notifier, range->notifier_seq)) { up_read(notifier_sem); return -EAGAIN; } npages = xe_npages_in_range(range->start, range->end); for (i = 0; i < npages;) { unsigned long len; hmm_pfn = range->hmm_pfns[i]; xe_assert(xe, hmm_pfn & HMM_PFN_VALID); len = 1UL << hmm_pfn_to_map_order(hmm_pfn); /* If order > 0 the page may extend beyond range->start */ len -= (hmm_pfn & ~HMM_PFN_FLAGS) & (len - 1); i += len; num_chunks++; } up_read(notifier_sem); return sg_alloc_table(st, num_chunks, GFP_KERNEL); } /** * xe_build_sg() - build a scatter gather table for all the physical pages/pfn * in a hmm_range. dma-map pages if necessary. dma-address is save in sg table * and will be used to program GPU page table later. * @xe: the xe device who will access the dma-address in sg table * @range: the hmm range that we build the sg table from. range->hmm_pfns[] * has the pfn numbers of pages that back up this hmm address range. * @st: pointer to the sg table. * @notifier_sem: The xe notifier lock. * @write: whether we write to this range. This decides dma map direction * for system pages. If write we map it bi-diretional; otherwise * DMA_TO_DEVICE * * All the contiguous pfns will be collapsed into one entry in * the scatter gather table. This is for the purpose of efficiently * programming GPU page table. * * The dma_address in the sg table will later be used by GPU to * access memory. So if the memory is system memory, we need to * do a dma-mapping so it can be accessed by GPU/DMA. * * FIXME: This function currently only support pages in system * memory. If the memory is GPU local memory (of the GPU who * is going to access memory), we need gpu dpa (device physical * address), and there is no need of dma-mapping. This is TBD. * * FIXME: dma-mapping for peer gpu device to access remote gpu's * memory. Add this when you support p2p * * This function allocates the storage of the sg table. It is * caller's responsibility to free it calling sg_free_table. * * Returns 0 if successful; -ENOMEM if fails to allocate memory */ static int xe_build_sg(struct xe_device *xe, struct hmm_range *range, struct sg_table *st, struct rw_semaphore *notifier_sem, bool write) { unsigned long npages = xe_npages_in_range(range->start, range->end); struct device *dev = xe->drm.dev; struct scatterlist *sgl; struct page *page; unsigned long i, j; lockdep_assert_held(notifier_sem); i = 0; for_each_sg(st->sgl, sgl, st->nents, j) { unsigned long hmm_pfn, size; hmm_pfn = range->hmm_pfns[i]; page = hmm_pfn_to_page(hmm_pfn); xe_assert(xe, !is_device_private_page(page)); size = 1UL << hmm_pfn_to_map_order(hmm_pfn); size -= page_to_pfn(page) & (size - 1); i += size; if (unlikely(j == st->nents - 1)) { if (i > npages) size -= (i - npages); sg_mark_end(sgl); } sg_set_page(sgl, page, size << PAGE_SHIFT, 0); } xe_assert(xe, i == npages); return dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING); } static void xe_hmm_userptr_set_mapped(struct xe_userptr_vma *uvma) { struct xe_userptr *userptr = &uvma->userptr; struct xe_vm *vm = xe_vma_vm(&uvma->vma); lockdep_assert_held_write(&vm->lock); lockdep_assert_held(&vm->userptr.notifier_lock); mutex_lock(&userptr->unmap_mutex); xe_assert(vm->xe, !userptr->mapped); userptr->mapped = true; mutex_unlock(&userptr->unmap_mutex); } void xe_hmm_userptr_unmap(struct xe_userptr_vma *uvma) { struct xe_userptr *userptr = &uvma->userptr; struct xe_vma *vma = &uvma->vma; bool write = !xe_vma_read_only(vma); struct xe_vm *vm = xe_vma_vm(vma); struct xe_device *xe = vm->xe; if (!lockdep_is_held_type(&vm->userptr.notifier_lock, 0) && !lockdep_is_held_type(&vm->lock, 0) && !(vma->gpuva.flags & XE_VMA_DESTROYED)) { /* Don't unmap in exec critical section. */ xe_vm_assert_held(vm); /* Don't unmap while mapping the sg. */ lockdep_assert_held(&vm->lock); } mutex_lock(&userptr->unmap_mutex); if (userptr->sg && userptr->mapped) dma_unmap_sgtable(xe->drm.dev, userptr->sg, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0); userptr->mapped = false; mutex_unlock(&userptr->unmap_mutex); } /** * xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr * @uvma: the userptr vma which hold the scatter gather table * * With function xe_userptr_populate_range, we allocate storage of * the userptr sg table. This is a helper function to free this * sg table, and dma unmap the address in the table. */ void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma) { struct xe_userptr *userptr = &uvma->userptr; xe_assert(xe_vma_vm(&uvma->vma)->xe, userptr->sg); xe_hmm_userptr_unmap(uvma); sg_free_table(userptr->sg); userptr->sg = NULL; } /** * xe_hmm_userptr_populate_range() - Populate physical pages of a virtual * address range * * @uvma: userptr vma which has information of the range to populate. * @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller. * * This function populate the physical pages of a virtual * address range. The populated physical pages is saved in * userptr's sg table. It is similar to get_user_pages but call * hmm_range_fault. * * This function also read mmu notifier sequence # ( * mmu_interval_read_begin), for the purpose of later * comparison (through mmu_interval_read_retry). * * This must be called with mmap read or write lock held. * * This function allocates the storage of the userptr sg table. * It is caller's responsibility to free it calling sg_free_table. * * returns: 0 for success; negative error no on failure */ int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma, bool is_mm_mmap_locked) { unsigned long timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); unsigned long *pfns; struct xe_userptr *userptr; struct xe_vma *vma = &uvma->vma; u64 userptr_start = xe_vma_userptr(vma); u64 userptr_end = userptr_start + xe_vma_size(vma); struct xe_vm *vm = xe_vma_vm(vma); struct hmm_range hmm_range = { .pfn_flags_mask = 0, /* ignore pfns */ .default_flags = HMM_PFN_REQ_FAULT, .start = userptr_start, .end = userptr_end, .notifier = &uvma->userptr.notifier, .dev_private_owner = vm->xe, }; bool write = !xe_vma_read_only(vma); unsigned long notifier_seq; u64 npages; int ret; userptr = &uvma->userptr; if (is_mm_mmap_locked) mmap_assert_locked(userptr->notifier.mm); if (vma->gpuva.flags & XE_VMA_DESTROYED) return 0; notifier_seq = mmu_interval_read_begin(&userptr->notifier); if (notifier_seq == userptr->notifier_seq) return 0; if (userptr->sg) xe_hmm_userptr_free_sg(uvma); npages = xe_npages_in_range(userptr_start, userptr_end); pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL); if (unlikely(!pfns)) return -ENOMEM; if (write) hmm_range.default_flags |= HMM_PFN_REQ_WRITE; if (!mmget_not_zero(userptr->notifier.mm)) { ret = -EFAULT; goto free_pfns; } hmm_range.hmm_pfns = pfns; while (true) { hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier); if (!is_mm_mmap_locked) mmap_read_lock(userptr->notifier.mm); ret = hmm_range_fault(&hmm_range); if (!is_mm_mmap_locked) mmap_read_unlock(userptr->notifier.mm); if (ret == -EBUSY) { if (time_after(jiffies, timeout)) break; continue; } break; } mmput(userptr->notifier.mm); if (ret) goto free_pfns; ret = xe_alloc_sg(vm->xe, &userptr->sgt, &hmm_range, &vm->userptr.notifier_lock); if (ret) goto free_pfns; ret = down_read_interruptible(&vm->userptr.notifier_lock); if (ret) goto free_st; if (mmu_interval_read_retry(hmm_range.notifier, hmm_range.notifier_seq)) { ret = -EAGAIN; goto out_unlock; } ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt, &vm->userptr.notifier_lock, write); if (ret) goto out_unlock; xe_mark_range_accessed(&hmm_range, write); userptr->sg = &userptr->sgt; xe_hmm_userptr_set_mapped(uvma); userptr->notifier_seq = hmm_range.notifier_seq; up_read(&vm->userptr.notifier_lock); kvfree(pfns); return 0; out_unlock: up_read(&vm->userptr.notifier_lock); free_st: sg_free_table(&userptr->sgt); free_pfns: kvfree(pfns); return ret; }