// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2016 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include #include #include #include "vmwgfx_drv.h" #include "vmwgfx_msg_x86.h" #include "vmwgfx_msg_arm64.h" #include "vmwgfx_mksstat.h" #define MESSAGE_STATUS_SUCCESS 0x0001 #define MESSAGE_STATUS_DORECV 0x0002 #define MESSAGE_STATUS_CPT 0x0010 #define MESSAGE_STATUS_HB 0x0080 #define RPCI_PROTOCOL_NUM 0x49435052 #define GUESTMSG_FLAG_COOKIE 0x80000000 #define RETRIES 3 #define VMW_HYPERVISOR_MAGIC 0x564D5868 #define VMW_PORT_CMD_MSG 30 #define VMW_PORT_CMD_HB_MSG 0 #define VMW_PORT_CMD_OPEN_CHANNEL (MSG_TYPE_OPEN << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_CLOSE_CHANNEL (MSG_TYPE_CLOSE << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_SENDSIZE (MSG_TYPE_SENDSIZE << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_RECVSIZE (MSG_TYPE_RECVSIZE << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_RECVSTATUS (MSG_TYPE_RECVSTATUS << 16 | VMW_PORT_CMD_MSG) #define VMW_PORT_CMD_MKS_GUEST_STATS 85 #define VMW_PORT_CMD_MKSGS_RESET (0 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS) #define VMW_PORT_CMD_MKSGS_ADD_PPN (1 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS) #define VMW_PORT_CMD_MKSGS_REMOVE_PPN (2 << 16 | VMW_PORT_CMD_MKS_GUEST_STATS) #define HIGH_WORD(X) ((X & 0xFFFF0000) >> 16) #define MAX_USER_MSG_LENGTH PAGE_SIZE static u32 vmw_msg_enabled = 1; enum rpc_msg_type { MSG_TYPE_OPEN, MSG_TYPE_SENDSIZE, MSG_TYPE_SENDPAYLOAD, MSG_TYPE_RECVSIZE, MSG_TYPE_RECVPAYLOAD, MSG_TYPE_RECVSTATUS, MSG_TYPE_CLOSE, }; struct rpc_channel { u16 channel_id; u32 cookie_high; u32 cookie_low; }; /** * vmw_open_channel * * @channel: RPC channel * @protocol: * * Returns: 0 on success */ static int vmw_open_channel(struct rpc_channel *channel, unsigned int protocol) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_OPEN_CHANNEL, (protocol | GUESTMSG_FLAG_COOKIE), si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) return -EINVAL; channel->channel_id = HIGH_WORD(edx); channel->cookie_high = si; channel->cookie_low = di; return 0; } /** * vmw_close_channel * * @channel: RPC channel * * Returns: 0 on success */ static int vmw_close_channel(struct rpc_channel *channel) { unsigned long eax, ebx, ecx, edx, si, di; /* Set up additional parameters */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_CLOSE_CHANNEL, 0, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) return -EINVAL; return 0; } /** * vmw_port_hb_out - Send the message payload either through the * high-bandwidth port if available, or through the backdoor otherwise. * @channel: The rpc channel. * @msg: NULL-terminated message. * @hb: Whether the high-bandwidth port is available. * * Return: The port status. */ static unsigned long vmw_port_hb_out(struct rpc_channel *channel, const char *msg, bool hb) { unsigned long si, di, eax, ebx, ecx, edx; unsigned long msg_len = strlen(msg); /* HB port can't access encrypted memory. */ if (hb && !mem_encrypt_active()) { unsigned long bp = channel->cookie_high; u32 channel_id = (channel->channel_id << 16); si = (uintptr_t) msg; di = channel->cookie_low; VMW_PORT_HB_OUT( (MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG, msg_len, si, di, VMWARE_HYPERVISOR_HB | channel_id | VMWARE_HYPERVISOR_OUT, VMW_HYPERVISOR_MAGIC, bp, eax, ebx, ecx, edx, si, di); return ebx; } /* HB port not available. Send the message 4 bytes at a time. */ ecx = MESSAGE_STATUS_SUCCESS << 16; while (msg_len && (HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS)) { unsigned int bytes = min_t(size_t, msg_len, 4); unsigned long word = 0; memcpy(&word, msg, bytes); msg_len -= bytes; msg += bytes; si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_SENDPAYLOAD << 16), word, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } return ecx; } /** * vmw_port_hb_in - Receive the message payload either through the * high-bandwidth port if available, or through the backdoor otherwise. * @channel: The rpc channel. * @reply: Pointer to buffer holding reply. * @reply_len: Length of the reply. * @hb: Whether the high-bandwidth port is available. * * Return: The port status. */ static unsigned long vmw_port_hb_in(struct rpc_channel *channel, char *reply, unsigned long reply_len, bool hb) { unsigned long si, di, eax, ebx, ecx, edx; /* HB port can't access encrypted memory */ if (hb && !mem_encrypt_active()) { unsigned long bp = channel->cookie_low; u32 channel_id = (channel->channel_id << 16); si = channel->cookie_high; di = (uintptr_t) reply; VMW_PORT_HB_IN( (MESSAGE_STATUS_SUCCESS << 16) | VMW_PORT_CMD_HB_MSG, reply_len, si, di, VMWARE_HYPERVISOR_HB | channel_id, VMW_HYPERVISOR_MAGIC, bp, eax, ebx, ecx, edx, si, di); return ebx; } /* HB port not available. Retrieve the message 4 bytes at a time. */ ecx = MESSAGE_STATUS_SUCCESS << 16; while (reply_len) { unsigned int bytes = min_t(unsigned long, reply_len, 4); si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_MSG | (MSG_TYPE_RECVPAYLOAD << 16), MESSAGE_STATUS_SUCCESS, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) break; memcpy(reply, &ebx, bytes); reply_len -= bytes; reply += bytes; } return ecx; } /** * vmw_send_msg: Sends a message to the host * * @channel: RPC channel * @msg: NULL terminated string * * Returns: 0 on success */ static int vmw_send_msg(struct rpc_channel *channel, const char *msg) { unsigned long eax, ebx, ecx, edx, si, di; size_t msg_len = strlen(msg); int retries = 0; while (retries < RETRIES) { retries++; /* Set up additional parameters */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_SENDSIZE, msg_len, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) { /* Expected success. Give up. */ return -EINVAL; } /* Send msg */ ebx = vmw_port_hb_out(channel, msg, !!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB)); if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) != 0) { return 0; } else if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) { /* A checkpoint occurred. Retry. */ continue; } else { break; } } return -EINVAL; } STACK_FRAME_NON_STANDARD(vmw_send_msg); /** * vmw_recv_msg: Receives a message from the host * * Note: It is the caller's responsibility to call kfree() on msg. * * @channel: channel opened by vmw_open_channel * @msg: [OUT] message received from the host * @msg_len: message length */ static int vmw_recv_msg(struct rpc_channel *channel, void **msg, size_t *msg_len) { unsigned long eax, ebx, ecx, edx, si, di; char *reply; size_t reply_len; int retries = 0; *msg_len = 0; *msg = NULL; while (retries < RETRIES) { retries++; /* Set up additional parameters */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_RECVSIZE, 0, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) { DRM_ERROR("Failed to get reply size for host message.\n"); return -EINVAL; } /* No reply available. This is okay. */ if ((HIGH_WORD(ecx) & MESSAGE_STATUS_DORECV) == 0) return 0; reply_len = ebx; reply = kzalloc(reply_len + 1, GFP_KERNEL); if (!reply) { DRM_ERROR("Cannot allocate memory for host message reply.\n"); return -ENOMEM; } /* Receive buffer */ ebx = vmw_port_hb_in(channel, reply, reply_len, !!(HIGH_WORD(ecx) & MESSAGE_STATUS_HB)); if ((HIGH_WORD(ebx) & MESSAGE_STATUS_SUCCESS) == 0) { kfree(reply); reply = NULL; if ((HIGH_WORD(ebx) & MESSAGE_STATUS_CPT) != 0) { /* A checkpoint occurred. Retry. */ continue; } return -EINVAL; } reply[reply_len] = '\0'; /* Ack buffer */ si = channel->cookie_high; di = channel->cookie_low; VMW_PORT(VMW_PORT_CMD_RECVSTATUS, MESSAGE_STATUS_SUCCESS, si, di, channel->channel_id << 16, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); if ((HIGH_WORD(ecx) & MESSAGE_STATUS_SUCCESS) == 0) { kfree(reply); reply = NULL; if ((HIGH_WORD(ecx) & MESSAGE_STATUS_CPT) != 0) { /* A checkpoint occurred. Retry. */ continue; } return -EINVAL; } break; } if (!reply) return -EINVAL; *msg_len = reply_len; *msg = reply; return 0; } STACK_FRAME_NON_STANDARD(vmw_recv_msg); /** * vmw_host_get_guestinfo: Gets a GuestInfo parameter * * Gets the value of a GuestInfo.* parameter. The value returned will be in * a string, and it is up to the caller to post-process. * * @guest_info_param: Parameter to get, e.g. GuestInfo.svga.gl3 * @buffer: if NULL, *reply_len will contain reply size. * @length: size of the reply_buf. Set to size of reply upon return * * Returns: 0 on success */ int vmw_host_get_guestinfo(const char *guest_info_param, char *buffer, size_t *length) { struct rpc_channel channel; char *msg, *reply = NULL; size_t reply_len = 0; if (!vmw_msg_enabled) return -ENODEV; if (!guest_info_param || !length) return -EINVAL; msg = kasprintf(GFP_KERNEL, "info-get %s", guest_info_param); if (!msg) { DRM_ERROR("Cannot allocate memory to get guest info \"%s\".", guest_info_param); return -ENOMEM; } if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) goto out_open; if (vmw_send_msg(&channel, msg) || vmw_recv_msg(&channel, (void *) &reply, &reply_len)) goto out_msg; vmw_close_channel(&channel); if (buffer && reply && reply_len > 0) { /* Remove reply code, which are the first 2 characters of * the reply */ reply_len = max(reply_len - 2, (size_t) 0); reply_len = min(reply_len, *length); if (reply_len > 0) memcpy(buffer, reply + 2, reply_len); } *length = reply_len; kfree(reply); kfree(msg); return 0; out_msg: vmw_close_channel(&channel); kfree(reply); out_open: *length = 0; kfree(msg); DRM_ERROR("Failed to get guest info \"%s\".", guest_info_param); return -EINVAL; } /** * vmw_host_printf: Sends a log message to the host * * @fmt: Regular printf format string and arguments * * Returns: 0 on success */ __printf(1, 2) int vmw_host_printf(const char *fmt, ...) { va_list ap; struct rpc_channel channel; char *msg; char *log; int ret = 0; if (!vmw_msg_enabled) return -ENODEV; if (!fmt) return ret; va_start(ap, fmt); log = kvasprintf(GFP_KERNEL, fmt, ap); va_end(ap); if (!log) { DRM_ERROR("Cannot allocate memory for the log message.\n"); return -ENOMEM; } msg = kasprintf(GFP_KERNEL, "log %s", log); if (!msg) { DRM_ERROR("Cannot allocate memory for host log message.\n"); kfree(log); return -ENOMEM; } if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) goto out_open; if (vmw_send_msg(&channel, msg)) goto out_msg; vmw_close_channel(&channel); kfree(msg); kfree(log); return 0; out_msg: vmw_close_channel(&channel); out_open: kfree(msg); kfree(log); DRM_ERROR("Failed to send host log message.\n"); return -EINVAL; } /** * vmw_msg_ioctl: Sends and receveives a message to/from host from/to user-space * * Sends a message from user-space to host. * Can also receive a result from host and return that to user-space. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * Return: Zero on success, negative error code on error. */ int vmw_msg_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_msg_arg *arg = (struct drm_vmw_msg_arg *)data; struct rpc_channel channel; char *msg; int length; msg = kmalloc(MAX_USER_MSG_LENGTH, GFP_KERNEL); if (!msg) { DRM_ERROR("Cannot allocate memory for log message.\n"); return -ENOMEM; } length = strncpy_from_user(msg, (void __user *)((unsigned long)arg->send), MAX_USER_MSG_LENGTH); if (length < 0 || length >= MAX_USER_MSG_LENGTH) { DRM_ERROR("Userspace message access failure.\n"); kfree(msg); return -EINVAL; } if (vmw_open_channel(&channel, RPCI_PROTOCOL_NUM)) { DRM_ERROR("Failed to open channel.\n"); goto out_open; } if (vmw_send_msg(&channel, msg)) { DRM_ERROR("Failed to send message to host.\n"); goto out_msg; } if (!arg->send_only) { char *reply = NULL; size_t reply_len = 0; if (vmw_recv_msg(&channel, (void *) &reply, &reply_len)) { DRM_ERROR("Failed to receive message from host.\n"); goto out_msg; } if (reply && reply_len > 0) { if (copy_to_user((void __user *)((unsigned long)arg->receive), reply, reply_len)) { DRM_ERROR("Failed to copy message to userspace.\n"); kfree(reply); goto out_msg; } arg->receive_len = (__u32)reply_len; } kfree(reply); } vmw_close_channel(&channel); kfree(msg); return 0; out_msg: vmw_close_channel(&channel); out_open: kfree(msg); return -EINVAL; } /** * reset_ppn_array: Resets a PPN64 array to INVALID_PPN64 content * * @arr: Array to reset. * @size: Array length. */ static inline void reset_ppn_array(PPN64 *arr, size_t size) { size_t i; BUG_ON(!arr || size == 0); for (i = 0; i < size; ++i) arr[i] = INVALID_PPN64; } /** * hypervisor_ppn_reset_all: Removes all mksGuestStat instance descriptors from * the hypervisor. All related pages should be subsequently unpinned or freed. * */ static inline void hypervisor_ppn_reset_all(void) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_MKSGS_RESET, 0, si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } /** * hypervisor_ppn_add: Adds a single mksGuestStat instance descriptor to the * hypervisor. Any related userspace pages should be pinned in advance. * * @pfn: Physical page number of the instance descriptor */ static inline void hypervisor_ppn_add(PPN64 pfn) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_MKSGS_ADD_PPN, pfn, si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } /** * hypervisor_ppn_remove: Removes a single mksGuestStat instance descriptor from * the hypervisor. All related pages should be subsequently unpinned or freed. * * @pfn: Physical page number of the instance descriptor */ static inline void hypervisor_ppn_remove(PPN64 pfn) { unsigned long eax, ebx, ecx, edx, si = 0, di = 0; VMW_PORT(VMW_PORT_CMD_MKSGS_REMOVE_PPN, pfn, si, di, 0, VMW_HYPERVISOR_MAGIC, eax, ebx, ecx, edx, si, di); } #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS) /* Order of the total number of pages used for kernel-internal mksGuestStat; at least 2 */ #define MKSSTAT_KERNEL_PAGES_ORDER 2 /* Header to the text description of mksGuestStat instance descriptor */ #define MKSSTAT_KERNEL_DESCRIPTION "vmwgfx" /* Kernel mksGuestStats counter names and desciptions; same order as enum mksstat_kern_stats_t */ static const char* const mksstat_kern_name_desc[MKSSTAT_KERN_COUNT][2] = { { "vmw_execbuf_ioctl", "vmw_execbuf_ioctl" }, }; /** * mksstat_init_record: Initializes an MKSGuestStatCounter-based record * for the respective mksGuestStat index. * * @stat_idx: Index of the MKSGuestStatCounter-based mksGuestStat record. * @pstat: Pointer to array of MKSGuestStatCounterTime. * @pinfo: Pointer to array of MKSGuestStatInfoEntry. * @pstrs: Pointer to current end of the name/description sequence. * Return: Pointer to the new end of the names/description sequence. */ static inline char *mksstat_init_record(mksstat_kern_stats_t stat_idx, MKSGuestStatCounterTime *pstat, MKSGuestStatInfoEntry *pinfo, char *pstrs) { char *const pstrd = pstrs + strlen(mksstat_kern_name_desc[stat_idx][0]) + 1; strcpy(pstrs, mksstat_kern_name_desc[stat_idx][0]); strcpy(pstrd, mksstat_kern_name_desc[stat_idx][1]); pinfo[stat_idx].name.s = pstrs; pinfo[stat_idx].description.s = pstrd; pinfo[stat_idx].flags = MKS_GUEST_STAT_FLAG_NONE; pinfo[stat_idx].stat.counter = (MKSGuestStatCounter *)&pstat[stat_idx]; return pstrd + strlen(mksstat_kern_name_desc[stat_idx][1]) + 1; } /** * mksstat_init_record_time: Initializes an MKSGuestStatCounterTime-based record * for the respective mksGuestStat index. * * @stat_idx: Index of the MKSGuestStatCounterTime-based mksGuestStat record. * @pstat: Pointer to array of MKSGuestStatCounterTime. * @pinfo: Pointer to array of MKSGuestStatInfoEntry. * @pstrs: Pointer to current end of the name/description sequence. * Return: Pointer to the new end of the names/description sequence. */ static inline char *mksstat_init_record_time(mksstat_kern_stats_t stat_idx, MKSGuestStatCounterTime *pstat, MKSGuestStatInfoEntry *pinfo, char *pstrs) { char *const pstrd = pstrs + strlen(mksstat_kern_name_desc[stat_idx][0]) + 1; strcpy(pstrs, mksstat_kern_name_desc[stat_idx][0]); strcpy(pstrd, mksstat_kern_name_desc[stat_idx][1]); pinfo[stat_idx].name.s = pstrs; pinfo[stat_idx].description.s = pstrd; pinfo[stat_idx].flags = MKS_GUEST_STAT_FLAG_TIME; pinfo[stat_idx].stat.counterTime = &pstat[stat_idx]; return pstrd + strlen(mksstat_kern_name_desc[stat_idx][1]) + 1; } /** * mksstat_init_kern_id: Creates a single mksGuestStat instance descriptor and * kernel-internal counters. Adds PFN mapping to the hypervisor. * * Create a single mksGuestStat instance descriptor and corresponding structures * for all kernel-internal counters. The corresponding PFNs are mapped with the * hypervisor. * * @ppage: Output pointer to page containing the instance descriptor. * Return: Zero on success, negative error code on error. */ static int mksstat_init_kern_id(struct page **ppage) { MKSGuestStatInstanceDescriptor *pdesc; MKSGuestStatCounterTime *pstat; MKSGuestStatInfoEntry *pinfo; char *pstrs, *pstrs_acc; /* Allocate pages for the kernel-internal instance descriptor */ struct page *page = alloc_pages(GFP_KERNEL | __GFP_ZERO, MKSSTAT_KERNEL_PAGES_ORDER); if (!page) return -ENOMEM; pdesc = page_address(page); pstat = vmw_mksstat_get_kern_pstat(pdesc); pinfo = vmw_mksstat_get_kern_pinfo(pdesc); pstrs = vmw_mksstat_get_kern_pstrs(pdesc); /* Set up all kernel-internal counters and corresponding structures */ pstrs_acc = pstrs; pstrs_acc = mksstat_init_record_time(MKSSTAT_KERN_EXECBUF, pstat, pinfo, pstrs_acc); /* Add new counters above, in their order of appearance in mksstat_kern_stats_t */ BUG_ON(pstrs_acc - pstrs > PAGE_SIZE); /* Set up the kernel-internal instance descriptor */ pdesc->reservedMBZ = 0; pdesc->statStartVA = (uintptr_t)pstat; pdesc->strsStartVA = (uintptr_t)pstrs; pdesc->statLength = sizeof(*pstat) * MKSSTAT_KERN_COUNT; pdesc->infoLength = sizeof(*pinfo) * MKSSTAT_KERN_COUNT; pdesc->strsLength = pstrs_acc - pstrs; snprintf(pdesc->description, ARRAY_SIZE(pdesc->description) - 1, "%s pid=%d", MKSSTAT_KERNEL_DESCRIPTION, current->pid); pdesc->statPPNs[0] = page_to_pfn(virt_to_page(pstat)); reset_ppn_array(pdesc->statPPNs + 1, ARRAY_SIZE(pdesc->statPPNs) - 1); pdesc->infoPPNs[0] = page_to_pfn(virt_to_page(pinfo)); reset_ppn_array(pdesc->infoPPNs + 1, ARRAY_SIZE(pdesc->infoPPNs) - 1); pdesc->strsPPNs[0] = page_to_pfn(virt_to_page(pstrs)); reset_ppn_array(pdesc->strsPPNs + 1, ARRAY_SIZE(pdesc->strsPPNs) - 1); *ppage = page; hypervisor_ppn_add((PPN64)page_to_pfn(page)); return 0; } /** * vmw_mksstat_get_kern_slot: Acquires a slot for a single kernel-internal * mksGuestStat instance descriptor. * * Find a slot for a single kernel-internal mksGuestStat instance descriptor. * In case no such was already present, allocate a new one and set up a kernel- * internal mksGuestStat instance descriptor for the former. * * @pid: Process for which a slot is sought. * @dev_priv: Identifies the drm private device. * Return: Non-negative slot on success, negative error code on error. */ int vmw_mksstat_get_kern_slot(pid_t pid, struct vmw_private *dev_priv) { const size_t base = (u32)hash_32(pid, MKSSTAT_CAPACITY_LOG2); size_t i; for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) { const size_t slot = (i + base) % ARRAY_SIZE(dev_priv->mksstat_kern_pids); /* Check if an instance descriptor for this pid is already present */ if (pid == (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[slot])) return (int)slot; /* Set up a new instance descriptor for this pid */ if (!atomic_cmpxchg(&dev_priv->mksstat_kern_pids[slot], 0, MKSSTAT_PID_RESERVED)) { const int ret = mksstat_init_kern_id(&dev_priv->mksstat_kern_pages[slot]); if (!ret) { /* Reset top-timer tracking for this slot */ dev_priv->mksstat_kern_top_timer[slot] = MKSSTAT_KERN_COUNT; atomic_set(&dev_priv->mksstat_kern_pids[slot], pid); return (int)slot; } atomic_set(&dev_priv->mksstat_kern_pids[slot], 0); return ret; } } return -ENOSPC; } #endif /** * vmw_mksstat_cleanup_descriptor: Frees a single userspace-originating * mksGuestStat instance-descriptor page and unpins all related user pages. * * Unpin all user pages realated to this instance descriptor and free * the instance-descriptor page itself. * * @page: Page of the instance descriptor. */ static void vmw_mksstat_cleanup_descriptor(struct page *page) { MKSGuestStatInstanceDescriptor *pdesc = page_address(page); size_t i; for (i = 0; i < ARRAY_SIZE(pdesc->statPPNs) && pdesc->statPPNs[i] != INVALID_PPN64; ++i) unpin_user_page(pfn_to_page(pdesc->statPPNs[i])); for (i = 0; i < ARRAY_SIZE(pdesc->infoPPNs) && pdesc->infoPPNs[i] != INVALID_PPN64; ++i) unpin_user_page(pfn_to_page(pdesc->infoPPNs[i])); for (i = 0; i < ARRAY_SIZE(pdesc->strsPPNs) && pdesc->strsPPNs[i] != INVALID_PPN64; ++i) unpin_user_page(pfn_to_page(pdesc->strsPPNs[i])); __free_page(page); } /** * vmw_mksstat_remove_all: Resets all mksGuestStat instance descriptors * from the hypervisor. * * Discard all hypervisor PFN mappings, containing active mksGuestState instance * descriptors, unpin the related userspace pages and free the related kernel pages. * * @dev_priv: Identifies the drm private device. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_remove_all(struct vmw_private *dev_priv) { int ret = 0; size_t i; /* Discard all PFN mappings with the hypervisor */ hypervisor_ppn_reset_all(); /* Discard all userspace-originating instance descriptors and unpin all related pages */ for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++i) { const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_user_pids[i]); if (!pid0) continue; if (pid0 != MKSSTAT_PID_RESERVED) { const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_user_pids[i], pid0, MKSSTAT_PID_RESERVED); if (!pid1) continue; if (pid1 == pid0) { struct page *const page = dev_priv->mksstat_user_pages[i]; BUG_ON(!page); dev_priv->mksstat_user_pages[i] = NULL; atomic_set(&dev_priv->mksstat_user_pids[i], 0); vmw_mksstat_cleanup_descriptor(page); continue; } } ret = -EAGAIN; } #if IS_ENABLED(CONFIG_DRM_VMWGFX_MKSSTATS) /* Discard all kernel-internal instance descriptors and free all related pages */ for (i = 0; i < ARRAY_SIZE(dev_priv->mksstat_kern_pids); ++i) { const pid_t pid0 = (pid_t)atomic_read(&dev_priv->mksstat_kern_pids[i]); if (!pid0) continue; if (pid0 != MKSSTAT_PID_RESERVED) { const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_kern_pids[i], pid0, MKSSTAT_PID_RESERVED); if (!pid1) continue; if (pid1 == pid0) { struct page *const page = dev_priv->mksstat_kern_pages[i]; BUG_ON(!page); dev_priv->mksstat_kern_pages[i] = NULL; atomic_set(&dev_priv->mksstat_kern_pids[i], 0); __free_pages(page, MKSSTAT_KERNEL_PAGES_ORDER); continue; } } ret = -EAGAIN; } #endif return ret; } /** * vmw_mksstat_reset_ioctl: Resets all mksGuestStat instance descriptors * from the hypervisor. * * Discard all hypervisor PFN mappings, containing active mksGuestStat instance * descriptors, unpin the related userspace pages and free the related kernel pages. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller; unused. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_reset_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *const dev_priv = vmw_priv(dev); return vmw_mksstat_remove_all(dev_priv); } /** * vmw_mksstat_add_ioctl: Creates a single userspace-originating mksGuestStat * instance descriptor and registers that with the hypervisor. * * Create a hypervisor PFN mapping, containing a single mksGuestStat instance * descriptor and pin the corresponding userspace pages. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller; unused. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_add_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_mksstat_add_arg *arg = (struct drm_vmw_mksstat_add_arg *) data; struct vmw_private *const dev_priv = vmw_priv(dev); struct page *page; MKSGuestStatInstanceDescriptor *pdesc; const size_t num_pages_stat = vmw_num_pages(arg->stat_len); const size_t num_pages_info = vmw_num_pages(arg->info_len); const size_t num_pages_strs = vmw_num_pages(arg->strs_len); long desc_len; long nr_pinned_stat; long nr_pinned_info; long nr_pinned_strs; struct page *pages_stat[ARRAY_SIZE(pdesc->statPPNs)]; struct page *pages_info[ARRAY_SIZE(pdesc->infoPPNs)]; struct page *pages_strs[ARRAY_SIZE(pdesc->strsPPNs)]; size_t i, slot; arg->id = -1; if (!arg->stat || !arg->info || !arg->strs) return -EINVAL; if (!arg->stat_len || !arg->info_len || !arg->strs_len) return -EINVAL; if (!arg->description) return -EINVAL; if (num_pages_stat > ARRAY_SIZE(pdesc->statPPNs) || num_pages_info > ARRAY_SIZE(pdesc->infoPPNs) || num_pages_strs > ARRAY_SIZE(pdesc->strsPPNs)) return -EINVAL; /* Find an available slot in the mksGuestStats user array and reserve it */ for (slot = 0; slot < ARRAY_SIZE(dev_priv->mksstat_user_pids); ++slot) if (!atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], 0, MKSSTAT_PID_RESERVED)) break; if (slot == ARRAY_SIZE(dev_priv->mksstat_user_pids)) return -ENOSPC; BUG_ON(dev_priv->mksstat_user_pages[slot]); /* Allocate a page for the instance descriptor */ page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { atomic_set(&dev_priv->mksstat_user_pids[slot], 0); return -ENOMEM; } /* Set up the instance descriptor */ pdesc = page_address(page); pdesc->reservedMBZ = 0; pdesc->statStartVA = arg->stat; pdesc->strsStartVA = arg->strs; pdesc->statLength = arg->stat_len; pdesc->infoLength = arg->info_len; pdesc->strsLength = arg->strs_len; desc_len = strncpy_from_user(pdesc->description, u64_to_user_ptr(arg->description), ARRAY_SIZE(pdesc->description) - 1); if (desc_len < 0) { atomic_set(&dev_priv->mksstat_user_pids[slot], 0); return -EFAULT; } reset_ppn_array(pdesc->statPPNs, ARRAY_SIZE(pdesc->statPPNs)); reset_ppn_array(pdesc->infoPPNs, ARRAY_SIZE(pdesc->infoPPNs)); reset_ppn_array(pdesc->strsPPNs, ARRAY_SIZE(pdesc->strsPPNs)); /* Pin mksGuestStat user pages and store those in the instance descriptor */ nr_pinned_stat = pin_user_pages(arg->stat, num_pages_stat, FOLL_LONGTERM, pages_stat, NULL); if (num_pages_stat != nr_pinned_stat) goto err_pin_stat; for (i = 0; i < num_pages_stat; ++i) pdesc->statPPNs[i] = page_to_pfn(pages_stat[i]); nr_pinned_info = pin_user_pages(arg->info, num_pages_info, FOLL_LONGTERM, pages_info, NULL); if (num_pages_info != nr_pinned_info) goto err_pin_info; for (i = 0; i < num_pages_info; ++i) pdesc->infoPPNs[i] = page_to_pfn(pages_info[i]); nr_pinned_strs = pin_user_pages(arg->strs, num_pages_strs, FOLL_LONGTERM, pages_strs, NULL); if (num_pages_strs != nr_pinned_strs) goto err_pin_strs; for (i = 0; i < num_pages_strs; ++i) pdesc->strsPPNs[i] = page_to_pfn(pages_strs[i]); /* Send the descriptor to the host via a hypervisor call. The mksGuestStat pages will remain in use until the user requests a matching remove stats or a stats reset occurs. */ hypervisor_ppn_add((PPN64)page_to_pfn(page)); dev_priv->mksstat_user_pages[slot] = page; atomic_set(&dev_priv->mksstat_user_pids[slot], current->pid); arg->id = slot; DRM_DEV_INFO(dev->dev, "pid=%d arg.description='%.*s' id=%lu\n", current->pid, (int)desc_len, pdesc->description, slot); return 0; err_pin_strs: if (nr_pinned_strs > 0) unpin_user_pages(pages_strs, nr_pinned_strs); err_pin_info: if (nr_pinned_info > 0) unpin_user_pages(pages_info, nr_pinned_info); err_pin_stat: if (nr_pinned_stat > 0) unpin_user_pages(pages_stat, nr_pinned_stat); atomic_set(&dev_priv->mksstat_user_pids[slot], 0); __free_page(page); return -ENOMEM; } /** * vmw_mksstat_remove_ioctl: Removes a single userspace-originating mksGuestStat * instance descriptor from the hypervisor. * * Discard a hypervisor PFN mapping, containing a single mksGuestStat instance * descriptor and unpin the corresponding userspace pages. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller; unused. * Return: Zero on success, negative error code on error. */ int vmw_mksstat_remove_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_mksstat_remove_arg *arg = (struct drm_vmw_mksstat_remove_arg *) data; struct vmw_private *const dev_priv = vmw_priv(dev); const size_t slot = arg->id; pid_t pid0; if (slot >= ARRAY_SIZE(dev_priv->mksstat_user_pids)) return -EINVAL; DRM_DEV_INFO(dev->dev, "pid=%d arg.id=%lu\n", current->pid, slot); pid0 = atomic_read(&dev_priv->mksstat_user_pids[slot]); if (!pid0) return 0; if (pid0 != MKSSTAT_PID_RESERVED) { const pid_t pid1 = atomic_cmpxchg(&dev_priv->mksstat_user_pids[slot], pid0, MKSSTAT_PID_RESERVED); if (!pid1) return 0; if (pid1 == pid0) { struct page *const page = dev_priv->mksstat_user_pages[slot]; BUG_ON(!page); dev_priv->mksstat_user_pages[slot] = NULL; atomic_set(&dev_priv->mksstat_user_pids[slot], 0); hypervisor_ppn_remove((PPN64)page_to_pfn(page)); vmw_mksstat_cleanup_descriptor(page); return 0; } } return -EAGAIN; }