// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 KMS * * This is the general code for implementing KMS mode setting that * doesn't clearly associate with any of the other objects (plane, * crtc, HDMI encoder). */ #include #include #include #include #include #include #include #include #include "vc4_drv.h" #include "vc4_regs.h" #define HVS_NUM_CHANNELS 3 struct vc4_ctm_state { struct drm_private_state base; struct drm_color_ctm *ctm; int fifo; }; static struct vc4_ctm_state * to_vc4_ctm_state(const struct drm_private_state *priv) { return container_of(priv, struct vc4_ctm_state, base); } struct vc4_hvs_state { struct drm_private_state base; unsigned long core_clock_rate; struct { unsigned in_use: 1; unsigned long fifo_load; struct drm_crtc_commit *pending_commit; } fifo_state[HVS_NUM_CHANNELS]; }; static struct vc4_hvs_state * to_vc4_hvs_state(const struct drm_private_state *priv) { return container_of(priv, struct vc4_hvs_state, base); } struct vc4_load_tracker_state { struct drm_private_state base; u64 hvs_load; u64 membus_load; }; static struct vc4_load_tracker_state * to_vc4_load_tracker_state(const struct drm_private_state *priv) { return container_of(priv, struct vc4_load_tracker_state, base); } static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state, struct drm_private_obj *manager) { struct drm_device *dev = state->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_private_state *priv_state; int ret; ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx); if (ret) return ERR_PTR(ret); priv_state = drm_atomic_get_private_obj_state(state, manager); if (IS_ERR(priv_state)) return ERR_CAST(priv_state); return to_vc4_ctm_state(priv_state); } static struct drm_private_state * vc4_ctm_duplicate_state(struct drm_private_obj *obj) { struct vc4_ctm_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); return &state->base; } static void vc4_ctm_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state); kfree(ctm_state); } static const struct drm_private_state_funcs vc4_ctm_state_funcs = { .atomic_duplicate_state = vc4_ctm_duplicate_state, .atomic_destroy_state = vc4_ctm_destroy_state, }; static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused) { struct vc4_dev *vc4 = to_vc4_dev(dev); drm_atomic_private_obj_fini(&vc4->ctm_manager); } static int vc4_ctm_obj_init(struct vc4_dev *vc4) { struct vc4_ctm_state *ctm_state; drm_modeset_lock_init(&vc4->ctm_state_lock); ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL); if (!ctm_state) return -ENOMEM; drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base, &vc4_ctm_state_funcs); return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL); } /* Converts a DRM S31.32 value to the HW S0.9 format. */ static u16 vc4_ctm_s31_32_to_s0_9(u64 in) { u16 r; /* Sign bit. */ r = in & BIT_ULL(63) ? BIT(9) : 0; if ((in & GENMASK_ULL(62, 32)) > 0) { /* We have zero integer bits so we can only saturate here. */ r |= GENMASK(8, 0); } else { /* Otherwise take the 9 most important fractional bits. */ r |= (in >> 23) & GENMASK(8, 0); } return r; } static void vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) { struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state); struct drm_color_ctm *ctm = ctm_state->ctm; if (ctm_state->fifo) { HVS_WRITE(SCALER_OLEDCOEF2, VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]), SCALER_OLEDCOEF2_R_TO_R) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]), SCALER_OLEDCOEF2_R_TO_G) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]), SCALER_OLEDCOEF2_R_TO_B)); HVS_WRITE(SCALER_OLEDCOEF1, VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]), SCALER_OLEDCOEF1_G_TO_R) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]), SCALER_OLEDCOEF1_G_TO_G) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]), SCALER_OLEDCOEF1_G_TO_B)); HVS_WRITE(SCALER_OLEDCOEF0, VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]), SCALER_OLEDCOEF0_B_TO_R) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]), SCALER_OLEDCOEF0_B_TO_G) | VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]), SCALER_OLEDCOEF0_B_TO_B)); } HVS_WRITE(SCALER_OLEDOFFS, VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); } static struct vc4_hvs_state * vc4_hvs_get_new_global_state(struct drm_atomic_state *state) { struct vc4_dev *vc4 = to_vc4_dev(state->dev); struct drm_private_state *priv_state; priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels); if (IS_ERR(priv_state)) return ERR_CAST(priv_state); return to_vc4_hvs_state(priv_state); } static struct vc4_hvs_state * vc4_hvs_get_old_global_state(struct drm_atomic_state *state) { struct vc4_dev *vc4 = to_vc4_dev(state->dev); struct drm_private_state *priv_state; priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels); if (IS_ERR(priv_state)) return ERR_CAST(priv_state); return to_vc4_hvs_state(priv_state); } static struct vc4_hvs_state * vc4_hvs_get_global_state(struct drm_atomic_state *state) { struct vc4_dev *vc4 = to_vc4_dev(state->dev); struct drm_private_state *priv_state; priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels); if (IS_ERR(priv_state)) return ERR_CAST(priv_state); return to_vc4_hvs_state(priv_state); } static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; unsigned int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); u32 dispctrl; u32 dsp3_mux; if (!crtc_state->active) continue; if (vc4_state->assigned_channel != 2) continue; /* * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to * FIFO X'. * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. * * DSP3 is connected to FIFO2 unless the transposer is * enabled. In this case, FIFO 2 is directly accessed by the * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 * route. */ if (vc4_crtc->feeds_txp) dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); else dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); dispctrl = HVS_READ(SCALER_DISPCTRL) & ~SCALER_DISPCTRL_DSP3_MUX_MASK; HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); } } static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; unsigned char mux; unsigned int i; u32 reg; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); if (!vc4_state->update_muxing) continue; switch (vc4_crtc->data->hvs_output) { case 2: mux = (vc4_state->assigned_channel == 2) ? 0 : 1; reg = HVS_READ(SCALER_DISPECTRL); HVS_WRITE(SCALER_DISPECTRL, (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX)); break; case 3: if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) mux = 3; else mux = vc4_state->assigned_channel; reg = HVS_READ(SCALER_DISPCTRL); HVS_WRITE(SCALER_DISPCTRL, (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX)); break; case 4: if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) mux = 3; else mux = vc4_state->assigned_channel; reg = HVS_READ(SCALER_DISPEOLN); HVS_WRITE(SCALER_DISPEOLN, (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX)); break; case 5: if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED) mux = 3; else mux = vc4_state->assigned_channel; reg = HVS_READ(SCALER_DISPDITHER); HVS_WRITE(SCALER_DISPDITHER, (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX)); break; default: break; } } } static void vc4_atomic_commit_tail(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hvs *hvs = vc4->hvs; struct drm_crtc_state *new_crtc_state; struct vc4_hvs_state *new_hvs_state; struct drm_crtc *crtc; struct vc4_hvs_state *old_hvs_state; unsigned int channel; int i; old_hvs_state = vc4_hvs_get_old_global_state(state); if (WARN_ON(IS_ERR(old_hvs_state))) return; new_hvs_state = vc4_hvs_get_new_global_state(state); if (WARN_ON(IS_ERR(new_hvs_state))) return; for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { struct vc4_crtc_state *vc4_crtc_state; if (!new_crtc_state->commit) continue; vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); } for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) { struct drm_crtc_commit *commit; int ret; if (!old_hvs_state->fifo_state[channel].in_use) continue; commit = old_hvs_state->fifo_state[channel].pending_commit; if (!commit) continue; ret = drm_crtc_commit_wait(commit); if (ret) drm_err(dev, "Timed out waiting for commit\n"); drm_crtc_commit_put(commit); old_hvs_state->fifo_state[channel].pending_commit = NULL; } if (vc4->hvs->hvs5) { unsigned long state_rate = max(old_hvs_state->core_clock_rate, new_hvs_state->core_clock_rate); unsigned long core_rate = max_t(unsigned long, 500000000, state_rate); drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate); /* * Do a temporary request on the core clock during the * modeset. */ clk_set_min_rate(hvs->core_clk, core_rate); } drm_atomic_helper_commit_modeset_disables(dev, state); vc4_ctm_commit(vc4, state); if (vc4->hvs->hvs5) vc5_hvs_pv_muxing_commit(vc4, state); else vc4_hvs_pv_muxing_commit(vc4, state); drm_atomic_helper_commit_planes(dev, state, 0); drm_atomic_helper_commit_modeset_enables(dev, state); drm_atomic_helper_fake_vblank(state); drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_wait_for_flip_done(dev, state); drm_atomic_helper_cleanup_planes(dev, state); if (vc4->hvs->hvs5) { drm_dbg(dev, "Running the core clock at %lu Hz\n", new_hvs_state->core_clock_rate); /* * Request a clock rate based on the current HVS * requirements. */ clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate); } } static int vc4_atomic_commit_setup(struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state; struct vc4_hvs_state *hvs_state; struct drm_crtc *crtc; unsigned int i; hvs_state = vc4_hvs_get_new_global_state(state); if (WARN_ON(IS_ERR(hvs_state))) return PTR_ERR(hvs_state); for_each_new_crtc_in_state(state, crtc, crtc_state, i) { struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc_state); unsigned int channel = vc4_crtc_state->assigned_channel; if (channel == VC4_HVS_CHANNEL_DISABLED) continue; if (!hvs_state->fifo_state[channel].in_use) continue; hvs_state->fifo_state[channel].pending_commit = drm_crtc_commit_get(crtc_state->commit); } return 0; } static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev, struct drm_file *file_priv, const struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_mode_fb_cmd2 mode_cmd_local; /* If the user didn't specify a modifier, use the * vc4_set_tiling_ioctl() state for the BO. */ if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) { struct drm_gem_object *gem_obj; struct vc4_bo *bo; gem_obj = drm_gem_object_lookup(file_priv, mode_cmd->handles[0]); if (!gem_obj) { DRM_DEBUG("Failed to look up GEM BO %d\n", mode_cmd->handles[0]); return ERR_PTR(-ENOENT); } bo = to_vc4_bo(gem_obj); mode_cmd_local = *mode_cmd; if (bo->t_format) { mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED; } else { mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE; } drm_gem_object_put(gem_obj); mode_cmd = &mode_cmd_local; } return drm_gem_fb_create(dev, file_priv, mode_cmd); } /* Our CTM has some peculiar limitations: we can only enable it for one CRTC * at a time and the HW only supports S0.9 scalars. To account for the latter, * we don't allow userland to set a CTM that we have no hope of approximating. */ static int vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_ctm_state *ctm_state = NULL; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_color_ctm *ctm; int i; for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { /* CTM is being disabled. */ if (!new_crtc_state->ctm && old_crtc_state->ctm) { ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); if (IS_ERR(ctm_state)) return PTR_ERR(ctm_state); ctm_state->fifo = 0; } } for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->ctm == old_crtc_state->ctm) continue; if (!ctm_state) { ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager); if (IS_ERR(ctm_state)) return PTR_ERR(ctm_state); } /* CTM is being enabled or the matrix changed. */ if (new_crtc_state->ctm) { struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); /* fifo is 1-based since 0 disables CTM. */ int fifo = vc4_crtc_state->assigned_channel + 1; /* Check userland isn't trying to turn on CTM for more * than one CRTC at a time. */ if (ctm_state->fifo && ctm_state->fifo != fifo) { DRM_DEBUG_DRIVER("Too many CTM configured\n"); return -EINVAL; } /* Check we can approximate the specified CTM. * We disallow scalars |c| > 1.0 since the HW has * no integer bits. */ ctm = new_crtc_state->ctm->data; for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) { u64 val = ctm->matrix[i]; val &= ~BIT_ULL(63); if (val > BIT_ULL(32)) return -EINVAL; } ctm_state->fifo = fifo; ctm_state->ctm = ctm; } } return 0; } static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state) { struct drm_plane_state *old_plane_state, *new_plane_state; struct vc4_dev *vc4 = to_vc4_dev(state->dev); struct vc4_load_tracker_state *load_state; struct drm_private_state *priv_state; struct drm_plane *plane; int i; priv_state = drm_atomic_get_private_obj_state(state, &vc4->load_tracker); if (IS_ERR(priv_state)) return PTR_ERR(priv_state); load_state = to_vc4_load_tracker_state(priv_state); for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { struct vc4_plane_state *vc4_plane_state; if (old_plane_state->fb && old_plane_state->crtc) { vc4_plane_state = to_vc4_plane_state(old_plane_state); load_state->membus_load -= vc4_plane_state->membus_load; load_state->hvs_load -= vc4_plane_state->hvs_load; } if (new_plane_state->fb && new_plane_state->crtc) { vc4_plane_state = to_vc4_plane_state(new_plane_state); load_state->membus_load += vc4_plane_state->membus_load; load_state->hvs_load += vc4_plane_state->hvs_load; } } /* Don't check the load when the tracker is disabled. */ if (!vc4->load_tracker_enabled) return 0; /* The absolute limit is 2Gbyte/sec, but let's take a margin to let * the system work when other blocks are accessing the memory. */ if (load_state->membus_load > SZ_1G + SZ_512M) return -ENOSPC; /* HVS clock is supposed to run @ 250Mhz, let's take a margin and * consider the maximum number of cycles is 240M. */ if (load_state->hvs_load > 240000000ULL) return -ENOSPC; return 0; } static struct drm_private_state * vc4_load_tracker_duplicate_state(struct drm_private_obj *obj) { struct vc4_load_tracker_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); return &state->base; } static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct vc4_load_tracker_state *load_state; load_state = to_vc4_load_tracker_state(state); kfree(load_state); } static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { .atomic_duplicate_state = vc4_load_tracker_duplicate_state, .atomic_destroy_state = vc4_load_tracker_destroy_state, }; static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused) { struct vc4_dev *vc4 = to_vc4_dev(dev); drm_atomic_private_obj_fini(&vc4->load_tracker); } static int vc4_load_tracker_obj_init(struct vc4_dev *vc4) { struct vc4_load_tracker_state *load_state; load_state = kzalloc(sizeof(*load_state), GFP_KERNEL); if (!load_state) return -ENOMEM; drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker, &load_state->base, &vc4_load_tracker_state_funcs); return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL); } static struct drm_private_state * vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj) { struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state); struct vc4_hvs_state *state; unsigned int i; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); for (i = 0; i < HVS_NUM_CHANNELS; i++) { state->fifo_state[i].in_use = old_state->fifo_state[i].in_use; state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load; } state->core_clock_rate = old_state->core_clock_rate; return &state->base; } static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); unsigned int i; for (i = 0; i < HVS_NUM_CHANNELS; i++) { if (!hvs_state->fifo_state[i].pending_commit) continue; drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit); } kfree(hvs_state); } static void vc4_hvs_channels_print_state(struct drm_printer *p, const struct drm_private_state *state) { struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state); unsigned int i; drm_printf(p, "HVS State\n"); drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate); for (i = 0; i < HVS_NUM_CHANNELS; i++) { drm_printf(p, "\tChannel %d\n", i); drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use); drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load); } } static const struct drm_private_state_funcs vc4_hvs_state_funcs = { .atomic_duplicate_state = vc4_hvs_channels_duplicate_state, .atomic_destroy_state = vc4_hvs_channels_destroy_state, .atomic_print_state = vc4_hvs_channels_print_state, }; static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused) { struct vc4_dev *vc4 = to_vc4_dev(dev); drm_atomic_private_obj_fini(&vc4->hvs_channels); } static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4) { struct vc4_hvs_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels, &state->base, &vc4_hvs_state_funcs); return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL); } /* * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and * the TXP (and therefore all the CRTCs found on that platform). * * The naive (and our initial) implementation would just iterate over * all the active CRTCs, try to find a suitable FIFO, and then remove it * from the pool of available FIFOs. However, there are a few corner * cases that need to be considered: * * - When running in a dual-display setup (so with two CRTCs involved), * we can update the state of a single CRTC (for example by changing * its mode using xrandr under X11) without affecting the other. In * this case, the other CRTC wouldn't be in the state at all, so we * need to consider all the running CRTCs in the DRM device to assign * a FIFO, not just the one in the state. * * - To fix the above, we can't use drm_atomic_get_crtc_state on all * enabled CRTCs to pull their CRTC state into the global state, since * a page flip would start considering their vblank to complete. Since * we don't have a guarantee that they are actually active, that * vblank might never happen, and shouldn't even be considered if we * want to do a page flip on a single CRTC. That can be tested by * doing a modetest -v first on HDMI1 and then on HDMI0. * * - Since we need the pixelvalve to be disabled and enabled back when * the FIFO is changed, we should keep the FIFO assigned for as long * as the CRTC is enabled, only considering it free again once that * CRTC has been disabled. This can be tested by booting X11 on a * single display, and changing the resolution down and then back up. */ static int vc4_pv_muxing_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct vc4_hvs_state *hvs_new_state; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_crtc *crtc; unsigned int unassigned_channels = 0; unsigned int i; hvs_new_state = vc4_hvs_get_global_state(state); if (IS_ERR(hvs_new_state)) return PTR_ERR(hvs_new_state); for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++) if (!hvs_new_state->fifo_state[i].in_use) unassigned_channels |= BIT(i); for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct vc4_crtc_state *old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state); struct vc4_crtc_state *new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); unsigned int matching_channels; unsigned int channel; /* Nothing to do here, let's skip it */ if (old_crtc_state->enable == new_crtc_state->enable) continue; /* Muxing will need to be modified, mark it as such */ new_vc4_crtc_state->update_muxing = true; /* If we're disabling our CRTC, we put back our channel */ if (!new_crtc_state->enable) { channel = old_vc4_crtc_state->assigned_channel; hvs_new_state->fifo_state[channel].in_use = false; new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; continue; } /* * The problem we have to solve here is that we have * up to 7 encoders, connected to up to 6 CRTCs. * * Those CRTCs, depending on the instance, can be * routed to 1, 2 or 3 HVS FIFOs, and we need to set * the change the muxing between FIFOs and outputs in * the HVS accordingly. * * It would be pretty hard to come up with an * algorithm that would generically solve * this. However, the current routing trees we support * allow us to simplify a bit the problem. * * Indeed, with the current supported layouts, if we * try to assign in the ascending crtc index order the * FIFOs, we can't fall into the situation where an * earlier CRTC that had multiple routes is assigned * one that was the only option for a later CRTC. * * If the layout changes and doesn't give us that in * the future, we will need to have something smarter, * but it works so far. */ matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; if (!matching_channels) return -EINVAL; channel = ffs(matching_channels) - 1; new_vc4_crtc_state->assigned_channel = channel; unassigned_channels &= ~BIT(channel); hvs_new_state->fifo_state[channel].in_use = true; } return 0; } static int vc4_core_clock_atomic_check(struct drm_atomic_state *state) { struct vc4_dev *vc4 = to_vc4_dev(state->dev); struct drm_private_state *priv_state; struct vc4_hvs_state *hvs_new_state; struct vc4_load_tracker_state *load_state; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_crtc *crtc; unsigned int num_outputs; unsigned long pixel_rate; unsigned long cob_rate; unsigned int i; priv_state = drm_atomic_get_private_obj_state(state, &vc4->load_tracker); if (IS_ERR(priv_state)) return PTR_ERR(priv_state); load_state = to_vc4_load_tracker_state(priv_state); hvs_new_state = vc4_hvs_get_global_state(state); if (IS_ERR(hvs_new_state)) return PTR_ERR(hvs_new_state); for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (old_crtc_state->active) { struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_crtc_state); unsigned int channel = old_vc4_state->assigned_channel; hvs_new_state->fifo_state[channel].fifo_load = 0; } if (new_crtc_state->active) { struct vc4_crtc_state *new_vc4_state = to_vc4_crtc_state(new_crtc_state); unsigned int channel = new_vc4_state->assigned_channel; hvs_new_state->fifo_state[channel].fifo_load = new_vc4_state->hvs_load; } } cob_rate = 0; num_outputs = 0; for (i = 0; i < HVS_NUM_CHANNELS; i++) { if (!hvs_new_state->fifo_state[i].in_use) continue; num_outputs++; cob_rate += hvs_new_state->fifo_state[i].fifo_load; } pixel_rate = load_state->hvs_load; if (num_outputs > 1) { pixel_rate = (pixel_rate * 40) / 100; } else { pixel_rate = (pixel_rate * 60) / 100; } hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate); return 0; } static int vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { int ret; ret = vc4_pv_muxing_atomic_check(dev, state); if (ret) return ret; ret = vc4_ctm_atomic_check(dev, state); if (ret < 0) return ret; ret = drm_atomic_helper_check(dev, state); if (ret) return ret; ret = vc4_load_tracker_atomic_check(state); if (ret) return ret; return vc4_core_clock_atomic_check(state); } static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = { .atomic_commit_setup = vc4_atomic_commit_setup, .atomic_commit_tail = vc4_atomic_commit_tail, }; static const struct drm_mode_config_funcs vc4_mode_funcs = { .atomic_check = vc4_atomic_check, .atomic_commit = drm_atomic_helper_commit, .fb_create = vc4_fb_create, }; int vc4_kms_load(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); bool is_vc5 = of_device_is_compatible(dev->dev->of_node, "brcm,bcm2711-vc5"); int ret; /* * The limits enforced by the load tracker aren't relevant for * the BCM2711, but the load tracker computations are used for * the core clock rate calculation. */ if (!is_vc5) { /* Start with the load tracker enabled. Can be * disabled through the debugfs load_tracker file. */ vc4->load_tracker_enabled = true; } /* Set support for vblank irq fast disable, before drm_vblank_init() */ dev->vblank_disable_immediate = true; ret = drm_vblank_init(dev, dev->mode_config.num_crtc); if (ret < 0) { dev_err(dev->dev, "failed to initialize vblank\n"); return ret; } if (is_vc5) { dev->mode_config.max_width = 7680; dev->mode_config.max_height = 7680; } else { dev->mode_config.max_width = 2048; dev->mode_config.max_height = 2048; } dev->mode_config.funcs = &vc4_mode_funcs; dev->mode_config.helper_private = &vc4_mode_config_helpers; dev->mode_config.preferred_depth = 24; dev->mode_config.async_page_flip = true; ret = vc4_ctm_obj_init(vc4); if (ret) return ret; ret = vc4_load_tracker_obj_init(vc4); if (ret) return ret; ret = vc4_hvs_channels_obj_init(vc4); if (ret) return ret; drm_mode_config_reset(dev); drm_kms_helper_poll_init(dev); return 0; }