/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include "radeon.h" #include "radeon_reg.h" /* * GART * The GART (Graphics Aperture Remapping Table) is an aperture * in the GPU's address space. System pages can be mapped into * the aperture and look like contiguous pages from the GPU's * perspective. A page table maps the pages in the aperture * to the actual backing pages in system memory. * * Radeon GPUs support both an internal GART, as described above, * and AGP. AGP works similarly, but the GART table is configured * and maintained by the northbridge rather than the driver. * Radeon hw has a separate AGP aperture that is programmed to * point to the AGP aperture provided by the northbridge and the * requests are passed through to the northbridge aperture. * Both AGP and internal GART can be used at the same time, however * that is not currently supported by the driver. * * This file handles the common internal GART management. */ /* * Common GART table functions. */ /** * radeon_gart_table_ram_alloc - allocate system ram for gart page table * * @rdev: radeon_device pointer * * Allocate system memory for GART page table * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the * gart table to be in system memory. * Returns 0 for success, -ENOMEM for failure. */ int radeon_gart_table_ram_alloc(struct radeon_device *rdev) { void *ptr; ptr = pci_alloc_consistent(rdev->pdev, rdev->gart.table_size, &rdev->gart.table_addr); if (ptr == NULL) { return -ENOMEM; } #ifdef CONFIG_X86 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { set_memory_uc((unsigned long)ptr, rdev->gart.table_size >> PAGE_SHIFT); } #endif rdev->gart.ptr = ptr; memset((void *)rdev->gart.ptr, 0, rdev->gart.table_size); return 0; } /** * radeon_gart_table_ram_free - free system ram for gart page table * * @rdev: radeon_device pointer * * Free system memory for GART page table * (r1xx-r3xx, non-pcie r4xx, rs400). These asics require the * gart table to be in system memory. */ void radeon_gart_table_ram_free(struct radeon_device *rdev) { if (rdev->gart.ptr == NULL) { return; } #ifdef CONFIG_X86 if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480 || rdev->family == CHIP_RS690 || rdev->family == CHIP_RS740) { set_memory_wb((unsigned long)rdev->gart.ptr, rdev->gart.table_size >> PAGE_SHIFT); } #endif pci_free_consistent(rdev->pdev, rdev->gart.table_size, (void *)rdev->gart.ptr, rdev->gart.table_addr); rdev->gart.ptr = NULL; rdev->gart.table_addr = 0; } /** * radeon_gart_table_vram_alloc - allocate vram for gart page table * * @rdev: radeon_device pointer * * Allocate video memory for GART page table * (pcie r4xx, r5xx+). These asics require the * gart table to be in video memory. * Returns 0 for success, error for failure. */ int radeon_gart_table_vram_alloc(struct radeon_device *rdev) { int r; if (rdev->gart.robj == NULL) { r = radeon_bo_create(rdev, rdev->gart.table_size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, NULL, &rdev->gart.robj); if (r) { return r; } } return 0; } /** * radeon_gart_table_vram_pin - pin gart page table in vram * * @rdev: radeon_device pointer * * Pin the GART page table in vram so it will not be moved * by the memory manager (pcie r4xx, r5xx+). These asics require the * gart table to be in video memory. * Returns 0 for success, error for failure. */ int radeon_gart_table_vram_pin(struct radeon_device *rdev) { uint64_t gpu_addr; int r; r = radeon_bo_reserve(rdev->gart.robj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(rdev->gart.robj, RADEON_GEM_DOMAIN_VRAM, &gpu_addr); if (r) { radeon_bo_unreserve(rdev->gart.robj); return r; } r = radeon_bo_kmap(rdev->gart.robj, &rdev->gart.ptr); if (r) radeon_bo_unpin(rdev->gart.robj); radeon_bo_unreserve(rdev->gart.robj); rdev->gart.table_addr = gpu_addr; return r; } /** * radeon_gart_table_vram_unpin - unpin gart page table in vram * * @rdev: radeon_device pointer * * Unpin the GART page table in vram (pcie r4xx, r5xx+). * These asics require the gart table to be in video memory. */ void radeon_gart_table_vram_unpin(struct radeon_device *rdev) { int r; if (rdev->gart.robj == NULL) { return; } r = radeon_bo_reserve(rdev->gart.robj, false); if (likely(r == 0)) { radeon_bo_kunmap(rdev->gart.robj); radeon_bo_unpin(rdev->gart.robj); radeon_bo_unreserve(rdev->gart.robj); rdev->gart.ptr = NULL; } } /** * radeon_gart_table_vram_free - free gart page table vram * * @rdev: radeon_device pointer * * Free the video memory used for the GART page table * (pcie r4xx, r5xx+). These asics require the gart table to * be in video memory. */ void radeon_gart_table_vram_free(struct radeon_device *rdev) { if (rdev->gart.robj == NULL) { return; } radeon_bo_unref(&rdev->gart.robj); } /* * Common gart functions. */ /** * radeon_gart_unbind - unbind pages from the gart page table * * @rdev: radeon_device pointer * @offset: offset into the GPU's gart aperture * @pages: number of pages to unbind * * Unbinds the requested pages from the gart page table and * replaces them with the dummy page (all asics). */ void radeon_gart_unbind(struct radeon_device *rdev, unsigned offset, int pages) { unsigned t; unsigned p; int i, j; u64 page_base; if (!rdev->gart.ready) { WARN(1, "trying to unbind memory from uninitialized GART !\n"); return; } t = offset / RADEON_GPU_PAGE_SIZE; p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); for (i = 0; i < pages; i++, p++) { if (rdev->gart.pages[p]) { rdev->gart.pages[p] = NULL; rdev->gart.pages_addr[p] = rdev->dummy_page.addr; page_base = rdev->gart.pages_addr[p]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { if (rdev->gart.ptr) { radeon_gart_set_page(rdev, t, page_base); } page_base += RADEON_GPU_PAGE_SIZE; } } } if (rdev->gart.ptr) { mb(); radeon_gart_tlb_flush(rdev); } } /** * radeon_gart_bind - bind pages into the gart page table * * @rdev: radeon_device pointer * @offset: offset into the GPU's gart aperture * @pages: number of pages to bind * @pagelist: pages to bind * @dma_addr: DMA addresses of pages * * Binds the requested pages to the gart page table * (all asics). * Returns 0 for success, -EINVAL for failure. */ int radeon_gart_bind(struct radeon_device *rdev, unsigned offset, int pages, struct page **pagelist, dma_addr_t *dma_addr) { unsigned t; unsigned p; uint64_t page_base; int i, j; if (!rdev->gart.ready) { WARN(1, "trying to bind memory to uninitialized GART !\n"); return -EINVAL; } t = offset / RADEON_GPU_PAGE_SIZE; p = t / (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); for (i = 0; i < pages; i++, p++) { rdev->gart.pages_addr[p] = dma_addr[i]; rdev->gart.pages[p] = pagelist[i]; if (rdev->gart.ptr) { page_base = rdev->gart.pages_addr[p]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { radeon_gart_set_page(rdev, t, page_base); page_base += RADEON_GPU_PAGE_SIZE; } } } if (rdev->gart.ptr) { mb(); radeon_gart_tlb_flush(rdev); } return 0; } /** * radeon_gart_restore - bind all pages in the gart page table * * @rdev: radeon_device pointer * * Binds all pages in the gart page table (all asics). * Used to rebuild the gart table on device startup or resume. */ void radeon_gart_restore(struct radeon_device *rdev) { int i, j, t; u64 page_base; if (!rdev->gart.ptr) { return; } for (i = 0, t = 0; i < rdev->gart.num_cpu_pages; i++) { page_base = rdev->gart.pages_addr[i]; for (j = 0; j < (PAGE_SIZE / RADEON_GPU_PAGE_SIZE); j++, t++) { radeon_gart_set_page(rdev, t, page_base); page_base += RADEON_GPU_PAGE_SIZE; } } mb(); radeon_gart_tlb_flush(rdev); } /** * radeon_gart_init - init the driver info for managing the gart * * @rdev: radeon_device pointer * * Allocate the dummy page and init the gart driver info (all asics). * Returns 0 for success, error for failure. */ int radeon_gart_init(struct radeon_device *rdev) { int r, i; if (rdev->gart.pages) { return 0; } /* We need PAGE_SIZE >= RADEON_GPU_PAGE_SIZE */ if (PAGE_SIZE < RADEON_GPU_PAGE_SIZE) { DRM_ERROR("Page size is smaller than GPU page size!\n"); return -EINVAL; } r = radeon_dummy_page_init(rdev); if (r) return r; /* Compute table size */ rdev->gart.num_cpu_pages = rdev->mc.gtt_size / PAGE_SIZE; rdev->gart.num_gpu_pages = rdev->mc.gtt_size / RADEON_GPU_PAGE_SIZE; DRM_INFO("GART: num cpu pages %u, num gpu pages %u\n", rdev->gart.num_cpu_pages, rdev->gart.num_gpu_pages); /* Allocate pages table */ rdev->gart.pages = vzalloc(sizeof(void *) * rdev->gart.num_cpu_pages); if (rdev->gart.pages == NULL) { radeon_gart_fini(rdev); return -ENOMEM; } rdev->gart.pages_addr = vzalloc(sizeof(dma_addr_t) * rdev->gart.num_cpu_pages); if (rdev->gart.pages_addr == NULL) { radeon_gart_fini(rdev); return -ENOMEM; } /* set GART entry to point to the dummy page by default */ for (i = 0; i < rdev->gart.num_cpu_pages; i++) { rdev->gart.pages_addr[i] = rdev->dummy_page.addr; } return 0; } /** * radeon_gart_fini - tear down the driver info for managing the gart * * @rdev: radeon_device pointer * * Tear down the gart driver info and free the dummy page (all asics). */ void radeon_gart_fini(struct radeon_device *rdev) { if (rdev->gart.pages && rdev->gart.pages_addr && rdev->gart.ready) { /* unbind pages */ radeon_gart_unbind(rdev, 0, rdev->gart.num_cpu_pages); } rdev->gart.ready = false; vfree(rdev->gart.pages); vfree(rdev->gart.pages_addr); rdev->gart.pages = NULL; rdev->gart.pages_addr = NULL; radeon_dummy_page_fini(rdev); } /* * GPUVM * GPUVM is similar to the legacy gart on older asics, however * rather than there being a single global gart table * for the entire GPU, there are multiple VM page tables active * at any given time. The VM page tables can contain a mix * vram pages and system memory pages and system memory pages * can be mapped as snooped (cached system pages) or unsnooped * (uncached system pages). * Each VM has an ID associated with it and there is a page table * associated with each VMID. When execting a command buffer, * the kernel tells the the ring what VMID to use for that command * buffer. VMIDs are allocated dynamically as commands are submitted. * The userspace drivers maintain their own address space and the kernel * sets up their pages tables accordingly when they submit their * command buffers and a VMID is assigned. * Cayman/Trinity support up to 8 active VMs at any given time; * SI supports 16. */ /* * vm helpers * * TODO bind a default page at vm initialization for default address */ /** * radeon_vm_num_pde - return the number of page directory entries * * @rdev: radeon_device pointer * * Calculate the number of page directory entries (cayman+). */ static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) { return rdev->vm_manager.max_pfn >> RADEON_VM_BLOCK_SIZE; } /** * radeon_vm_directory_size - returns the size of the page directory in bytes * * @rdev: radeon_device pointer * * Calculate the size of the page directory in bytes (cayman+). */ static unsigned radeon_vm_directory_size(struct radeon_device *rdev) { return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); } /** * radeon_vm_manager_init - init the vm manager * * @rdev: radeon_device pointer * * Init the vm manager (cayman+). * Returns 0 for success, error for failure. */ int radeon_vm_manager_init(struct radeon_device *rdev) { struct radeon_vm *vm; struct radeon_bo_va *bo_va; int r; unsigned size; if (!rdev->vm_manager.enabled) { /* allocate enough for 2 full VM pts */ size = radeon_vm_directory_size(rdev); size += rdev->vm_manager.max_pfn * 8; size *= 2; r = radeon_sa_bo_manager_init(rdev, &rdev->vm_manager.sa_manager, RADEON_GPU_PAGE_ALIGN(size), RADEON_VM_PTB_ALIGN_SIZE, RADEON_GEM_DOMAIN_VRAM); if (r) { dev_err(rdev->dev, "failed to allocate vm bo (%dKB)\n", (rdev->vm_manager.max_pfn * 8) >> 10); return r; } r = radeon_asic_vm_init(rdev); if (r) return r; rdev->vm_manager.enabled = true; r = radeon_sa_bo_manager_start(rdev, &rdev->vm_manager.sa_manager); if (r) return r; } /* restore page table */ list_for_each_entry(vm, &rdev->vm_manager.lru_vm, list) { if (vm->page_directory == NULL) continue; list_for_each_entry(bo_va, &vm->va, vm_list) { bo_va->valid = false; } } return 0; } /** * radeon_vm_free_pt - free the page table for a specific vm * * @rdev: radeon_device pointer * @vm: vm to unbind * * Free the page table of a specific vm (cayman+). * * Global and local mutex must be lock! */ static void radeon_vm_free_pt(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo_va *bo_va; int i; if (!vm->page_directory) return; list_del_init(&vm->list); radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); list_for_each_entry(bo_va, &vm->va, vm_list) { bo_va->valid = false; } if (vm->page_tables == NULL) return; for (i = 0; i < radeon_vm_num_pdes(rdev); i++) radeon_sa_bo_free(rdev, &vm->page_tables[i], vm->fence); kfree(vm->page_tables); } /** * radeon_vm_manager_fini - tear down the vm manager * * @rdev: radeon_device pointer * * Tear down the VM manager (cayman+). */ void radeon_vm_manager_fini(struct radeon_device *rdev) { struct radeon_vm *vm, *tmp; int i; if (!rdev->vm_manager.enabled) return; mutex_lock(&rdev->vm_manager.lock); /* free all allocated page tables */ list_for_each_entry_safe(vm, tmp, &rdev->vm_manager.lru_vm, list) { mutex_lock(&vm->mutex); radeon_vm_free_pt(rdev, vm); mutex_unlock(&vm->mutex); } for (i = 0; i < RADEON_NUM_VM; ++i) { radeon_fence_unref(&rdev->vm_manager.active[i]); } radeon_asic_vm_fini(rdev); mutex_unlock(&rdev->vm_manager.lock); radeon_sa_bo_manager_suspend(rdev, &rdev->vm_manager.sa_manager); radeon_sa_bo_manager_fini(rdev, &rdev->vm_manager.sa_manager); rdev->vm_manager.enabled = false; } /** * radeon_vm_evict - evict page table to make room for new one * * @rdev: radeon_device pointer * @vm: VM we want to allocate something for * * Evict a VM from the lru, making sure that it isn't @vm. (cayman+). * Returns 0 for success, -ENOMEM for failure. * * Global and local mutex must be locked! */ static int radeon_vm_evict(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_vm *vm_evict; if (list_empty(&rdev->vm_manager.lru_vm)) return -ENOMEM; vm_evict = list_first_entry(&rdev->vm_manager.lru_vm, struct radeon_vm, list); if (vm_evict == vm) return -ENOMEM; mutex_lock(&vm_evict->mutex); radeon_vm_free_pt(rdev, vm_evict); mutex_unlock(&vm_evict->mutex); return 0; } /** * radeon_vm_alloc_pt - allocates a page table for a VM * * @rdev: radeon_device pointer * @vm: vm to bind * * Allocate a page table for the requested vm (cayman+). * Returns 0 for success, error for failure. * * Global and local mutex must be locked! */ int radeon_vm_alloc_pt(struct radeon_device *rdev, struct radeon_vm *vm) { unsigned pd_size, pts_size; u64 *pd_addr; int r; if (vm == NULL) { return -EINVAL; } if (vm->page_directory != NULL) { return 0; } retry: pd_size = radeon_vm_directory_size(rdev); r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, &vm->page_directory, pd_size, RADEON_VM_PTB_ALIGN_SIZE, false); if (r == -ENOMEM) { r = radeon_vm_evict(rdev, vm); if (r) return r; goto retry; } else if (r) { return r; } vm->pd_gpu_addr = radeon_sa_bo_gpu_addr(vm->page_directory); /* Initially clear the page directory */ pd_addr = radeon_sa_bo_cpu_addr(vm->page_directory); memset(pd_addr, 0, pd_size); pts_size = radeon_vm_num_pdes(rdev) * sizeof(struct radeon_sa_bo *); vm->page_tables = kzalloc(pts_size, GFP_KERNEL); if (vm->page_tables == NULL) { DRM_ERROR("Cannot allocate memory for page table array\n"); radeon_sa_bo_free(rdev, &vm->page_directory, vm->fence); return -ENOMEM; } return 0; } /** * radeon_vm_add_to_lru - add VMs page table to LRU list * * @rdev: radeon_device pointer * @vm: vm to add to LRU * * Add the allocated page table to the LRU list (cayman+). * * Global mutex must be locked! */ void radeon_vm_add_to_lru(struct radeon_device *rdev, struct radeon_vm *vm) { list_del_init(&vm->list); list_add_tail(&vm->list, &rdev->vm_manager.lru_vm); } /** * radeon_vm_grab_id - allocate the next free VMID * * @rdev: radeon_device pointer * @vm: vm to allocate id for * @ring: ring we want to submit job to * * Allocate an id for the vm (cayman+). * Returns the fence we need to sync to (if any). * * Global and local mutex must be locked! */ struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, struct radeon_vm *vm, int ring) { struct radeon_fence *best[RADEON_NUM_RINGS] = {}; unsigned choices[2] = {}; unsigned i; /* check if the id is still valid */ if (vm->fence && vm->fence == rdev->vm_manager.active[vm->id]) return NULL; /* we definately need to flush */ radeon_fence_unref(&vm->last_flush); /* skip over VMID 0, since it is the system VM */ for (i = 1; i < rdev->vm_manager.nvm; ++i) { struct radeon_fence *fence = rdev->vm_manager.active[i]; if (fence == NULL) { /* found a free one */ vm->id = i; return NULL; } if (radeon_fence_is_earlier(fence, best[fence->ring])) { best[fence->ring] = fence; choices[fence->ring == ring ? 0 : 1] = i; } } for (i = 0; i < 2; ++i) { if (choices[i]) { vm->id = choices[i]; return rdev->vm_manager.active[choices[i]]; } } /* should never happen */ BUG(); return NULL; } /** * radeon_vm_fence - remember fence for vm * * @rdev: radeon_device pointer * @vm: vm we want to fence * @fence: fence to remember * * Fence the vm (cayman+). * Set the fence used to protect page table and id. * * Global and local mutex must be locked! */ void radeon_vm_fence(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_fence *fence) { radeon_fence_unref(&rdev->vm_manager.active[vm->id]); rdev->vm_manager.active[vm->id] = radeon_fence_ref(fence); radeon_fence_unref(&vm->fence); vm->fence = radeon_fence_ref(fence); } /** * radeon_vm_bo_find - find the bo_va for a specific vm & bo * * @vm: requested vm * @bo: requested buffer object * * Find @bo inside the requested vm (cayman+). * Search inside the @bos vm list for the requested vm * Returns the found bo_va or NULL if none is found * * Object has to be reserved! */ struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; list_for_each_entry(bo_va, &bo->va, bo_list) { if (bo_va->vm == vm) { return bo_va; } } return NULL; } /** * radeon_vm_bo_add - add a bo to a specific vm * * @rdev: radeon_device pointer * @vm: requested vm * @bo: radeon buffer object * * Add @bo into the requested vm (cayman+). * Add @bo to the list of bos associated with the vm * Returns newly added bo_va or NULL for failure * * Object has to be reserved! */ struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); if (bo_va == NULL) { return NULL; } bo_va->vm = vm; bo_va->bo = bo; bo_va->soffset = 0; bo_va->eoffset = 0; bo_va->flags = 0; bo_va->valid = false; bo_va->ref_count = 1; INIT_LIST_HEAD(&bo_va->bo_list); INIT_LIST_HEAD(&bo_va->vm_list); mutex_lock(&vm->mutex); list_add(&bo_va->vm_list, &vm->va); list_add_tail(&bo_va->bo_list, &bo->va); mutex_unlock(&vm->mutex); return bo_va; } /** * radeon_vm_bo_set_addr - set bos virtual address inside a vm * * @rdev: radeon_device pointer * @bo_va: bo_va to store the address * @soffset: requested offset of the buffer in the VM address space * @flags: attributes of pages (read/write/valid/etc.) * * Set offset of @bo_va (cayman+). * Validate and set the offset requested within the vm address space. * Returns 0 for success, error for failure. * * Object has to be reserved! */ int radeon_vm_bo_set_addr(struct radeon_device *rdev, struct radeon_bo_va *bo_va, uint64_t soffset, uint32_t flags) { uint64_t size = radeon_bo_size(bo_va->bo); uint64_t eoffset, last_offset = 0; struct radeon_vm *vm = bo_va->vm; struct radeon_bo_va *tmp; struct list_head *head; unsigned last_pfn; if (soffset) { /* make sure object fit at this offset */ eoffset = soffset + size; if (soffset >= eoffset) { return -EINVAL; } last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; if (last_pfn > rdev->vm_manager.max_pfn) { dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n", last_pfn, rdev->vm_manager.max_pfn); return -EINVAL; } } else { eoffset = last_pfn = 0; } mutex_lock(&vm->mutex); head = &vm->va; last_offset = 0; list_for_each_entry(tmp, &vm->va, vm_list) { if (bo_va == tmp) { /* skip over currently modified bo */ continue; } if (soffset >= last_offset && eoffset <= tmp->soffset) { /* bo can be added before this one */ break; } if (eoffset > tmp->soffset && soffset < tmp->eoffset) { /* bo and tmp overlap, invalid offset */ dev_err(rdev->dev, "bo %p va 0x%08X conflict with (bo %p 0x%08X 0x%08X)\n", bo_va->bo, (unsigned)bo_va->soffset, tmp->bo, (unsigned)tmp->soffset, (unsigned)tmp->eoffset); mutex_unlock(&vm->mutex); return -EINVAL; } last_offset = tmp->eoffset; head = &tmp->vm_list; } bo_va->soffset = soffset; bo_va->eoffset = eoffset; bo_va->flags = flags; bo_va->valid = false; list_move(&bo_va->vm_list, head); mutex_unlock(&vm->mutex); return 0; } /** * radeon_vm_map_gart - get the physical address of a gart page * * @rdev: radeon_device pointer * @addr: the unmapped addr * * Look up the physical address of the page that the pte resolves * to (cayman+). * Returns the physical address of the page. */ uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) { uint64_t result; /* page table offset */ result = rdev->gart.pages_addr[addr >> PAGE_SHIFT]; /* in case cpu page size != gpu page size*/ result |= addr & (~PAGE_MASK); return result; } /** * radeon_vm_update_pdes - make sure that page directory is valid * * @rdev: radeon_device pointer * @vm: requested vm * @start: start of GPU address range * @end: end of GPU address range * * Allocates new page tables if necessary * and updates the page directory (cayman+). * Returns 0 for success, error for failure. * * Global and local mutex must be locked! */ static int radeon_vm_update_pdes(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_ib *ib, uint64_t start, uint64_t end) { static const uint32_t incr = RADEON_VM_PTE_COUNT * 8; uint64_t last_pde = ~0, last_pt = ~0; unsigned count = 0; uint64_t pt_idx; int r; start = (start / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; end = (end / RADEON_GPU_PAGE_SIZE) >> RADEON_VM_BLOCK_SIZE; /* walk over the address space and update the page directory */ for (pt_idx = start; pt_idx <= end; ++pt_idx) { uint64_t pde, pt; if (vm->page_tables[pt_idx]) continue; retry: r = radeon_sa_bo_new(rdev, &rdev->vm_manager.sa_manager, &vm->page_tables[pt_idx], RADEON_VM_PTE_COUNT * 8, RADEON_GPU_PAGE_SIZE, false); if (r == -ENOMEM) { r = radeon_vm_evict(rdev, vm); if (r) return r; goto retry; } else if (r) { return r; } pde = vm->pd_gpu_addr + pt_idx * 8; pt = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); if (((last_pde + 8 * count) != pde) || ((last_pt + incr * count) != pt)) { if (count) { radeon_asic_vm_set_page(rdev, ib, last_pde, last_pt, count, incr, RADEON_VM_PAGE_VALID); } count = 1; last_pde = pde; last_pt = pt; } else { ++count; } } if (count) { radeon_asic_vm_set_page(rdev, ib, last_pde, last_pt, count, incr, RADEON_VM_PAGE_VALID); } return 0; } /** * radeon_vm_update_ptes - make sure that page tables are valid * * @rdev: radeon_device pointer * @vm: requested vm * @start: start of GPU address range * @end: end of GPU address range * @dst: destination address to map to * @flags: mapping flags * * Update the page tables in the range @start - @end (cayman+). * * Global and local mutex must be locked! */ static void radeon_vm_update_ptes(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_ib *ib, uint64_t start, uint64_t end, uint64_t dst, uint32_t flags) { static const uint64_t mask = RADEON_VM_PTE_COUNT - 1; uint64_t last_pte = ~0, last_dst = ~0; unsigned count = 0; uint64_t addr; start = start / RADEON_GPU_PAGE_SIZE; end = end / RADEON_GPU_PAGE_SIZE; /* walk over the address space and update the page tables */ for (addr = start; addr < end; ) { uint64_t pt_idx = addr >> RADEON_VM_BLOCK_SIZE; unsigned nptes; uint64_t pte; if ((addr & ~mask) == (end & ~mask)) nptes = end - addr; else nptes = RADEON_VM_PTE_COUNT - (addr & mask); pte = radeon_sa_bo_gpu_addr(vm->page_tables[pt_idx]); pte += (addr & mask) * 8; if ((last_pte + 8 * count) != pte) { if (count) { radeon_asic_vm_set_page(rdev, ib, last_pte, last_dst, count, RADEON_GPU_PAGE_SIZE, flags); } count = nptes; last_pte = pte; last_dst = dst; } else { count += nptes; } addr += nptes; dst += nptes * RADEON_GPU_PAGE_SIZE; } if (count) { radeon_asic_vm_set_page(rdev, ib, last_pte, last_dst, count, RADEON_GPU_PAGE_SIZE, flags); } } /** * radeon_vm_bo_update_pte - map a bo into the vm page table * * @rdev: radeon_device pointer * @vm: requested vm * @bo: radeon buffer object * @mem: ttm mem * * Fill in the page table entries for @bo (cayman+). * Returns 0 for success, -EINVAL for failure. * * Object have to be reserved & global and local mutex must be locked! */ int radeon_vm_bo_update_pte(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_bo *bo, struct ttm_mem_reg *mem) { unsigned ridx = rdev->asic->vm.pt_ring_index; struct radeon_ib ib; struct radeon_bo_va *bo_va; unsigned nptes, npdes, ndw; uint64_t addr; int r; /* nothing to do if vm isn't bound */ if (vm->page_directory == NULL) return 0; bo_va = radeon_vm_bo_find(vm, bo); if (bo_va == NULL) { dev_err(rdev->dev, "bo %p not in vm %p\n", bo, vm); return -EINVAL; } if (!bo_va->soffset) { dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", bo, vm); return -EINVAL; } if ((bo_va->valid && mem) || (!bo_va->valid && mem == NULL)) return 0; bo_va->flags &= ~RADEON_VM_PAGE_VALID; bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; if (mem) { addr = mem->start << PAGE_SHIFT; if (mem->mem_type != TTM_PL_SYSTEM) { bo_va->flags |= RADEON_VM_PAGE_VALID; bo_va->valid = true; } if (mem->mem_type == TTM_PL_TT) { bo_va->flags |= RADEON_VM_PAGE_SYSTEM; } else { addr += rdev->vm_manager.vram_base_offset; } } else { addr = 0; bo_va->valid = false; } nptes = radeon_bo_ngpu_pages(bo); /* assume two extra pdes in case the mapping overlaps the borders */ npdes = (nptes >> RADEON_VM_BLOCK_SIZE) + 2; /* padding, etc. */ ndw = 64; if (RADEON_VM_BLOCK_SIZE > 11) /* reserve space for one header for every 2k dwords */ ndw += (nptes >> 11) * 4; else /* reserve space for one header for every (1 << BLOCK_SIZE) entries */ ndw += (nptes >> RADEON_VM_BLOCK_SIZE) * 4; /* reserve space for pte addresses */ ndw += nptes * 2; /* reserve space for one header for every 2k dwords */ ndw += (npdes >> 11) * 4; /* reserve space for pde addresses */ ndw += npdes * 2; /* update too big for an IB */ if (ndw > 0xfffff) return -ENOMEM; r = radeon_ib_get(rdev, ridx, &ib, NULL, ndw * 4); if (r) return r; ib.length_dw = 0; r = radeon_vm_update_pdes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset); if (r) { radeon_ib_free(rdev, &ib); return r; } radeon_vm_update_ptes(rdev, vm, &ib, bo_va->soffset, bo_va->eoffset, addr, bo_va->flags); radeon_ib_sync_to(&ib, vm->fence); r = radeon_ib_schedule(rdev, &ib, NULL); if (r) { radeon_ib_free(rdev, &ib); return r; } radeon_fence_unref(&vm->fence); vm->fence = radeon_fence_ref(ib.fence); radeon_ib_free(rdev, &ib); radeon_fence_unref(&vm->last_flush); return 0; } /** * radeon_vm_bo_rmv - remove a bo to a specific vm * * @rdev: radeon_device pointer * @bo_va: requested bo_va * * Remove @bo_va->bo from the requested vm (cayman+). * Remove @bo_va->bo from the list of bos associated with the bo_va->vm and * remove the ptes for @bo_va in the page table. * Returns 0 for success. * * Object have to be reserved! */ int radeon_vm_bo_rmv(struct radeon_device *rdev, struct radeon_bo_va *bo_va) { int r = 0; mutex_lock(&rdev->vm_manager.lock); mutex_lock(&bo_va->vm->mutex); if (bo_va->soffset) { r = radeon_vm_bo_update_pte(rdev, bo_va->vm, bo_va->bo, NULL); } mutex_unlock(&rdev->vm_manager.lock); list_del(&bo_va->vm_list); mutex_unlock(&bo_va->vm->mutex); list_del(&bo_va->bo_list); kfree(bo_va); return r; } /** * radeon_vm_bo_invalidate - mark the bo as invalid * * @rdev: radeon_device pointer * @vm: requested vm * @bo: radeon buffer object * * Mark @bo as invalid (cayman+). */ void radeon_vm_bo_invalidate(struct radeon_device *rdev, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; list_for_each_entry(bo_va, &bo->va, bo_list) { bo_va->valid = false; } } /** * radeon_vm_init - initialize a vm instance * * @rdev: radeon_device pointer * @vm: requested vm * * Init @vm fields (cayman+). */ void radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) { vm->id = 0; vm->fence = NULL; mutex_init(&vm->mutex); INIT_LIST_HEAD(&vm->list); INIT_LIST_HEAD(&vm->va); } /** * radeon_vm_fini - tear down a vm instance * * @rdev: radeon_device pointer * @vm: requested vm * * Tear down @vm (cayman+). * Unbind the VM and remove all bos from the vm bo list */ void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo_va *bo_va, *tmp; int r; mutex_lock(&rdev->vm_manager.lock); mutex_lock(&vm->mutex); radeon_vm_free_pt(rdev, vm); mutex_unlock(&rdev->vm_manager.lock); if (!list_empty(&vm->va)) { dev_err(rdev->dev, "still active bo inside vm\n"); } list_for_each_entry_safe(bo_va, tmp, &vm->va, vm_list) { list_del_init(&bo_va->vm_list); r = radeon_bo_reserve(bo_va->bo, false); if (!r) { list_del_init(&bo_va->bo_list); radeon_bo_unreserve(bo_va->bo); kfree(bo_va); } } radeon_fence_unref(&vm->fence); radeon_fence_unref(&vm->last_flush); mutex_unlock(&vm->mutex); }