/* * Copyright 2010 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include "radeon.h" #include "radeon_asic.h" #include "nid.h" u32 cayman_gpu_check_soft_reset(struct radeon_device *rdev); /* * DMA * Starting with R600, the GPU has an asynchronous * DMA engine. The programming model is very similar * to the 3D engine (ring buffer, IBs, etc.), but the * DMA controller has it's own packet format that is * different form the PM4 format used by the 3D engine. * It supports copying data, writing embedded data, * solid fills, and a number of other things. It also * has support for tiling/detiling of buffers. * Cayman and newer support two asynchronous DMA engines. */ /** * cayman_dma_ring_ib_execute - Schedule an IB on the DMA engine * * @rdev: radeon_device pointer * @ib: IB object to schedule * * Schedule an IB in the DMA ring (cayman-SI). */ void cayman_dma_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; if (rdev->wb.enabled) { u32 next_rptr = ring->wptr + 4; while ((next_rptr & 7) != 5) next_rptr++; next_rptr += 3; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 1)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xff); radeon_ring_write(ring, next_rptr); } /* The indirect buffer packet must end on an 8 DW boundary in the DMA ring. * Pad as necessary with NOPs. */ while ((ring->wptr & 7) != 5) radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0)); radeon_ring_write(ring, DMA_IB_PACKET(DMA_PACKET_INDIRECT_BUFFER, ib->vm ? ib->vm->id : 0, 0)); radeon_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0)); radeon_ring_write(ring, (ib->length_dw << 12) | (upper_32_bits(ib->gpu_addr) & 0xFF)); } /** * cayman_dma_stop - stop the async dma engines * * @rdev: radeon_device pointer * * Stop the async dma engines (cayman-SI). */ void cayman_dma_stop(struct radeon_device *rdev) { u32 rb_cntl; radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); /* dma0 */ rb_cntl = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET); rb_cntl &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, rb_cntl); /* dma1 */ rb_cntl = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET); rb_cntl &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, rb_cntl); rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false; } /** * cayman_dma_resume - setup and start the async dma engines * * @rdev: radeon_device pointer * * Set up the DMA ring buffers and enable them. (cayman-SI). * Returns 0 for success, error for failure. */ int cayman_dma_resume(struct radeon_device *rdev) { struct radeon_ring *ring; u32 rb_cntl, dma_cntl, ib_cntl; u32 rb_bufsz; u32 reg_offset, wb_offset; int i, r; for (i = 0; i < 2; i++) { if (i == 0) { ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; reg_offset = DMA0_REGISTER_OFFSET; wb_offset = R600_WB_DMA_RPTR_OFFSET; } else { ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; reg_offset = DMA1_REGISTER_OFFSET; wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET; } WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0); WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0); /* Set ring buffer size in dwords */ rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = rb_bufsz << 1; #ifdef __BIG_ENDIAN rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE; #endif WREG32(DMA_RB_CNTL + reg_offset, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32(DMA_RB_RPTR + reg_offset, 0); WREG32(DMA_RB_WPTR + reg_offset, 0); /* set the wb address whether it's enabled or not */ WREG32(DMA_RB_RPTR_ADDR_HI + reg_offset, upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFF); WREG32(DMA_RB_RPTR_ADDR_LO + reg_offset, ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); if (rdev->wb.enabled) rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE; WREG32(DMA_RB_BASE + reg_offset, ring->gpu_addr >> 8); /* enable DMA IBs */ ib_cntl = DMA_IB_ENABLE | CMD_VMID_FORCE; #ifdef __BIG_ENDIAN ib_cntl |= DMA_IB_SWAP_ENABLE; #endif WREG32(DMA_IB_CNTL + reg_offset, ib_cntl); dma_cntl = RREG32(DMA_CNTL + reg_offset); dma_cntl &= ~CTXEMPTY_INT_ENABLE; WREG32(DMA_CNTL + reg_offset, dma_cntl); ring->wptr = 0; WREG32(DMA_RB_WPTR + reg_offset, ring->wptr << 2); ring->rptr = RREG32(DMA_RB_RPTR + reg_offset) >> 2; WREG32(DMA_RB_CNTL + reg_offset, rb_cntl | DMA_RB_ENABLE); ring->ready = true; r = radeon_ring_test(rdev, ring->idx, ring); if (r) { ring->ready = false; return r; } } radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); return 0; } /** * cayman_dma_fini - tear down the async dma engines * * @rdev: radeon_device pointer * * Stop the async dma engines and free the rings (cayman-SI). */ void cayman_dma_fini(struct radeon_device *rdev) { cayman_dma_stop(rdev); radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]); } /** * cayman_dma_is_lockup - Check if the DMA engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the async DMA engine is locked up. * Returns true if the engine appears to be locked up, false if not. */ bool cayman_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = cayman_gpu_check_soft_reset(rdev); u32 mask; if (ring->idx == R600_RING_TYPE_DMA_INDEX) mask = RADEON_RESET_DMA; else mask = RADEON_RESET_DMA1; if (!(reset_mask & mask)) { radeon_ring_lockup_update(ring); return false; } /* force ring activities */ radeon_ring_force_activity(rdev, ring); return radeon_ring_test_lockup(rdev, ring); } /** * cayman_dma_vm_set_page - update the page tables using the DMA * * @rdev: radeon_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * @r600_flags: hw access flags * * Update the page tables using the DMA (cayman/TN). */ void cayman_dma_vm_set_page(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint32_t flags) { uint32_t r600_flags = cayman_vm_page_flags(rdev, flags); uint64_t value; unsigned ndw; if ((flags & RADEON_VM_PAGE_SYSTEM) || (count == 1)) { while (count) { ndw = count * 2; if (ndw > 0xFFFFE) ndw = 0xFFFFE; /* for non-physically contiguous pages (system) */ ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, ndw); ib->ptr[ib->length_dw++] = pe; ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff; for (; ndw > 0; ndw -= 2, --count, pe += 8) { if (flags & RADEON_VM_PAGE_SYSTEM) { value = radeon_vm_map_gart(rdev, addr); value &= 0xFFFFFFFFFFFFF000ULL; } else if (flags & RADEON_VM_PAGE_VALID) { value = addr; } else { value = 0; } addr += incr; value |= r600_flags; ib->ptr[ib->length_dw++] = value; ib->ptr[ib->length_dw++] = upper_32_bits(value); } } } else { while (count) { ndw = count * 2; if (ndw > 0xFFFFE) ndw = 0xFFFFE; if (flags & RADEON_VM_PAGE_VALID) value = addr; else value = 0; /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = DMA_PTE_PDE_PACKET(ndw); ib->ptr[ib->length_dw++] = pe; /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff; ib->ptr[ib->length_dw++] = r600_flags; /* mask */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = value; /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(value); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; pe += ndw * 4; addr += (ndw / 2) * incr; count -= ndw / 2; } } while (ib->length_dw & 0x7) ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0); } void cayman_dma_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) { struct radeon_ring *ring = &rdev->ring[ridx]; if (vm == NULL) return; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0)); radeon_ring_write(ring, (0xf << 16) | ((VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2)); radeon_ring_write(ring, vm->pd_gpu_addr >> 12); /* flush hdp cache */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0)); radeon_ring_write(ring, (0xf << 16) | (HDP_MEM_COHERENCY_FLUSH_CNTL >> 2)); radeon_ring_write(ring, 1); /* bits 0-7 are the VM contexts0-7 */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0)); radeon_ring_write(ring, (0xf << 16) | (VM_INVALIDATE_REQUEST >> 2)); radeon_ring_write(ring, 1 << vm->id); }