// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011 Texas Instruments Incorporated - https://www.ti.com/ * Author: Rob Clark <rob@ti.com> */ #include <linux/math64.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_mode.h> #include <drm/drm_plane_helper.h> #include <drm/drm_vblank.h> #include "omap_drv.h" #define to_omap_crtc_state(x) container_of(x, struct omap_crtc_state, base) struct omap_crtc_state { /* Must be first. */ struct drm_crtc_state base; /* Shadow values for legacy userspace support. */ unsigned int rotation; unsigned int zpos; bool manually_updated; }; #define to_omap_crtc(x) container_of(x, struct omap_crtc, base) struct omap_crtc { struct drm_crtc base; const char *name; struct omap_drm_pipeline *pipe; enum omap_channel channel; struct videomode vm; bool ignore_digit_sync_lost; bool enabled; bool pending; wait_queue_head_t pending_wait; struct drm_pending_vblank_event *event; struct delayed_work update_work; void (*framedone_handler)(void *); void *framedone_handler_data; }; /* ----------------------------------------------------------------------------- * Helper Functions */ struct videomode *omap_crtc_timings(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); return &omap_crtc->vm; } enum omap_channel omap_crtc_channel(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); return omap_crtc->channel; } static bool omap_crtc_is_pending(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); unsigned long flags; bool pending; spin_lock_irqsave(&crtc->dev->event_lock, flags); pending = omap_crtc->pending; spin_unlock_irqrestore(&crtc->dev->event_lock, flags); return pending; } int omap_crtc_wait_pending(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); /* * Timeout is set to a "sufficiently" high value, which should cover * a single frame refresh even on slower displays. */ return wait_event_timeout(omap_crtc->pending_wait, !omap_crtc_is_pending(crtc), msecs_to_jiffies(250)); } /* ----------------------------------------------------------------------------- * DSS Manager Functions */ /* * Manager-ops, callbacks from output when they need to configure * the upstream part of the video pipe. */ void omap_crtc_dss_start_update(struct omap_drm_private *priv, enum omap_channel channel) { dispc_mgr_enable(priv->dispc, channel, true); } /* Called only from the encoder enable/disable and suspend/resume handlers. */ void omap_crtc_set_enabled(struct drm_crtc *crtc, bool enable) { struct omap_crtc_state *omap_state = to_omap_crtc_state(crtc->state); struct drm_device *dev = crtc->dev; struct omap_drm_private *priv = dev->dev_private; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); enum omap_channel channel = omap_crtc->channel; struct omap_irq_wait *wait; u32 framedone_irq, vsync_irq; int ret; if (WARN_ON(omap_crtc->enabled == enable)) return; if (omap_state->manually_updated) { omap_irq_enable_framedone(crtc, enable); omap_crtc->enabled = enable; return; } if (omap_crtc->pipe->output->type == OMAP_DISPLAY_TYPE_HDMI) { dispc_mgr_enable(priv->dispc, channel, enable); omap_crtc->enabled = enable; return; } if (omap_crtc->channel == OMAP_DSS_CHANNEL_DIGIT) { /* * Digit output produces some sync lost interrupts during the * first frame when enabling, so we need to ignore those. */ omap_crtc->ignore_digit_sync_lost = true; } framedone_irq = dispc_mgr_get_framedone_irq(priv->dispc, channel); vsync_irq = dispc_mgr_get_vsync_irq(priv->dispc, channel); if (enable) { wait = omap_irq_wait_init(dev, vsync_irq, 1); } else { /* * When we disable the digit output, we need to wait for * FRAMEDONE to know that DISPC has finished with the output. * * OMAP2/3 does not have FRAMEDONE irq for digit output, and in * that case we need to use vsync interrupt, and wait for both * even and odd frames. */ if (framedone_irq) wait = omap_irq_wait_init(dev, framedone_irq, 1); else wait = omap_irq_wait_init(dev, vsync_irq, 2); } dispc_mgr_enable(priv->dispc, channel, enable); omap_crtc->enabled = enable; ret = omap_irq_wait(dev, wait, msecs_to_jiffies(100)); if (ret) { dev_err(dev->dev, "%s: timeout waiting for %s\n", omap_crtc->name, enable ? "enable" : "disable"); } if (omap_crtc->channel == OMAP_DSS_CHANNEL_DIGIT) { omap_crtc->ignore_digit_sync_lost = false; /* make sure the irq handler sees the value above */ mb(); } } int omap_crtc_dss_enable(struct omap_drm_private *priv, enum omap_channel channel) { struct drm_crtc *crtc = priv->channels[channel]->crtc; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); dispc_mgr_set_timings(priv->dispc, omap_crtc->channel, &omap_crtc->vm); omap_crtc_set_enabled(&omap_crtc->base, true); return 0; } void omap_crtc_dss_disable(struct omap_drm_private *priv, enum omap_channel channel) { struct drm_crtc *crtc = priv->channels[channel]->crtc; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); omap_crtc_set_enabled(&omap_crtc->base, false); } void omap_crtc_dss_set_timings(struct omap_drm_private *priv, enum omap_channel channel, const struct videomode *vm) { struct drm_crtc *crtc = priv->channels[channel]->crtc; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); DBG("%s", omap_crtc->name); omap_crtc->vm = *vm; } void omap_crtc_dss_set_lcd_config(struct omap_drm_private *priv, enum omap_channel channel, const struct dss_lcd_mgr_config *config) { struct drm_crtc *crtc = priv->channels[channel]->crtc; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); DBG("%s", omap_crtc->name); dispc_mgr_set_lcd_config(priv->dispc, omap_crtc->channel, config); } int omap_crtc_dss_register_framedone( struct omap_drm_private *priv, enum omap_channel channel, void (*handler)(void *), void *data) { struct drm_crtc *crtc = priv->channels[channel]->crtc; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct drm_device *dev = omap_crtc->base.dev; if (omap_crtc->framedone_handler) return -EBUSY; dev_dbg(dev->dev, "register framedone %s", omap_crtc->name); omap_crtc->framedone_handler = handler; omap_crtc->framedone_handler_data = data; return 0; } void omap_crtc_dss_unregister_framedone( struct omap_drm_private *priv, enum omap_channel channel, void (*handler)(void *), void *data) { struct drm_crtc *crtc = priv->channels[channel]->crtc; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct drm_device *dev = omap_crtc->base.dev; dev_dbg(dev->dev, "unregister framedone %s", omap_crtc->name); WARN_ON(omap_crtc->framedone_handler != handler); WARN_ON(omap_crtc->framedone_handler_data != data); omap_crtc->framedone_handler = NULL; omap_crtc->framedone_handler_data = NULL; } /* ----------------------------------------------------------------------------- * Setup, Flush and Page Flip */ void omap_crtc_error_irq(struct drm_crtc *crtc, u32 irqstatus) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); if (omap_crtc->ignore_digit_sync_lost) { irqstatus &= ~DISPC_IRQ_SYNC_LOST_DIGIT; if (!irqstatus) return; } DRM_ERROR_RATELIMITED("%s: errors: %08x\n", omap_crtc->name, irqstatus); } void omap_crtc_vblank_irq(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct drm_device *dev = omap_crtc->base.dev; struct omap_drm_private *priv = dev->dev_private; bool pending; spin_lock(&crtc->dev->event_lock); /* * If the dispc is busy we're racing the flush operation. Try again on * the next vblank interrupt. */ if (dispc_mgr_go_busy(priv->dispc, omap_crtc->channel)) { spin_unlock(&crtc->dev->event_lock); return; } /* Send the vblank event if one has been requested. */ if (omap_crtc->event) { drm_crtc_send_vblank_event(crtc, omap_crtc->event); omap_crtc->event = NULL; } pending = omap_crtc->pending; omap_crtc->pending = false; spin_unlock(&crtc->dev->event_lock); if (pending) drm_crtc_vblank_put(crtc); /* Wake up omap_atomic_complete. */ wake_up(&omap_crtc->pending_wait); DBG("%s: apply done", omap_crtc->name); } void omap_crtc_framedone_irq(struct drm_crtc *crtc, uint32_t irqstatus) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); if (!omap_crtc->framedone_handler) return; omap_crtc->framedone_handler(omap_crtc->framedone_handler_data); spin_lock(&crtc->dev->event_lock); /* Send the vblank event if one has been requested. */ if (omap_crtc->event) { drm_crtc_send_vblank_event(crtc, omap_crtc->event); omap_crtc->event = NULL; } omap_crtc->pending = false; spin_unlock(&crtc->dev->event_lock); /* Wake up omap_atomic_complete. */ wake_up(&omap_crtc->pending_wait); } void omap_crtc_flush(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct omap_crtc_state *omap_state = to_omap_crtc_state(crtc->state); if (!omap_state->manually_updated) return; if (!delayed_work_pending(&omap_crtc->update_work)) schedule_delayed_work(&omap_crtc->update_work, 0); } static void omap_crtc_manual_display_update(struct work_struct *data) { struct omap_crtc *omap_crtc = container_of(data, struct omap_crtc, update_work.work); struct omap_dss_device *dssdev = omap_crtc->pipe->output; struct drm_device *dev = omap_crtc->base.dev; int ret; if (!dssdev || !dssdev->dsi_ops || !dssdev->dsi_ops->update) return; ret = dssdev->dsi_ops->update(dssdev); if (ret < 0) { spin_lock_irq(&dev->event_lock); omap_crtc->pending = false; spin_unlock_irq(&dev->event_lock); wake_up(&omap_crtc->pending_wait); } } static s16 omap_crtc_s31_32_to_s2_8(s64 coef) { u64 sign_bit = 1ULL << 63; u64 cbits = (u64)coef; s16 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1ff); if (cbits & sign_bit) ret = -ret; return ret; } static void omap_crtc_cpr_coefs_from_ctm(const struct drm_color_ctm *ctm, struct omap_dss_cpr_coefs *cpr) { cpr->rr = omap_crtc_s31_32_to_s2_8(ctm->matrix[0]); cpr->rg = omap_crtc_s31_32_to_s2_8(ctm->matrix[1]); cpr->rb = omap_crtc_s31_32_to_s2_8(ctm->matrix[2]); cpr->gr = omap_crtc_s31_32_to_s2_8(ctm->matrix[3]); cpr->gg = omap_crtc_s31_32_to_s2_8(ctm->matrix[4]); cpr->gb = omap_crtc_s31_32_to_s2_8(ctm->matrix[5]); cpr->br = omap_crtc_s31_32_to_s2_8(ctm->matrix[6]); cpr->bg = omap_crtc_s31_32_to_s2_8(ctm->matrix[7]); cpr->bb = omap_crtc_s31_32_to_s2_8(ctm->matrix[8]); } static void omap_crtc_write_crtc_properties(struct drm_crtc *crtc) { struct omap_drm_private *priv = crtc->dev->dev_private; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct omap_overlay_manager_info info; memset(&info, 0, sizeof(info)); info.default_color = 0x000000; info.trans_enabled = false; info.partial_alpha_enabled = false; if (crtc->state->ctm) { struct drm_color_ctm *ctm = crtc->state->ctm->data; info.cpr_enable = true; omap_crtc_cpr_coefs_from_ctm(ctm, &info.cpr_coefs); } else { info.cpr_enable = false; } dispc_mgr_setup(priv->dispc, omap_crtc->channel, &info); } /* ----------------------------------------------------------------------------- * CRTC Functions */ static void omap_crtc_destroy(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); DBG("%s", omap_crtc->name); drm_crtc_cleanup(crtc); kfree(omap_crtc); } static void omap_crtc_arm_event(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); WARN_ON(omap_crtc->pending); omap_crtc->pending = true; if (crtc->state->event) { omap_crtc->event = crtc->state->event; crtc->state->event = NULL; } } static void omap_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct omap_drm_private *priv = crtc->dev->dev_private; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct omap_crtc_state *omap_state = to_omap_crtc_state(crtc->state); int ret; DBG("%s", omap_crtc->name); dispc_runtime_get(priv->dispc); /* manual updated display will not trigger vsync irq */ if (omap_state->manually_updated) return; drm_crtc_vblank_on(crtc); ret = drm_crtc_vblank_get(crtc); WARN_ON(ret != 0); spin_lock_irq(&crtc->dev->event_lock); omap_crtc_arm_event(crtc); spin_unlock_irq(&crtc->dev->event_lock); } static void omap_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct omap_drm_private *priv = crtc->dev->dev_private; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct drm_device *dev = crtc->dev; DBG("%s", omap_crtc->name); spin_lock_irq(&crtc->dev->event_lock); if (crtc->state->event) { drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; } spin_unlock_irq(&crtc->dev->event_lock); cancel_delayed_work(&omap_crtc->update_work); if (!omap_crtc_wait_pending(crtc)) dev_warn(dev->dev, "manual display update did not finish!"); drm_crtc_vblank_off(crtc); dispc_runtime_put(priv->dispc); } static enum drm_mode_status omap_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct omap_drm_private *priv = crtc->dev->dev_private; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct videomode vm = {0}; int r; drm_display_mode_to_videomode(mode, &vm); /* * DSI might not call this, since the supplied mode is not a * valid DISPC mode. DSI will calculate and configure the * proper DISPC mode later. */ if (omap_crtc->pipe->output->type != OMAP_DISPLAY_TYPE_DSI) { r = dispc_mgr_check_timings(priv->dispc, omap_crtc->channel, &vm); if (r) return r; } /* Check for bandwidth limit */ if (priv->max_bandwidth) { /* * Estimation for the bandwidth need of a given mode with one * full screen plane: * bandwidth = resolution * 32bpp * (pclk / (vtotal * htotal)) * ^^ Refresh rate ^^ * * The interlaced mode is taken into account by using the * pixelclock in the calculation. * * The equation is rearranged for 64bit arithmetic. */ uint64_t bandwidth = mode->clock * 1000; unsigned int bpp = 4; bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp; bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal); /* * Reject modes which would need more bandwidth if used with one * full resolution plane (most common use case). */ if (priv->max_bandwidth < bandwidth) return MODE_BAD; } return MODE_OK; } static void omap_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct drm_display_mode *mode = &crtc->state->adjusted_mode; DBG("%s: set mode: " DRM_MODE_FMT, omap_crtc->name, DRM_MODE_ARG(mode)); drm_display_mode_to_videomode(mode, &omap_crtc->vm); } static bool omap_crtc_is_manually_updated(struct drm_crtc *crtc) { struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct omap_dss_device *dssdev = omap_crtc->pipe->output; if (!dssdev || !dssdev->dsi_ops || !dssdev->dsi_ops->is_video_mode) return false; if (dssdev->dsi_ops->is_video_mode(dssdev)) return false; DBG("detected manually updated display!"); return true; } static int omap_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct drm_plane_state *pri_state; if (crtc_state->color_mgmt_changed && crtc_state->degamma_lut) { unsigned int length = crtc_state->degamma_lut->length / sizeof(struct drm_color_lut); if (length < 2) return -EINVAL; } pri_state = drm_atomic_get_new_plane_state(state, crtc->primary); if (pri_state) { struct omap_crtc_state *omap_crtc_state = to_omap_crtc_state(crtc_state); /* Mirror new values for zpos and rotation in omap_crtc_state */ omap_crtc_state->zpos = pri_state->zpos; omap_crtc_state->rotation = pri_state->rotation; /* Check if this CRTC is for a manually updated display */ omap_crtc_state->manually_updated = omap_crtc_is_manually_updated(crtc); } return 0; } static void omap_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { } static void omap_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct omap_drm_private *priv = crtc->dev->dev_private; struct omap_crtc *omap_crtc = to_omap_crtc(crtc); struct omap_crtc_state *omap_crtc_state = to_omap_crtc_state(crtc->state); int ret; if (crtc->state->color_mgmt_changed) { struct drm_color_lut *lut = NULL; unsigned int length = 0; if (crtc->state->degamma_lut) { lut = (struct drm_color_lut *) crtc->state->degamma_lut->data; length = crtc->state->degamma_lut->length / sizeof(*lut); } dispc_mgr_set_gamma(priv->dispc, omap_crtc->channel, lut, length); } omap_crtc_write_crtc_properties(crtc); /* Only flush the CRTC if it is currently enabled. */ if (!omap_crtc->enabled) return; DBG("%s: GO", omap_crtc->name); if (omap_crtc_state->manually_updated) { /* send new image for page flips and modeset changes */ spin_lock_irq(&crtc->dev->event_lock); omap_crtc_flush(crtc); omap_crtc_arm_event(crtc); spin_unlock_irq(&crtc->dev->event_lock); return; } ret = drm_crtc_vblank_get(crtc); WARN_ON(ret != 0); spin_lock_irq(&crtc->dev->event_lock); dispc_mgr_go(priv->dispc, omap_crtc->channel); omap_crtc_arm_event(crtc); spin_unlock_irq(&crtc->dev->event_lock); } static int omap_crtc_atomic_set_property(struct drm_crtc *crtc, struct drm_crtc_state *state, struct drm_property *property, u64 val) { struct omap_drm_private *priv = crtc->dev->dev_private; struct drm_plane_state *plane_state; /* * Delegate property set to the primary plane. Get the plane state and * set the property directly, the shadow copy will be assigned in the * omap_crtc_atomic_check callback. This way updates to plane state will * always be mirrored in the crtc state correctly. */ plane_state = drm_atomic_get_plane_state(state->state, crtc->primary); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); if (property == crtc->primary->rotation_property) plane_state->rotation = val; else if (property == priv->zorder_prop) plane_state->zpos = val; else return -EINVAL; return 0; } static int omap_crtc_atomic_get_property(struct drm_crtc *crtc, const struct drm_crtc_state *state, struct drm_property *property, u64 *val) { struct omap_drm_private *priv = crtc->dev->dev_private; struct omap_crtc_state *omap_state = to_omap_crtc_state(state); if (property == crtc->primary->rotation_property) *val = omap_state->rotation; else if (property == priv->zorder_prop) *val = omap_state->zpos; else return -EINVAL; return 0; } static void omap_crtc_reset(struct drm_crtc *crtc) { struct omap_crtc_state *state; if (crtc->state) __drm_atomic_helper_crtc_destroy_state(crtc->state); kfree(crtc->state); state = kzalloc(sizeof(*state), GFP_KERNEL); if (state) __drm_atomic_helper_crtc_reset(crtc, &state->base); } static struct drm_crtc_state * omap_crtc_duplicate_state(struct drm_crtc *crtc) { struct omap_crtc_state *state, *current_state; if (WARN_ON(!crtc->state)) return NULL; current_state = to_omap_crtc_state(crtc->state); state = kmalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); state->zpos = current_state->zpos; state->rotation = current_state->rotation; state->manually_updated = current_state->manually_updated; return &state->base; } static const struct drm_crtc_funcs omap_crtc_funcs = { .reset = omap_crtc_reset, .set_config = drm_atomic_helper_set_config, .destroy = omap_crtc_destroy, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = omap_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .atomic_set_property = omap_crtc_atomic_set_property, .atomic_get_property = omap_crtc_atomic_get_property, .enable_vblank = omap_irq_enable_vblank, .disable_vblank = omap_irq_disable_vblank, }; static const struct drm_crtc_helper_funcs omap_crtc_helper_funcs = { .mode_set_nofb = omap_crtc_mode_set_nofb, .atomic_check = omap_crtc_atomic_check, .atomic_begin = omap_crtc_atomic_begin, .atomic_flush = omap_crtc_atomic_flush, .atomic_enable = omap_crtc_atomic_enable, .atomic_disable = omap_crtc_atomic_disable, .mode_valid = omap_crtc_mode_valid, }; /* ----------------------------------------------------------------------------- * Init and Cleanup */ static const char *channel_names[] = { [OMAP_DSS_CHANNEL_LCD] = "lcd", [OMAP_DSS_CHANNEL_DIGIT] = "tv", [OMAP_DSS_CHANNEL_LCD2] = "lcd2", [OMAP_DSS_CHANNEL_LCD3] = "lcd3", }; /* initialize crtc */ struct drm_crtc *omap_crtc_init(struct drm_device *dev, struct omap_drm_pipeline *pipe, struct drm_plane *plane) { struct omap_drm_private *priv = dev->dev_private; struct drm_crtc *crtc = NULL; struct omap_crtc *omap_crtc; enum omap_channel channel; int ret; channel = pipe->output->dispc_channel; DBG("%s", channel_names[channel]); omap_crtc = kzalloc(sizeof(*omap_crtc), GFP_KERNEL); if (!omap_crtc) return ERR_PTR(-ENOMEM); crtc = &omap_crtc->base; init_waitqueue_head(&omap_crtc->pending_wait); omap_crtc->pipe = pipe; omap_crtc->channel = channel; omap_crtc->name = channel_names[channel]; /* * We want to refresh manually updated displays from dirty callback, * which is called quite often (e.g. for each drawn line). This will * be used to do the display update asynchronously to avoid blocking * the rendering process and merges multiple dirty calls into one * update if they arrive very fast. We also call this function for * atomic display updates (e.g. for page flips), which means we do * not need extra locking. Atomic updates should be synchronous, but * need to wait for the framedone interrupt anyways. */ INIT_DELAYED_WORK(&omap_crtc->update_work, omap_crtc_manual_display_update); ret = drm_crtc_init_with_planes(dev, crtc, plane, NULL, &omap_crtc_funcs, NULL); if (ret < 0) { dev_err(dev->dev, "%s(): could not init crtc for: %s\n", __func__, pipe->output->name); kfree(omap_crtc); return ERR_PTR(ret); } drm_crtc_helper_add(crtc, &omap_crtc_helper_funcs); /* The dispc API adapts to what ever size, but the HW supports * 256 element gamma table for LCDs and 1024 element table for * OMAP_DSS_CHANNEL_DIGIT. X server assumes 256 element gamma * tables so lets use that. Size of HW gamma table can be * extracted with dispc_mgr_gamma_size(). If it returns 0 * gamma table is not supported. */ if (dispc_mgr_gamma_size(priv->dispc, channel)) { unsigned int gamma_lut_size = 256; drm_crtc_enable_color_mgmt(crtc, gamma_lut_size, true, 0); drm_mode_crtc_set_gamma_size(crtc, gamma_lut_size); } omap_plane_install_properties(crtc->primary, &crtc->base); return crtc; }