/* Copyright (c) 2016 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include "a5xx_gpu.h" /* * The GPMU data block is a block of shared registers that can be used to * communicate back and forth. These "registers" are by convention with the GPMU * firwmare and not bound to any specific hardware design */ #define AGC_INIT_BASE REG_A5XX_GPMU_DATA_RAM_BASE #define AGC_INIT_MSG_MAGIC (AGC_INIT_BASE + 5) #define AGC_MSG_BASE (AGC_INIT_BASE + 7) #define AGC_MSG_STATE (AGC_MSG_BASE + 0) #define AGC_MSG_COMMAND (AGC_MSG_BASE + 1) #define AGC_MSG_PAYLOAD_SIZE (AGC_MSG_BASE + 3) #define AGC_MSG_PAYLOAD(_o) ((AGC_MSG_BASE + 5) + (_o)) #define AGC_POWER_CONFIG_PRODUCTION_ID 1 #define AGC_INIT_MSG_VALUE 0xBABEFACE static struct { uint32_t reg; uint32_t value; } a5xx_sequence_regs[] = { { 0xB9A1, 0x00010303 }, { 0xB9A2, 0x13000000 }, { 0xB9A3, 0x00460020 }, { 0xB9A4, 0x10000000 }, { 0xB9A5, 0x040A1707 }, { 0xB9A6, 0x00010000 }, { 0xB9A7, 0x0E000904 }, { 0xB9A8, 0x10000000 }, { 0xB9A9, 0x01165000 }, { 0xB9AA, 0x000E0002 }, { 0xB9AB, 0x03884141 }, { 0xB9AC, 0x10000840 }, { 0xB9AD, 0x572A5000 }, { 0xB9AE, 0x00000003 }, { 0xB9AF, 0x00000000 }, { 0xB9B0, 0x10000000 }, { 0xB828, 0x6C204010 }, { 0xB829, 0x6C204011 }, { 0xB82A, 0x6C204012 }, { 0xB82B, 0x6C204013 }, { 0xB82C, 0x6C204014 }, { 0xB90F, 0x00000004 }, { 0xB910, 0x00000002 }, { 0xB911, 0x00000002 }, { 0xB912, 0x00000002 }, { 0xB913, 0x00000002 }, { 0xB92F, 0x00000004 }, { 0xB930, 0x00000005 }, { 0xB931, 0x00000005 }, { 0xB932, 0x00000005 }, { 0xB933, 0x00000005 }, { 0xB96F, 0x00000001 }, { 0xB970, 0x00000003 }, { 0xB94F, 0x00000004 }, { 0xB950, 0x0000000B }, { 0xB951, 0x0000000B }, { 0xB952, 0x0000000B }, { 0xB953, 0x0000000B }, { 0xB907, 0x00000019 }, { 0xB927, 0x00000019 }, { 0xB947, 0x00000019 }, { 0xB967, 0x00000019 }, { 0xB987, 0x00000019 }, { 0xB906, 0x00220001 }, { 0xB926, 0x00220001 }, { 0xB946, 0x00220001 }, { 0xB966, 0x00220001 }, { 0xB986, 0x00300000 }, { 0xAC40, 0x0340FF41 }, { 0xAC41, 0x03BEFED0 }, { 0xAC42, 0x00331FED }, { 0xAC43, 0x021FFDD3 }, { 0xAC44, 0x5555AAAA }, { 0xAC45, 0x5555AAAA }, { 0xB9BA, 0x00000008 }, }; /* * Get the actual voltage value for the operating point at the specified * frequency */ static inline uint32_t _get_mvolts(struct msm_gpu *gpu, uint32_t freq) { struct drm_device *dev = gpu->dev; struct msm_drm_private *priv = dev->dev_private; struct platform_device *pdev = priv->gpu_pdev; struct dev_pm_opp *opp; opp = dev_pm_opp_find_freq_exact(&pdev->dev, freq, true); return (!IS_ERR(opp)) ? dev_pm_opp_get_voltage(opp) / 1000 : 0; } /* Setup thermal limit management */ static void a5xx_lm_setup(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); unsigned int i; /* Write the block of sequence registers */ for (i = 0; i < ARRAY_SIZE(a5xx_sequence_regs); i++) gpu_write(gpu, a5xx_sequence_regs[i].reg, a5xx_sequence_regs[i].value); /* Hard code the A530 GPU thermal sensor ID for the GPMU */ gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_ID, 0x60007); gpu_write(gpu, REG_A5XX_GPMU_DELTA_TEMP_THRESHOLD, 0x01); gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_CONFIG, 0x01); /* Until we get clock scaling 0 is always the active power level */ gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0); gpu_write(gpu, REG_A5XX_GPMU_BASE_LEAKAGE, a5xx_gpu->lm_leakage); /* The threshold is fixed at 6000 for A530 */ gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000); gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF); gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x00201FF1); /* Write the voltage table */ gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF); gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x201FF1); gpu_write(gpu, AGC_MSG_STATE, 1); gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID); /* Write the max power - hard coded to 5448 for A530 */ gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448); gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1); /* * For now just write the one voltage level - we will do more when we * can do scaling */ gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate)); gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000); gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 4 * sizeof(uint32_t)); gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE); } /* Enable SP/TP cpower collapse */ static void a5xx_pc_init(struct msm_gpu *gpu) { gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_CTRL, 0x7F); gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_BINNING_CTRL, 0); gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_HYST, 0xA0080); gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_STAGGER_DELAY, 0x600040); } /* Enable the GPMU microcontroller */ static int a5xx_gpmu_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); struct msm_ringbuffer *ring = gpu->rb; if (!a5xx_gpu->gpmu_dwords) return 0; /* Turn off protected mode for this operation */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 0); /* Kick off the IB to load the GPMU microcode */ OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); OUT_RING(ring, lower_32_bits(a5xx_gpu->gpmu_iova)); OUT_RING(ring, upper_32_bits(a5xx_gpu->gpmu_iova)); OUT_RING(ring, a5xx_gpu->gpmu_dwords); /* Turn back on protected mode */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 1); gpu->funcs->flush(gpu); if (!gpu->funcs->idle(gpu)) { DRM_ERROR("%s: Unable to load GPMU firmware. GPMU will not be active\n", gpu->name); return -EINVAL; } gpu_write(gpu, REG_A5XX_GPMU_WFI_CONFIG, 0x4014); /* Kick off the GPMU */ gpu_write(gpu, REG_A5XX_GPMU_CM3_SYSRESET, 0x0); /* * Wait for the GPMU to respond. It isn't fatal if it doesn't, we just * won't have advanced power collapse. */ if (spin_usecs(gpu, 25, REG_A5XX_GPMU_GENERAL_0, 0xFFFFFFFF, 0xBABEFACE)) DRM_ERROR("%s: GPMU firmware initialization timed out\n", gpu->name); return 0; } /* Enable limits management */ static void a5xx_lm_enable(struct msm_gpu *gpu) { gpu_write(gpu, REG_A5XX_GDPM_INT_MASK, 0x0); gpu_write(gpu, REG_A5XX_GDPM_INT_EN, 0x0A); gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE_INTR_EN_MASK, 0x01); gpu_write(gpu, REG_A5XX_GPMU_TEMP_THRESHOLD_INTR_EN_MASK, 0x50000); gpu_write(gpu, REG_A5XX_GPMU_THROTTLE_UNMASK_FORCE_CTRL, 0x30000); gpu_write(gpu, REG_A5XX_GPMU_CLOCK_THROTTLE_CTRL, 0x011); } int a5xx_power_init(struct msm_gpu *gpu) { int ret; /* Set up the limits management */ a5xx_lm_setup(gpu); /* Set up SP/TP power collpase */ a5xx_pc_init(gpu); /* Start the GPMU */ ret = a5xx_gpmu_init(gpu); if (ret) return ret; /* Start the limits management */ a5xx_lm_enable(gpu); return 0; } void a5xx_gpmu_ucode_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); struct drm_device *drm = gpu->dev; const struct firmware *fw; uint32_t dwords = 0, offset = 0, bosize; unsigned int *data, *ptr, *cmds; unsigned int cmds_size; if (a5xx_gpu->gpmu_bo) return; /* Get the firmware */ if (request_firmware(&fw, adreno_gpu->info->gpmufw, drm->dev)) { DRM_ERROR("%s: Could not get GPMU firmware. GPMU will not be active\n", gpu->name); return; } data = (unsigned int *) fw->data; /* * The first dword is the size of the remaining data in dwords. Use it * as a checksum of sorts and make sure it matches the actual size of * the firmware that we read */ if (fw->size < 8 || (data[0] < 2) || (data[0] >= (fw->size >> 2))) goto out; /* The second dword is an ID - look for 2 (GPMU_FIRMWARE_ID) */ if (data[1] != 2) goto out; cmds = data + data[2] + 3; cmds_size = data[0] - data[2] - 2; /* * A single type4 opcode can only have so many values attached so * add enough opcodes to load the all the commands */ bosize = (cmds_size + (cmds_size / TYPE4_MAX_PAYLOAD) + 1) << 2; mutex_lock(&drm->struct_mutex); a5xx_gpu->gpmu_bo = msm_gem_new(drm, bosize, MSM_BO_UNCACHED); mutex_unlock(&drm->struct_mutex); if (IS_ERR(a5xx_gpu->gpmu_bo)) goto err; if (msm_gem_get_iova(a5xx_gpu->gpmu_bo, gpu->id, &a5xx_gpu->gpmu_iova)) goto err; ptr = msm_gem_get_vaddr(a5xx_gpu->gpmu_bo); if (!ptr) goto err; while (cmds_size > 0) { int i; uint32_t _size = cmds_size > TYPE4_MAX_PAYLOAD ? TYPE4_MAX_PAYLOAD : cmds_size; ptr[dwords++] = PKT4(REG_A5XX_GPMU_INST_RAM_BASE + offset, _size); for (i = 0; i < _size; i++) ptr[dwords++] = *cmds++; offset += _size; cmds_size -= _size; } msm_gem_put_vaddr(a5xx_gpu->gpmu_bo); a5xx_gpu->gpmu_dwords = dwords; goto out; err: if (a5xx_gpu->gpmu_iova) msm_gem_put_iova(a5xx_gpu->gpmu_bo, gpu->id); if (a5xx_gpu->gpmu_bo) drm_gem_object_unreference_unlocked(a5xx_gpu->gpmu_bo); a5xx_gpu->gpmu_bo = NULL; a5xx_gpu->gpmu_iova = 0; a5xx_gpu->gpmu_dwords = 0; out: /* No need to keep that firmware laying around anymore */ release_firmware(fw); }