// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include "msm_gem.h" #include "msm_mmu.h" #include "a5xx_gpu.h" extern bool hang_debug; static void a5xx_dump(struct msm_gpu *gpu); #define GPU_PAS_ID 13 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); if (a5xx_gpu->has_whereami) { OUT_PKT7(ring, CP_WHERE_AM_I, 2); OUT_RING(ring, lower_32_bits(shadowptr(a5xx_gpu, ring))); OUT_RING(ring, upper_32_bits(shadowptr(a5xx_gpu, ring))); } } void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, bool sync) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); uint32_t wptr; unsigned long flags; /* * Most flush operations need to issue a WHERE_AM_I opcode to sync up * the rptr shadow */ if (sync) update_shadow_rptr(gpu, ring); spin_lock_irqsave(&ring->preempt_lock, flags); /* Copy the shadow to the actual register */ ring->cur = ring->next; /* Make sure to wrap wptr if we need to */ wptr = get_wptr(ring); spin_unlock_irqrestore(&ring->preempt_lock, flags); /* Make sure everything is posted before making a decision */ mb(); /* Update HW if this is the current ring and we are not in preempt */ if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu)) gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr); } static void a5xx_submit_in_rb(struct msm_gpu *gpu, struct msm_gem_submit *submit) { struct msm_ringbuffer *ring = submit->ring; struct msm_gem_object *obj; uint32_t *ptr, dwords; unsigned int i; for (i = 0; i < submit->nr_cmds; i++) { switch (submit->cmd[i].type) { case MSM_SUBMIT_CMD_IB_TARGET_BUF: break; case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) break; fallthrough; case MSM_SUBMIT_CMD_BUF: /* copy commands into RB: */ obj = submit->bos[submit->cmd[i].idx].obj; dwords = submit->cmd[i].size; ptr = msm_gem_get_vaddr(&obj->base); /* _get_vaddr() shouldn't fail at this point, * since we've already mapped it once in * submit_reloc() */ if (WARN_ON(!ptr)) return; for (i = 0; i < dwords; i++) { /* normally the OUT_PKTn() would wait * for space for the packet. But since * we just OUT_RING() the whole thing, * need to call adreno_wait_ring() * ourself: */ adreno_wait_ring(ring, 1); OUT_RING(ring, ptr[i]); } msm_gem_put_vaddr(&obj->base); break; } } a5xx_flush(gpu, ring, true); a5xx_preempt_trigger(gpu); /* we might not necessarily have a cmd from userspace to * trigger an event to know that submit has completed, so * do this manually: */ a5xx_idle(gpu, ring); ring->memptrs->fence = submit->seqno; msm_gpu_retire(gpu); } static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); struct msm_ringbuffer *ring = submit->ring; unsigned int i, ibs = 0; if (IS_ENABLED(CONFIG_DRM_MSM_GPU_SUDO) && submit->in_rb) { gpu->cur_ctx_seqno = 0; a5xx_submit_in_rb(gpu, submit); return; } OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1); OUT_RING(ring, 0x02); /* Turn off protected mode to write to special registers */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 0); /* Set the save preemption record for the ring/command */ OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2); OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id])); OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id])); /* Turn back on protected mode */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 1); /* Enable local preemption for finegrain preemption */ OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1); OUT_RING(ring, 0x02); /* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */ OUT_PKT7(ring, CP_YIELD_ENABLE, 1); OUT_RING(ring, 0x02); /* Submit the commands */ for (i = 0; i < submit->nr_cmds; i++) { switch (submit->cmd[i].type) { case MSM_SUBMIT_CMD_IB_TARGET_BUF: break; case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) break; fallthrough; case MSM_SUBMIT_CMD_BUF: OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); OUT_RING(ring, submit->cmd[i].size); ibs++; break; } /* * Periodically update shadow-wptr if needed, so that we * can see partial progress of submits with large # of * cmds.. otherwise we could needlessly stall waiting for * ringbuffer state, simply due to looking at a shadow * rptr value that has not been updated */ if ((ibs % 32) == 0) update_shadow_rptr(gpu, ring); } /* * Write the render mode to NULL (0) to indicate to the CP that the IBs * are done rendering - otherwise a lucky preemption would start * replaying from the last checkpoint */ OUT_PKT7(ring, CP_SET_RENDER_MODE, 5); OUT_RING(ring, 0); OUT_RING(ring, 0); OUT_RING(ring, 0); OUT_RING(ring, 0); OUT_RING(ring, 0); /* Turn off IB level preemptions */ OUT_PKT7(ring, CP_YIELD_ENABLE, 1); OUT_RING(ring, 0x01); /* Write the fence to the scratch register */ OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1); OUT_RING(ring, submit->seqno); /* * Execute a CACHE_FLUSH_TS event. This will ensure that the * timestamp is written to the memory and then triggers the interrupt */ OUT_PKT7(ring, CP_EVENT_WRITE, 4); OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | CP_EVENT_WRITE_0_IRQ); OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); OUT_RING(ring, submit->seqno); /* Yield the floor on command completion */ OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4); /* * If dword[2:1] are non zero, they specify an address for the CP to * write the value of dword[3] to on preemption complete. Write 0 to * skip the write */ OUT_RING(ring, 0x00); OUT_RING(ring, 0x00); /* Data value - not used if the address above is 0 */ OUT_RING(ring, 0x01); /* Set bit 0 to trigger an interrupt on preempt complete */ OUT_RING(ring, 0x01); /* A WHERE_AM_I packet is not needed after a YIELD */ a5xx_flush(gpu, ring, false); /* Check to see if we need to start preemption */ a5xx_preempt_trigger(gpu); } static const struct adreno_five_hwcg_regs { u32 offset; u32 value; } a5xx_hwcg[] = { {REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222}, {REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222}, {REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220}, {REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220}, {REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220}, {REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF}, {REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF}, {REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF}, {REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, {REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, {REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, {REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222}, {REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222}, {REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222}, {REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222}, {REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777}, {REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777}, {REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777}, {REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777}, {REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111}, {REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111}, {REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111}, {REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111}, {REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, {REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444}, {REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220}, {REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220}, {REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220}, {REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220}, {REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555}, {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404}, {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404}, {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404}, {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404}, {REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044}, {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002}, {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002}, {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002}, {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002}, {REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011}, {REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, {REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222} }, a50x_hwcg[] = { {REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222}, {REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777}, {REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111}, {REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00FFFFF4}, {REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220}, {REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555}, {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404}, {REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044}, {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002}, {REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011}, {REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, {REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, }, a512_hwcg[] = { {REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, {REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, {REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220}, {REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, {REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF}, {REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, {REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, {REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222}, {REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222}, {REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, {REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777}, {REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777}, {REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, {REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111}, {REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111}, {REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, {REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444}, {REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, {REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222}, {REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220}, {REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220}, {REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222}, {REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555}, {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404}, {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404}, {REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044}, {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002}, {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002}, {REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011}, {REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, {REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, {REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, {REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, {REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, {REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, {REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, {REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, {REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, {REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, }; void a5xx_set_hwcg(struct msm_gpu *gpu, bool state) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); const struct adreno_five_hwcg_regs *regs; unsigned int i, sz; if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu)) { regs = a50x_hwcg; sz = ARRAY_SIZE(a50x_hwcg); } else if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) { regs = a512_hwcg; sz = ARRAY_SIZE(a512_hwcg); } else { regs = a5xx_hwcg; sz = ARRAY_SIZE(a5xx_hwcg); } for (i = 0; i < sz; i++) gpu_write(gpu, regs[i].offset, state ? regs[i].value : 0); if (adreno_is_a540(adreno_gpu)) { gpu_write(gpu, REG_A5XX_RBBM_CLOCK_DELAY_GPMU, state ? 0x00000770 : 0); gpu_write(gpu, REG_A5XX_RBBM_CLOCK_HYST_GPMU, state ? 0x00000004 : 0); } gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0); gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180); } static int a5xx_me_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct msm_ringbuffer *ring = gpu->rb[0]; OUT_PKT7(ring, CP_ME_INIT, 8); OUT_RING(ring, 0x0000002F); /* Enable multiple hardware contexts */ OUT_RING(ring, 0x00000003); /* Enable error detection */ OUT_RING(ring, 0x20000000); /* Don't enable header dump */ OUT_RING(ring, 0x00000000); OUT_RING(ring, 0x00000000); /* Specify workarounds for various microcode issues */ if (adreno_is_a506(adreno_gpu) || adreno_is_a530(adreno_gpu)) { /* Workaround for token end syncs * Force a WFI after every direct-render 3D mode draw and every * 2D mode 3 draw */ OUT_RING(ring, 0x0000000B); } else if (adreno_is_a510(adreno_gpu)) { /* Workaround for token and syncs */ OUT_RING(ring, 0x00000001); } else { /* No workarounds enabled */ OUT_RING(ring, 0x00000000); } OUT_RING(ring, 0x00000000); OUT_RING(ring, 0x00000000); a5xx_flush(gpu, ring, true); return a5xx_idle(gpu, ring) ? 0 : -EINVAL; } static int a5xx_preempt_start(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); struct msm_ringbuffer *ring = gpu->rb[0]; if (gpu->nr_rings == 1) return 0; /* Turn off protected mode to write to special registers */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 0); /* Set the save preemption record for the ring/command */ OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2); OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id])); OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id])); /* Turn back on protected mode */ OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); OUT_RING(ring, 1); OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1); OUT_RING(ring, 0x00); OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1); OUT_RING(ring, 0x01); OUT_PKT7(ring, CP_YIELD_ENABLE, 1); OUT_RING(ring, 0x01); /* Yield the floor on command completion */ OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4); OUT_RING(ring, 0x00); OUT_RING(ring, 0x00); OUT_RING(ring, 0x01); OUT_RING(ring, 0x01); /* The WHERE_AMI_I packet is not needed after a YIELD is issued */ a5xx_flush(gpu, ring, false); return a5xx_idle(gpu, ring) ? 0 : -EINVAL; } static void a5xx_ucode_check_version(struct a5xx_gpu *a5xx_gpu, struct drm_gem_object *obj) { u32 *buf = msm_gem_get_vaddr(obj); if (IS_ERR(buf)) return; /* * If the lowest nibble is 0xa that is an indication that this microcode * has been patched. The actual version is in dword [3] but we only care * about the patchlevel which is the lowest nibble of dword [3] */ if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) a5xx_gpu->has_whereami = true; msm_gem_put_vaddr(obj); } static int a5xx_ucode_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); int ret; if (!a5xx_gpu->pm4_bo) { a5xx_gpu->pm4_bo = adreno_fw_create_bo(gpu, adreno_gpu->fw[ADRENO_FW_PM4], &a5xx_gpu->pm4_iova); if (IS_ERR(a5xx_gpu->pm4_bo)) { ret = PTR_ERR(a5xx_gpu->pm4_bo); a5xx_gpu->pm4_bo = NULL; DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PM4: %d\n", ret); return ret; } msm_gem_object_set_name(a5xx_gpu->pm4_bo, "pm4fw"); } if (!a5xx_gpu->pfp_bo) { a5xx_gpu->pfp_bo = adreno_fw_create_bo(gpu, adreno_gpu->fw[ADRENO_FW_PFP], &a5xx_gpu->pfp_iova); if (IS_ERR(a5xx_gpu->pfp_bo)) { ret = PTR_ERR(a5xx_gpu->pfp_bo); a5xx_gpu->pfp_bo = NULL; DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PFP: %d\n", ret); return ret; } msm_gem_object_set_name(a5xx_gpu->pfp_bo, "pfpfw"); a5xx_ucode_check_version(a5xx_gpu, a5xx_gpu->pfp_bo); } gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO, REG_A5XX_CP_ME_INSTR_BASE_HI, a5xx_gpu->pm4_iova); gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO, REG_A5XX_CP_PFP_INSTR_BASE_HI, a5xx_gpu->pfp_iova); return 0; } #define SCM_GPU_ZAP_SHADER_RESUME 0 static int a5xx_zap_shader_resume(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int ret; /* * Adreno 506 have CPZ Retention feature and doesn't require * to resume zap shader */ if (adreno_is_a506(adreno_gpu)) return 0; ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID); if (ret) DRM_ERROR("%s: zap-shader resume failed: %d\n", gpu->name, ret); return ret; } static int a5xx_zap_shader_init(struct msm_gpu *gpu) { static bool loaded; int ret; /* * If the zap shader is already loaded into memory we just need to kick * the remote processor to reinitialize it */ if (loaded) return a5xx_zap_shader_resume(gpu); ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); loaded = !ret; return ret; } #define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \ A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \ A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \ A5XX_RBBM_INT_0_MASK_CP_SW | \ A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP) static int a5xx_hw_init(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); u32 regbit; int ret; gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003); if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) || adreno_is_a540(adreno_gpu)) gpu_write(gpu, REG_A5XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); /* Make all blocks contribute to the GPU BUSY perf counter */ gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF); /* Enable RBBM error reporting bits */ gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001); if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) { /* * Mask out the activity signals from RB1-3 to avoid false * positives */ gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11, 0xF0000000); gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12, 0xFFFFFFFF); gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13, 0xFFFFFFFF); gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14, 0xFFFFFFFF); gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15, 0xFFFFFFFF); gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16, 0xFFFFFFFF); gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17, 0xFFFFFFFF); gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18, 0xFFFFFFFF); } /* Enable fault detection */ gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0xFFFF); /* Turn on performance counters */ gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01); /* Select CP0 to always count cycles */ gpu_write(gpu, REG_A5XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT); /* Select RBBM0 to countable 6 to get the busy status for devfreq */ gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_SEL_0, 6); /* Increase VFD cache access so LRZ and other data gets evicted less */ gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02); /* Disable L2 bypass in the UCHE */ gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000); gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF); gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000); gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF); /* Set the GMEM VA range (0 to gpu->gmem) */ gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000); gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000); gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO, 0x00100000 + adreno_gpu->gmem - 1); gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000); if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu)) { gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x20); if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu)) gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400); else gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x20); gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x40000030); gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x20100D0A); } else { gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40); if (adreno_is_a530(adreno_gpu)) gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40); else gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400); gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060); gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16); } if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu)) gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, (0x100 << 11 | 0x100 << 22)); else if (adreno_is_a509(adreno_gpu) || adreno_is_a510(adreno_gpu) || adreno_is_a512(adreno_gpu)) gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, (0x200 << 11 | 0x200 << 22)); else gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, (0x400 << 11 | 0x300 << 22)); if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI) gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8)); /* * Disable the RB sampler datapath DP2 clock gating optimization * for 1-SP GPUs, as it is enabled by default. */ if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) || adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, 0, (1 << 9)); /* Disable UCHE global filter as SP can invalidate/flush independently */ gpu_write(gpu, REG_A5XX_UCHE_MODE_CNTL, BIT(29)); /* Enable USE_RETENTION_FLOPS */ gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000); /* Enable ME/PFP split notification */ gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF); /* * In A5x, CCU can send context_done event of a particular context to * UCHE which ultimately reaches CP even when there is valid * transaction of that context inside CCU. This can let CP to program * config registers, which will make the "valid transaction" inside * CCU to be interpreted differently. This can cause gpu fault. This * bug is fixed in latest A510 revision. To enable this bug fix - * bit[11] of RB_DBG_ECO_CNTL need to be set to 0, default is 1 * (disable). For older A510 version this bit is unused. */ if (adreno_is_a510(adreno_gpu)) gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, (1 << 11), 0); /* Enable HWCG */ a5xx_set_hwcg(gpu, true); gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F); /* Set the highest bank bit */ if (adreno_is_a540(adreno_gpu)) regbit = 2; else regbit = 1; gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, regbit << 7); gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, regbit << 1); if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) || adreno_is_a540(adreno_gpu)) gpu_write(gpu, REG_A5XX_UCHE_DBG_ECO_CNTL_2, regbit); /* Disable All flat shading optimization (ALLFLATOPTDIS) */ gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, (1 << 10)); /* Protect registers from the CP */ gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007); /* RBBM */ gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4)); gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8)); gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16)); gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32)); gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64)); gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64)); /* Content protect */ gpu_write(gpu, REG_A5XX_CP_PROTECT(6), ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 16)); gpu_write(gpu, REG_A5XX_CP_PROTECT(7), ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2)); /* CP */ gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64)); gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8)); gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32)); gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1)); /* RB */ gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1)); gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2)); /* VPC */ gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8)); gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 16)); /* UCHE */ gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16)); /* SMMU */ gpu_write(gpu, REG_A5XX_CP_PROTECT(17), ADRENO_PROTECT_RW(0x10000, 0x8000)); gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0); /* * Disable the trusted memory range - we don't actually supported secure * memory rendering at this point in time and we don't want to block off * part of the virtual memory space. */ gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000); gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); /* Put the GPU into 64 bit by default */ gpu_write(gpu, REG_A5XX_CP_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_VSC_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_GRAS_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_RB_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_PC_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_HLSQ_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_VFD_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_VPC_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_UCHE_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_SP_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_TPL1_ADDR_MODE_CNTL, 0x1); gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); /* * VPC corner case with local memory load kill leads to corrupt * internal state. Normal Disable does not work for all a5x chips. * So do the following setting to disable it. */ if (adreno_gpu->info->quirks & ADRENO_QUIRK_LMLOADKILL_DISABLE) { gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, BIT(23)); gpu_rmw(gpu, REG_A5XX_HLSQ_DBG_ECO_CNTL, BIT(18), 0); } ret = adreno_hw_init(gpu); if (ret) return ret; if (adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu)) a5xx_gpmu_ucode_init(gpu); ret = a5xx_ucode_init(gpu); if (ret) return ret; /* Set the ringbuffer address */ gpu_write64(gpu, REG_A5XX_CP_RB_BASE, REG_A5XX_CP_RB_BASE_HI, gpu->rb[0]->iova); /* * If the microcode supports the WHERE_AM_I opcode then we can use that * in lieu of the RPTR shadow and enable preemption. Otherwise, we * can't safely use the RPTR shadow or preemption. In either case, the * RPTR shadow should be disabled in hardware. */ gpu_write(gpu, REG_A5XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); /* Create a privileged buffer for the RPTR shadow */ if (a5xx_gpu->has_whereami) { if (!a5xx_gpu->shadow_bo) { a5xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, sizeof(u32) * gpu->nr_rings, MSM_BO_WC | MSM_BO_MAP_PRIV, gpu->aspace, &a5xx_gpu->shadow_bo, &a5xx_gpu->shadow_iova); if (IS_ERR(a5xx_gpu->shadow)) return PTR_ERR(a5xx_gpu->shadow); msm_gem_object_set_name(a5xx_gpu->shadow_bo, "shadow"); } gpu_write64(gpu, REG_A5XX_CP_RB_RPTR_ADDR, REG_A5XX_CP_RB_RPTR_ADDR_HI, shadowptr(a5xx_gpu, gpu->rb[0])); } else if (gpu->nr_rings > 1) { /* Disable preemption if WHERE_AM_I isn't available */ a5xx_preempt_fini(gpu); gpu->nr_rings = 1; } a5xx_preempt_hw_init(gpu); /* Disable the interrupts through the initial bringup stage */ gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK); /* Clear ME_HALT to start the micro engine */ gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0); ret = a5xx_me_init(gpu); if (ret) return ret; ret = a5xx_power_init(gpu); if (ret) return ret; /* * Send a pipeline event stat to get misbehaving counters to start * ticking correctly */ if (adreno_is_a530(adreno_gpu)) { OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1); OUT_RING(gpu->rb[0], CP_EVENT_WRITE_0_EVENT(STAT_EVENT)); a5xx_flush(gpu, gpu->rb[0], true); if (!a5xx_idle(gpu, gpu->rb[0])) return -EINVAL; } /* * If the chip that we are using does support loading one, then * try to load a zap shader into the secure world. If successful * we can use the CP to switch out of secure mode. If not then we * have no resource but to try to switch ourselves out manually. If we * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will * be blocked and a permissions violation will soon follow. */ ret = a5xx_zap_shader_init(gpu); if (!ret) { OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); OUT_RING(gpu->rb[0], 0x00000000); a5xx_flush(gpu, gpu->rb[0], true); if (!a5xx_idle(gpu, gpu->rb[0])) return -EINVAL; } else if (ret == -ENODEV) { /* * This device does not use zap shader (but print a warning * just in case someone got their dt wrong.. hopefully they * have a debug UART to realize the error of their ways... * if you mess this up you are about to crash horribly) */ dev_warn_once(gpu->dev->dev, "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0); } else { return ret; } /* Last step - yield the ringbuffer */ a5xx_preempt_start(gpu); return 0; } static void a5xx_recover(struct msm_gpu *gpu) { int i; adreno_dump_info(gpu); for (i = 0; i < 8; i++) { printk("CP_SCRATCH_REG%d: %u\n", i, gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i))); } if (hang_debug) a5xx_dump(gpu); gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1); gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD); gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0); adreno_recover(gpu); } static void a5xx_destroy(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); DBG("%s", gpu->name); a5xx_preempt_fini(gpu); if (a5xx_gpu->pm4_bo) { msm_gem_unpin_iova(a5xx_gpu->pm4_bo, gpu->aspace); drm_gem_object_put(a5xx_gpu->pm4_bo); } if (a5xx_gpu->pfp_bo) { msm_gem_unpin_iova(a5xx_gpu->pfp_bo, gpu->aspace); drm_gem_object_put(a5xx_gpu->pfp_bo); } if (a5xx_gpu->gpmu_bo) { msm_gem_unpin_iova(a5xx_gpu->gpmu_bo, gpu->aspace); drm_gem_object_put(a5xx_gpu->gpmu_bo); } if (a5xx_gpu->shadow_bo) { msm_gem_unpin_iova(a5xx_gpu->shadow_bo, gpu->aspace); drm_gem_object_put(a5xx_gpu->shadow_bo); } adreno_gpu_cleanup(adreno_gpu); kfree(a5xx_gpu); } static inline bool _a5xx_check_idle(struct msm_gpu *gpu) { if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY) return false; /* * Nearly every abnormality ends up pausing the GPU and triggering a * fault so we can safely just watch for this one interrupt to fire */ return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT); } bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); if (ring != a5xx_gpu->cur_ring) { WARN(1, "Tried to idle a non-current ringbuffer\n"); return false; } /* wait for CP to drain ringbuffer: */ if (!adreno_idle(gpu, ring)) return false; if (spin_until(_a5xx_check_idle(gpu))) { DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", gpu->name, __builtin_return_address(0), gpu_read(gpu, REG_A5XX_RBBM_STATUS), gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS), gpu_read(gpu, REG_A5XX_CP_RB_RPTR), gpu_read(gpu, REG_A5XX_CP_RB_WPTR)); return false; } return true; } static int a5xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) { struct msm_gpu *gpu = arg; pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n", iova, flags, gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)), gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)), gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)), gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7))); return 0; } static void a5xx_cp_err_irq(struct msm_gpu *gpu) { u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS); if (status & A5XX_CP_INT_CP_OPCODE_ERROR) { u32 val; gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0); /* * REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so * read it twice */ gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA); val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA); dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n", val); } if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR) dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n", gpu_read(gpu, REG_A5XX_CP_HW_FAULT)); if (status & A5XX_CP_INT_CP_DMA_ERROR) dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n"); if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS); dev_err_ratelimited(gpu->dev->dev, "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", val & (1 << 24) ? "WRITE" : "READ", (val & 0xFFFFF) >> 2, val); } if (status & A5XX_CP_INT_CP_AHB_ERROR) { u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT); const char *access[16] = { "reserved", "reserved", "timestamp lo", "timestamp hi", "pfp read", "pfp write", "", "", "me read", "me write", "", "", "crashdump read", "crashdump write" }; dev_err_ratelimited(gpu->dev->dev, "CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n", status & 0xFFFFF, access[(status >> 24) & 0xF], (status & (1 << 31)), status); } } static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status) { if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) { u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS); dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n", val & (1 << 28) ? "WRITE" : "READ", (val & 0xFFFFF) >> 2, (val >> 20) & 0x3, (val >> 24) & 0xF); /* Clear the error */ gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4)); /* Clear the interrupt */ gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD, A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR); } if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT) dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n"); if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT) dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n", gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS)); if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT) dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n", gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS)); if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT) dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n", gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS)); if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW) dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n"); if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n"); } static void a5xx_uche_err_irq(struct msm_gpu *gpu) { uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI); addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO); dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n", addr); } static void a5xx_gpmu_err_irq(struct msm_gpu *gpu) { dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n"); } static void a5xx_fault_detect_irq(struct msm_gpu *gpu) { struct drm_device *dev = gpu->dev; struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); /* * If stalled on SMMU fault, we could trip the GPU's hang detection, * but the fault handler will trigger the devcore dump, and we want * to otherwise resume normally rather than killing the submit, so * just bail. */ if (gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24)) return; DRM_DEV_ERROR(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", ring ? ring->id : -1, ring ? ring->seqno : 0, gpu_read(gpu, REG_A5XX_RBBM_STATUS), gpu_read(gpu, REG_A5XX_CP_RB_RPTR), gpu_read(gpu, REG_A5XX_CP_RB_WPTR), gpu_read64(gpu, REG_A5XX_CP_IB1_BASE, REG_A5XX_CP_IB1_BASE_HI), gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ), gpu_read64(gpu, REG_A5XX_CP_IB2_BASE, REG_A5XX_CP_IB2_BASE_HI), gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ)); /* Turn off the hangcheck timer to keep it from bothering us */ del_timer(&gpu->hangcheck_timer); kthread_queue_work(gpu->worker, &gpu->recover_work); } #define RBBM_ERROR_MASK \ (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \ A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \ A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW) static irqreturn_t a5xx_irq(struct msm_gpu *gpu) { struct msm_drm_private *priv = gpu->dev->dev_private; u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS); /* * Clear all the interrupts except RBBM_AHB_ERROR - if we clear it * before the source is cleared the interrupt will storm. */ gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD, status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR); if (priv->disable_err_irq) { status &= A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | A5XX_RBBM_INT_0_MASK_CP_SW; } /* Pass status to a5xx_rbbm_err_irq because we've already cleared it */ if (status & RBBM_ERROR_MASK) a5xx_rbbm_err_irq(gpu, status); if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR) a5xx_cp_err_irq(gpu); if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT) a5xx_fault_detect_irq(gpu); if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) a5xx_uche_err_irq(gpu); if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP) a5xx_gpmu_err_irq(gpu); if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) { a5xx_preempt_trigger(gpu); msm_gpu_retire(gpu); } if (status & A5XX_RBBM_INT_0_MASK_CP_SW) a5xx_preempt_irq(gpu); return IRQ_HANDLED; } static const u32 a5xx_registers[] = { 0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B, 0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095, 0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3, 0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841, 0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28, 0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53, 0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98, 0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585, 0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8, 0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E, 0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545, 0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0, 0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57, 0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8, 0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9, 0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201, 0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A, 0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F, 0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0, 0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947, 0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7, 0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68, 0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB, 0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05, 0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3, 0xEAA5, 0xEAC2, 0xA800, 0xA800, 0xA820, 0xA828, 0xA840, 0xA87D, 0XA880, 0xA88D, 0xA890, 0xA8A3, 0xA8D0, 0xA8D8, 0xA8E0, 0xA8F5, 0xAC60, 0xAC60, ~0, }; static void a5xx_dump(struct msm_gpu *gpu) { DRM_DEV_INFO(gpu->dev->dev, "status: %08x\n", gpu_read(gpu, REG_A5XX_RBBM_STATUS)); adreno_dump(gpu); } static int a5xx_pm_resume(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); int ret; /* Turn on the core power */ ret = msm_gpu_pm_resume(gpu); if (ret) return ret; /* Adreno 506, 508, 509, 510, 512 needs manual RBBM sus/res control */ if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) { /* Halt the sp_input_clk at HM level */ gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0x00000055); a5xx_set_hwcg(gpu, true); /* Turn on sp_input_clk at HM level */ gpu_rmw(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0xff, 0); return 0; } /* Turn the RBCCU domain first to limit the chances of voltage droop */ gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000); /* Wait 3 usecs before polling */ udelay(3); ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS, (1 << 20), (1 << 20)); if (ret) { DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n", gpu->name, gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS)); return ret; } /* Turn on the SP domain */ gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000); ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS, (1 << 20), (1 << 20)); if (ret) DRM_ERROR("%s: timeout waiting for SP GDSC enable\n", gpu->name); return ret; } static int a5xx_pm_suspend(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); u32 mask = 0xf; int i, ret; /* A506, A508, A510 have 3 XIN ports in VBIF */ if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu)) mask = 0x7; /* Clear the VBIF pipe before shutting down */ gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, mask); spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) & mask) == mask); gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0); /* * Reset the VBIF before power collapse to avoid issue with FIFO * entries on Adreno A510 and A530 (the others will tend to lock up) */ if (adreno_is_a510(adreno_gpu) || adreno_is_a530(adreno_gpu)) { gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000); gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000); } ret = msm_gpu_pm_suspend(gpu); if (ret) return ret; if (a5xx_gpu->has_whereami) for (i = 0; i < gpu->nr_rings; i++) a5xx_gpu->shadow[i] = 0; return 0; } static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) { *value = gpu_read64(gpu, REG_A5XX_RBBM_ALWAYSON_COUNTER_LO, REG_A5XX_RBBM_ALWAYSON_COUNTER_HI); return 0; } struct a5xx_crashdumper { void *ptr; struct drm_gem_object *bo; u64 iova; }; struct a5xx_gpu_state { struct msm_gpu_state base; u32 *hlsqregs; }; static int a5xx_crashdumper_init(struct msm_gpu *gpu, struct a5xx_crashdumper *dumper) { dumper->ptr = msm_gem_kernel_new(gpu->dev, SZ_1M, MSM_BO_WC, gpu->aspace, &dumper->bo, &dumper->iova); if (!IS_ERR(dumper->ptr)) msm_gem_object_set_name(dumper->bo, "crashdump"); return PTR_ERR_OR_ZERO(dumper->ptr); } static int a5xx_crashdumper_run(struct msm_gpu *gpu, struct a5xx_crashdumper *dumper) { u32 val; if (IS_ERR_OR_NULL(dumper->ptr)) return -EINVAL; gpu_write64(gpu, REG_A5XX_CP_CRASH_SCRIPT_BASE_LO, REG_A5XX_CP_CRASH_SCRIPT_BASE_HI, dumper->iova); gpu_write(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, 1); return gpu_poll_timeout(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, val, val & 0x04, 100, 10000); } /* * These are a list of the registers that need to be read through the HLSQ * aperture through the crashdumper. These are not nominally accessible from * the CPU on a secure platform. */ static const struct { u32 type; u32 regoffset; u32 count; } a5xx_hlsq_aperture_regs[] = { { 0x35, 0xe00, 0x32 }, /* HSLQ non-context */ { 0x31, 0x2080, 0x1 }, /* HLSQ 2D context 0 */ { 0x33, 0x2480, 0x1 }, /* HLSQ 2D context 1 */ { 0x32, 0xe780, 0x62 }, /* HLSQ 3D context 0 */ { 0x34, 0xef80, 0x62 }, /* HLSQ 3D context 1 */ { 0x3f, 0x0ec0, 0x40 }, /* SP non-context */ { 0x3d, 0x2040, 0x1 }, /* SP 2D context 0 */ { 0x3b, 0x2440, 0x1 }, /* SP 2D context 1 */ { 0x3e, 0xe580, 0x170 }, /* SP 3D context 0 */ { 0x3c, 0xed80, 0x170 }, /* SP 3D context 1 */ { 0x3a, 0x0f00, 0x1c }, /* TP non-context */ { 0x38, 0x2000, 0xa }, /* TP 2D context 0 */ { 0x36, 0x2400, 0xa }, /* TP 2D context 1 */ { 0x39, 0xe700, 0x80 }, /* TP 3D context 0 */ { 0x37, 0xef00, 0x80 }, /* TP 3D context 1 */ }; static void a5xx_gpu_state_get_hlsq_regs(struct msm_gpu *gpu, struct a5xx_gpu_state *a5xx_state) { struct a5xx_crashdumper dumper = { 0 }; u32 offset, count = 0; u64 *ptr; int i; if (a5xx_crashdumper_init(gpu, &dumper)) return; /* The script will be written at offset 0 */ ptr = dumper.ptr; /* Start writing the data at offset 256k */ offset = dumper.iova + (256 * SZ_1K); /* Count how many additional registers to get from the HLSQ aperture */ for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) count += a5xx_hlsq_aperture_regs[i].count; a5xx_state->hlsqregs = kcalloc(count, sizeof(u32), GFP_KERNEL); if (!a5xx_state->hlsqregs) return; /* Build the crashdump script */ for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) { u32 type = a5xx_hlsq_aperture_regs[i].type; u32 c = a5xx_hlsq_aperture_regs[i].count; /* Write the register to select the desired bank */ *ptr++ = ((u64) type << 8); *ptr++ = (((u64) REG_A5XX_HLSQ_DBG_READ_SEL) << 44) | (1 << 21) | 1; *ptr++ = offset; *ptr++ = (((u64) REG_A5XX_HLSQ_DBG_AHB_READ_APERTURE) << 44) | c; offset += c * sizeof(u32); } /* Write two zeros to close off the script */ *ptr++ = 0; *ptr++ = 0; if (a5xx_crashdumper_run(gpu, &dumper)) { kfree(a5xx_state->hlsqregs); msm_gem_kernel_put(dumper.bo, gpu->aspace); return; } /* Copy the data from the crashdumper to the state */ memcpy(a5xx_state->hlsqregs, dumper.ptr + (256 * SZ_1K), count * sizeof(u32)); msm_gem_kernel_put(dumper.bo, gpu->aspace); } static struct msm_gpu_state *a5xx_gpu_state_get(struct msm_gpu *gpu) { struct a5xx_gpu_state *a5xx_state = kzalloc(sizeof(*a5xx_state), GFP_KERNEL); bool stalled = !!(gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24)); if (!a5xx_state) return ERR_PTR(-ENOMEM); /* Temporarily disable hardware clock gating before reading the hw */ a5xx_set_hwcg(gpu, false); /* First get the generic state from the adreno core */ adreno_gpu_state_get(gpu, &(a5xx_state->base)); a5xx_state->base.rbbm_status = gpu_read(gpu, REG_A5XX_RBBM_STATUS); /* * Get the HLSQ regs with the help of the crashdumper, but only if * we are not stalled in an iommu fault (in which case the crashdumper * would not have access to memory) */ if (!stalled) a5xx_gpu_state_get_hlsq_regs(gpu, a5xx_state); a5xx_set_hwcg(gpu, true); return &a5xx_state->base; } static void a5xx_gpu_state_destroy(struct kref *kref) { struct msm_gpu_state *state = container_of(kref, struct msm_gpu_state, ref); struct a5xx_gpu_state *a5xx_state = container_of(state, struct a5xx_gpu_state, base); kfree(a5xx_state->hlsqregs); adreno_gpu_state_destroy(state); kfree(a5xx_state); } static int a5xx_gpu_state_put(struct msm_gpu_state *state) { if (IS_ERR_OR_NULL(state)) return 1; return kref_put(&state->ref, a5xx_gpu_state_destroy); } #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) static void a5xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state, struct drm_printer *p) { int i, j; u32 pos = 0; struct a5xx_gpu_state *a5xx_state = container_of(state, struct a5xx_gpu_state, base); if (IS_ERR_OR_NULL(state)) return; adreno_show(gpu, state, p); /* Dump the additional a5xx HLSQ registers */ if (!a5xx_state->hlsqregs) return; drm_printf(p, "registers-hlsq:\n"); for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) { u32 o = a5xx_hlsq_aperture_regs[i].regoffset; u32 c = a5xx_hlsq_aperture_regs[i].count; for (j = 0; j < c; j++, pos++, o++) { /* * To keep the crashdump simple we pull the entire range * for each register type but not all of the registers * in the range are valid. Fortunately invalid registers * stick out like a sore thumb with a value of * 0xdeadbeef */ if (a5xx_state->hlsqregs[pos] == 0xdeadbeef) continue; drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", o << 2, a5xx_state->hlsqregs[pos]); } } } #endif static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); return a5xx_gpu->cur_ring; } static unsigned long a5xx_gpu_busy(struct msm_gpu *gpu) { u64 busy_cycles, busy_time; /* Only read the gpu busy if the hardware is already active */ if (pm_runtime_get_if_in_use(&gpu->pdev->dev) == 0) return 0; busy_cycles = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_0_LO, REG_A5XX_RBBM_PERFCTR_RBBM_0_HI); busy_time = busy_cycles - gpu->devfreq.busy_cycles; do_div(busy_time, clk_get_rate(gpu->core_clk) / 1000000); gpu->devfreq.busy_cycles = busy_cycles; pm_runtime_put(&gpu->pdev->dev); if (WARN_ON(busy_time > ~0LU)) return ~0LU; return (unsigned long)busy_time; } static uint32_t a5xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) { struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); if (a5xx_gpu->has_whereami) return a5xx_gpu->shadow[ring->id]; return ring->memptrs->rptr = gpu_read(gpu, REG_A5XX_CP_RB_RPTR); } static const struct adreno_gpu_funcs funcs = { .base = { .get_param = adreno_get_param, .hw_init = a5xx_hw_init, .pm_suspend = a5xx_pm_suspend, .pm_resume = a5xx_pm_resume, .recover = a5xx_recover, .submit = a5xx_submit, .active_ring = a5xx_active_ring, .irq = a5xx_irq, .destroy = a5xx_destroy, #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) .show = a5xx_show, #endif #if defined(CONFIG_DEBUG_FS) .debugfs_init = a5xx_debugfs_init, #endif .gpu_busy = a5xx_gpu_busy, .gpu_state_get = a5xx_gpu_state_get, .gpu_state_put = a5xx_gpu_state_put, .create_address_space = adreno_iommu_create_address_space, .get_rptr = a5xx_get_rptr, }, .get_timestamp = a5xx_get_timestamp, }; static void check_speed_bin(struct device *dev) { struct nvmem_cell *cell; u32 val; /* * If the OPP table specifies a opp-supported-hw property then we have * to set something with dev_pm_opp_set_supported_hw() or the table * doesn't get populated so pick an arbitrary value that should * ensure the default frequencies are selected but not conflict with any * actual bins */ val = 0x80; cell = nvmem_cell_get(dev, "speed_bin"); if (!IS_ERR(cell)) { void *buf = nvmem_cell_read(cell, NULL); if (!IS_ERR(buf)) { u8 bin = *((u8 *) buf); val = (1 << bin); kfree(buf); } nvmem_cell_put(cell); } devm_pm_opp_set_supported_hw(dev, &val, 1); } struct msm_gpu *a5xx_gpu_init(struct drm_device *dev) { struct msm_drm_private *priv = dev->dev_private; struct platform_device *pdev = priv->gpu_pdev; struct a5xx_gpu *a5xx_gpu = NULL; struct adreno_gpu *adreno_gpu; struct msm_gpu *gpu; int ret; if (!pdev) { DRM_DEV_ERROR(dev->dev, "No A5XX device is defined\n"); return ERR_PTR(-ENXIO); } a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL); if (!a5xx_gpu) return ERR_PTR(-ENOMEM); adreno_gpu = &a5xx_gpu->base; gpu = &adreno_gpu->base; adreno_gpu->registers = a5xx_registers; a5xx_gpu->lm_leakage = 0x4E001A; check_speed_bin(&pdev->dev); ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 4); if (ret) { a5xx_destroy(&(a5xx_gpu->base.base)); return ERR_PTR(ret); } if (gpu->aspace) msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler); /* Set up the preemption specific bits and pieces for each ringbuffer */ a5xx_preempt_init(gpu); return gpu; }