/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _INTEL_RINGBUFFER_H_ #define _INTEL_RINGBUFFER_H_ #include #include "i915_gem_batch_pool.h" #include "i915_gem_timeline.h" #include "i915_pmu.h" #include "i915_request.h" #include "i915_selftest.h" struct drm_printer; #define I915_CMD_HASH_ORDER 9 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, * but keeps the logic simple. Indeed, the whole purpose of this macro is just * to give some inclination as to some of the magic values used in the various * workarounds! */ #define CACHELINE_BYTES 64 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t)) struct intel_hw_status_page { struct i915_vma *vma; u32 *page_addr; u32 ggtt_offset; }; #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base)) #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val) #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base)) #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val) #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base)) #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val) #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base)) #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val) #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base)) #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val) #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base)) #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val) /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. */ enum intel_engine_hangcheck_action { ENGINE_IDLE = 0, ENGINE_WAIT, ENGINE_ACTIVE_SEQNO, ENGINE_ACTIVE_HEAD, ENGINE_ACTIVE_SUBUNITS, ENGINE_WAIT_KICK, ENGINE_DEAD, }; static inline const char * hangcheck_action_to_str(const enum intel_engine_hangcheck_action a) { switch (a) { case ENGINE_IDLE: return "idle"; case ENGINE_WAIT: return "wait"; case ENGINE_ACTIVE_SEQNO: return "active seqno"; case ENGINE_ACTIVE_HEAD: return "active head"; case ENGINE_ACTIVE_SUBUNITS: return "active subunits"; case ENGINE_WAIT_KICK: return "wait kick"; case ENGINE_DEAD: return "dead"; } return "unknown"; } #define I915_MAX_SLICES 3 #define I915_MAX_SUBSLICES 3 #define instdone_slice_mask(dev_priv__) \ (INTEL_GEN(dev_priv__) == 7 ? \ 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask) #define instdone_subslice_mask(dev_priv__) \ (INTEL_GEN(dev_priv__) == 7 ? \ 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0]) #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \ for ((slice__) = 0, (subslice__) = 0; \ (slice__) < I915_MAX_SLICES; \ (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \ (slice__) += ((subslice__) == 0)) \ for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \ (BIT(subslice__) & instdone_subslice_mask(dev_priv__))) struct intel_instdone { u32 instdone; /* The following exist only in the RCS engine */ u32 slice_common; u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES]; u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES]; }; struct intel_engine_hangcheck { u64 acthd; u32 seqno; enum intel_engine_hangcheck_action action; unsigned long action_timestamp; int deadlock; struct intel_instdone instdone; struct i915_request *active_request; bool stalled; }; struct intel_ring { struct i915_vma *vma; void *vaddr; struct list_head request_list; u32 head; u32 tail; u32 emit; u32 space; u32 size; u32 effective_size; }; struct i915_gem_context; struct drm_i915_reg_table; /* * we use a single page to load ctx workarounds so all of these * values are referred in terms of dwords * * struct i915_wa_ctx_bb: * offset: specifies batch starting position, also helpful in case * if we want to have multiple batches at different offsets based on * some criteria. It is not a requirement at the moment but provides * an option for future use. * size: size of the batch in DWORDS */ struct i915_ctx_workarounds { struct i915_wa_ctx_bb { u32 offset; u32 size; } indirect_ctx, per_ctx; struct i915_vma *vma; }; struct i915_request; #define I915_MAX_VCS 4 #define I915_MAX_VECS 2 /* * Engine IDs definitions. * Keep instances of the same type engine together. */ enum intel_engine_id { RCS = 0, BCS, VCS, VCS2, VCS3, VCS4, #define _VCS(n) (VCS + (n)) VECS, VECS2 #define _VECS(n) (VECS + (n)) }; struct i915_priolist { struct rb_node node; struct list_head requests; int priority; }; /** * struct intel_engine_execlists - execlist submission queue and port state * * The struct intel_engine_execlists represents the combined logical state of * driver and the hardware state for execlist mode of submission. */ struct intel_engine_execlists { /** * @tasklet: softirq tasklet for bottom handler */ struct tasklet_struct tasklet; /** * @default_priolist: priority list for I915_PRIORITY_NORMAL */ struct i915_priolist default_priolist; /** * @no_priolist: priority lists disabled */ bool no_priolist; /** * @submit_reg: gen-specific execlist submission register * set to the ExecList Submission Port (elsp) register pre-Gen11 and to * the ExecList Submission Queue Contents register array for Gen11+ */ u32 __iomem *submit_reg; /** * @ctrl_reg: the enhanced execlists control register, used to load the * submit queue on the HW and to request preemptions to idle */ u32 __iomem *ctrl_reg; /** * @port: execlist port states * * For each hardware ELSP (ExecList Submission Port) we keep * track of the last request and the number of times we submitted * that port to hw. We then count the number of times the hw reports * a context completion or preemption. As only one context can * be active on hw, we limit resubmission of context to port[0]. This * is called Lite Restore, of the context. */ struct execlist_port { /** * @request_count: combined request and submission count */ struct i915_request *request_count; #define EXECLIST_COUNT_BITS 2 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS) #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS) #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS) #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS) #define port_set(p, packed) ((p)->request_count = (packed)) #define port_isset(p) ((p)->request_count) #define port_index(p, execlists) ((p) - (execlists)->port) /** * @context_id: context ID for port */ GEM_DEBUG_DECL(u32 context_id); #define EXECLIST_MAX_PORTS 2 } port[EXECLIST_MAX_PORTS]; /** * @active: is the HW active? We consider the HW as active after * submitting any context for execution and until we have seen the * last context completion event. After that, we do not expect any * more events until we submit, and so can park the HW. * * As we have a small number of different sources from which we feed * the HW, we track the state of each inside a single bitfield. */ unsigned int active; #define EXECLISTS_ACTIVE_USER 0 #define EXECLISTS_ACTIVE_PREEMPT 1 #define EXECLISTS_ACTIVE_HWACK 2 /** * @port_mask: number of execlist ports - 1 */ unsigned int port_mask; /** * @queue_priority: Highest pending priority. * * When we add requests into the queue, or adjust the priority of * executing requests, we compute the maximum priority of those * pending requests. We can then use this value to determine if * we need to preempt the executing requests to service the queue. */ int queue_priority; /** * @queue: queue of requests, in priority lists */ struct rb_root queue; /** * @first: leftmost level in priority @queue */ struct rb_node *first; /** * @fw_domains: forcewake domains for irq tasklet */ unsigned int fw_domains; /** * @csb_head: context status buffer head */ unsigned int csb_head; /** * @csb_use_mmio: access csb through mmio, instead of hwsp */ bool csb_use_mmio; /** * @preempt_complete_status: expected CSB upon completing preemption */ u32 preempt_complete_status; }; #define INTEL_ENGINE_CS_MAX_NAME 8 struct intel_engine_cs { struct drm_i915_private *i915; char name[INTEL_ENGINE_CS_MAX_NAME]; enum intel_engine_id id; unsigned int hw_id; unsigned int guc_id; u8 uabi_id; u8 uabi_class; u8 class; u8 instance; u32 context_size; u32 mmio_base; unsigned int irq_shift; struct intel_ring *buffer; struct intel_timeline *timeline; struct drm_i915_gem_object *default_state; atomic_t irq_count; unsigned long irq_posted; #define ENGINE_IRQ_BREADCRUMB 0 #define ENGINE_IRQ_EXECLIST 1 /* Rather than have every client wait upon all user interrupts, * with the herd waking after every interrupt and each doing the * heavyweight seqno dance, we delegate the task (of being the * bottom-half of the user interrupt) to the first client. After * every interrupt, we wake up one client, who does the heavyweight * coherent seqno read and either goes back to sleep (if incomplete), * or wakes up all the completed clients in parallel, before then * transferring the bottom-half status to the next client in the queue. * * Compared to walking the entire list of waiters in a single dedicated * bottom-half, we reduce the latency of the first waiter by avoiding * a context switch, but incur additional coherent seqno reads when * following the chain of request breadcrumbs. Since it is most likely * that we have a single client waiting on each seqno, then reducing * the overhead of waking that client is much preferred. */ struct intel_breadcrumbs { spinlock_t irq_lock; /* protects irq_*; irqsafe */ struct intel_wait *irq_wait; /* oldest waiter by retirement */ spinlock_t rb_lock; /* protects the rb and wraps irq_lock */ struct rb_root waiters; /* sorted by retirement, priority */ struct list_head signals; /* sorted by retirement */ struct task_struct *signaler; /* used for fence signalling */ struct timer_list fake_irq; /* used after a missed interrupt */ struct timer_list hangcheck; /* detect missed interrupts */ unsigned int hangcheck_interrupts; unsigned int irq_enabled; bool irq_armed : 1; I915_SELFTEST_DECLARE(bool mock : 1); } breadcrumbs; struct { /** * @enable: Bitmask of enable sample events on this engine. * * Bits correspond to sample event types, for instance * I915_SAMPLE_QUEUED is bit 0 etc. */ u32 enable; /** * @enable_count: Reference count for the enabled samplers. * * Index number corresponds to the bit number from @enable. */ unsigned int enable_count[I915_PMU_SAMPLE_BITS]; /** * @sample: Counter values for sampling events. * * Our internal timer stores the current counters in this field. */ #define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1) struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX]; } pmu; /* * A pool of objects to use as shadow copies of client batch buffers * when the command parser is enabled. Prevents the client from * modifying the batch contents after software parsing. */ struct i915_gem_batch_pool batch_pool; struct intel_hw_status_page status_page; struct i915_ctx_workarounds wa_ctx; struct i915_vma *scratch; u32 irq_keep_mask; /* always keep these interrupts */ u32 irq_enable_mask; /* bitmask to enable ring interrupt */ void (*irq_enable)(struct intel_engine_cs *engine); void (*irq_disable)(struct intel_engine_cs *engine); int (*init_hw)(struct intel_engine_cs *engine); void (*reset_hw)(struct intel_engine_cs *engine, struct i915_request *rq); void (*park)(struct intel_engine_cs *engine); void (*unpark)(struct intel_engine_cs *engine); void (*set_default_submission)(struct intel_engine_cs *engine); struct intel_ring *(*context_pin)(struct intel_engine_cs *engine, struct i915_gem_context *ctx); void (*context_unpin)(struct intel_engine_cs *engine, struct i915_gem_context *ctx); int (*request_alloc)(struct i915_request *rq); int (*init_context)(struct i915_request *rq); int (*emit_flush)(struct i915_request *request, u32 mode); #define EMIT_INVALIDATE BIT(0) #define EMIT_FLUSH BIT(1) #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH) int (*emit_bb_start)(struct i915_request *rq, u64 offset, u32 length, unsigned int dispatch_flags); #define I915_DISPATCH_SECURE BIT(0) #define I915_DISPATCH_PINNED BIT(1) #define I915_DISPATCH_RS BIT(2) void (*emit_breadcrumb)(struct i915_request *rq, u32 *cs); int emit_breadcrumb_sz; /* Pass the request to the hardware queue (e.g. directly into * the legacy ringbuffer or to the end of an execlist). * * This is called from an atomic context with irqs disabled; must * be irq safe. */ void (*submit_request)(struct i915_request *rq); /* Call when the priority on a request has changed and it and its * dependencies may need rescheduling. Note the request itself may * not be ready to run! * * Called under the struct_mutex. */ void (*schedule)(struct i915_request *request, int priority); /* * Cancel all requests on the hardware, or queued for execution. * This should only cancel the ready requests that have been * submitted to the engine (via the engine->submit_request callback). * This is called when marking the device as wedged. */ void (*cancel_requests)(struct intel_engine_cs *engine); /* Some chipsets are not quite as coherent as advertised and need * an expensive kick to force a true read of the up-to-date seqno. * However, the up-to-date seqno is not always required and the last * seen value is good enough. Note that the seqno will always be * monotonic, even if not coherent. */ void (*irq_seqno_barrier)(struct intel_engine_cs *engine); void (*cleanup)(struct intel_engine_cs *engine); /* GEN8 signal/wait table - never trust comments! * signal to signal to signal to signal to signal to * RCS VCS BCS VECS VCS2 * -------------------------------------------------------------------- * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) | * |------------------------------------------------------------------- * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) | * |------------------------------------------------------------------- * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) | * |------------------------------------------------------------------- * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) | * |------------------------------------------------------------------- * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) | * |------------------------------------------------------------------- * * Generalization: * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id) * ie. transpose of g(x, y) * * sync from sync from sync from sync from sync from * RCS VCS BCS VECS VCS2 * -------------------------------------------------------------------- * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) | * |------------------------------------------------------------------- * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) | * |------------------------------------------------------------------- * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) | * |------------------------------------------------------------------- * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) | * |------------------------------------------------------------------- * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) | * |------------------------------------------------------------------- * * Generalization: * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id) * ie. transpose of f(x, y) */ struct { #define GEN6_SEMAPHORE_LAST VECS_HW #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1) #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0) struct { /* our mbox written by others */ u32 wait[GEN6_NUM_SEMAPHORES]; /* mboxes this ring signals to */ i915_reg_t signal[GEN6_NUM_SEMAPHORES]; } mbox; /* AKA wait() */ int (*sync_to)(struct i915_request *rq, struct i915_request *signal); u32 *(*signal)(struct i915_request *rq, u32 *cs); } semaphore; struct intel_engine_execlists execlists; /* Contexts are pinned whilst they are active on the GPU. The last * context executed remains active whilst the GPU is idle - the * switch away and write to the context object only occurs on the * next execution. Contexts are only unpinned on retirement of the * following request ensuring that we can always write to the object * on the context switch even after idling. Across suspend, we switch * to the kernel context and trash it as the save may not happen * before the hardware is powered down. */ struct i915_gem_context *last_retired_context; /* We track the current MI_SET_CONTEXT in order to eliminate * redudant context switches. This presumes that requests are not * reordered! Or when they are the tracking is updated along with * the emission of individual requests into the legacy command * stream (ring). */ struct i915_gem_context *legacy_active_context; struct i915_hw_ppgtt *legacy_active_ppgtt; /* status_notifier: list of callbacks for context-switch changes */ struct atomic_notifier_head context_status_notifier; struct intel_engine_hangcheck hangcheck; #define I915_ENGINE_NEEDS_CMD_PARSER BIT(0) #define I915_ENGINE_SUPPORTS_STATS BIT(1) unsigned int flags; /* * Table of commands the command parser needs to know about * for this engine. */ DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER); /* * Table of registers allowed in commands that read/write registers. */ const struct drm_i915_reg_table *reg_tables; int reg_table_count; /* * Returns the bitmask for the length field of the specified command. * Return 0 for an unrecognized/invalid command. * * If the command parser finds an entry for a command in the engine's * cmd_tables, it gets the command's length based on the table entry. * If not, it calls this function to determine the per-engine length * field encoding for the command (i.e. different opcode ranges use * certain bits to encode the command length in the header). */ u32 (*get_cmd_length_mask)(u32 cmd_header); struct { /** * @lock: Lock protecting the below fields. */ spinlock_t lock; /** * @enabled: Reference count indicating number of listeners. */ unsigned int enabled; /** * @active: Number of contexts currently scheduled in. */ unsigned int active; /** * @enabled_at: Timestamp when busy stats were enabled. */ ktime_t enabled_at; /** * @start: Timestamp of the last idle to active transition. * * Idle is defined as active == 0, active is active > 0. */ ktime_t start; /** * @total: Total time this engine was busy. * * Accumulated time not counting the most recent block in cases * where engine is currently busy (active > 0). */ ktime_t total; } stats; }; static inline bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine) { return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER; } static inline bool intel_engine_supports_stats(struct intel_engine_cs *engine) { return engine->flags & I915_ENGINE_SUPPORTS_STATS; } static inline void execlists_set_active(struct intel_engine_execlists *execlists, unsigned int bit) { __set_bit(bit, (unsigned long *)&execlists->active); } static inline void execlists_clear_active(struct intel_engine_execlists *execlists, unsigned int bit) { __clear_bit(bit, (unsigned long *)&execlists->active); } static inline bool execlists_is_active(const struct intel_engine_execlists *execlists, unsigned int bit) { return test_bit(bit, (unsigned long *)&execlists->active); } void execlists_cancel_port_requests(struct intel_engine_execlists * const execlists); void execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); static inline unsigned int execlists_num_ports(const struct intel_engine_execlists * const execlists) { return execlists->port_mask + 1; } static inline void execlists_port_complete(struct intel_engine_execlists * const execlists, struct execlist_port * const port) { const unsigned int m = execlists->port_mask; GEM_BUG_ON(port_index(port, execlists) != 0); GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER)); memmove(port, port + 1, m * sizeof(struct execlist_port)); memset(port + m, 0, sizeof(struct execlist_port)); } static inline unsigned int intel_engine_flag(const struct intel_engine_cs *engine) { return BIT(engine->id); } static inline u32 intel_read_status_page(const struct intel_engine_cs *engine, int reg) { /* Ensure that the compiler doesn't optimize away the load. */ return READ_ONCE(engine->status_page.page_addr[reg]); } static inline void intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) { /* Writing into the status page should be done sparingly. Since * we do when we are uncertain of the device state, we take a bit * of extra paranoia to try and ensure that the HWS takes the value * we give and that it doesn't end up trapped inside the CPU! */ if (static_cpu_has(X86_FEATURE_CLFLUSH)) { mb(); clflush(&engine->status_page.page_addr[reg]); engine->status_page.page_addr[reg] = value; clflush(&engine->status_page.page_addr[reg]); mb(); } else { WRITE_ONCE(engine->status_page.page_addr[reg], value); } } /* * Reads a dword out of the status page, which is written to from the command * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or * MI_STORE_DATA_IMM. * * The following dwords have a reserved meaning: * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. * 0x04: ring 0 head pointer * 0x05: ring 1 head pointer (915-class) * 0x06: ring 2 head pointer (915-class) * 0x10-0x1b: Context status DWords (GM45) * 0x1f: Last written status offset. (GM45) * 0x20-0x2f: Reserved (Gen6+) * * The area from dword 0x30 to 0x3ff is available for driver usage. */ #define I915_GEM_HWS_INDEX 0x30 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT) #define I915_GEM_HWS_PREEMPT_INDEX 0x32 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT) #define I915_GEM_HWS_SCRATCH_INDEX 0x40 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT) #define I915_HWS_CSB_BUF0_INDEX 0x10 #define I915_HWS_CSB_WRITE_INDEX 0x1f #define CNL_HWS_CSB_WRITE_INDEX 0x2f struct intel_ring * intel_engine_create_ring(struct intel_engine_cs *engine, int size); int intel_ring_pin(struct intel_ring *ring, struct drm_i915_private *i915, unsigned int offset_bias); void intel_ring_reset(struct intel_ring *ring, u32 tail); unsigned int intel_ring_update_space(struct intel_ring *ring); void intel_ring_unpin(struct intel_ring *ring); void intel_ring_free(struct intel_ring *ring); void intel_engine_stop(struct intel_engine_cs *engine); void intel_engine_cleanup(struct intel_engine_cs *engine); void intel_legacy_submission_resume(struct drm_i915_private *dev_priv); int __must_check intel_ring_cacheline_align(struct i915_request *rq); int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes); u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n); static inline void intel_ring_advance(struct i915_request *rq, u32 *cs) { /* Dummy function. * * This serves as a placeholder in the code so that the reader * can compare against the preceding intel_ring_begin() and * check that the number of dwords emitted matches the space * reserved for the command packet (i.e. the value passed to * intel_ring_begin()). */ GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs); } static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos) { return pos & (ring->size - 1); } static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr) { /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */ u32 offset = addr - rq->ring->vaddr; GEM_BUG_ON(offset > rq->ring->size); return intel_ring_wrap(rq->ring, offset); } static inline void assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail) { /* We could combine these into a single tail operation, but keeping * them as seperate tests will help identify the cause should one * ever fire. */ GEM_BUG_ON(!IS_ALIGNED(tail, 8)); GEM_BUG_ON(tail >= ring->size); /* * "Ring Buffer Use" * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the * same cacheline, the Head Pointer must not be greater than the Tail * Pointer." * * We use ring->head as the last known location of the actual RING_HEAD, * it may have advanced but in the worst case it is equally the same * as ring->head and so we should never program RING_TAIL to advance * into the same cacheline as ring->head. */ #define cacheline(a) round_down(a, CACHELINE_BYTES) GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) && tail < ring->head); #undef cacheline } static inline unsigned int intel_ring_set_tail(struct intel_ring *ring, unsigned int tail) { /* Whilst writes to the tail are strictly order, there is no * serialisation between readers and the writers. The tail may be * read by i915_request_retire() just as it is being updated * by execlists, as although the breadcrumb is complete, the context * switch hasn't been seen. */ assert_ring_tail_valid(ring, tail); ring->tail = tail; return tail; } void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno); void intel_engine_setup_common(struct intel_engine_cs *engine); int intel_engine_init_common(struct intel_engine_cs *engine); int intel_engine_create_scratch(struct intel_engine_cs *engine, int size); void intel_engine_cleanup_common(struct intel_engine_cs *engine); int intel_init_render_ring_buffer(struct intel_engine_cs *engine); int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine); int intel_init_blt_ring_buffer(struct intel_engine_cs *engine); int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine); u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine) { return intel_read_status_page(engine, I915_GEM_HWS_INDEX); } static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine) { /* We are only peeking at the tail of the submit queue (and not the * queue itself) in order to gain a hint as to the current active * state of the engine. Callers are not expected to be taking * engine->timeline->lock, nor are they expected to be concerned * wtih serialising this hint with anything, so document it as * a hint and nothing more. */ return READ_ONCE(engine->timeline->seqno); } int init_workarounds_ring(struct intel_engine_cs *engine); int intel_ring_workarounds_emit(struct i915_request *rq); void intel_engine_get_instdone(struct intel_engine_cs *engine, struct intel_instdone *instdone); /* * Arbitrary size for largest possible 'add request' sequence. The code paths * are complex and variable. Empirical measurement shows that the worst case * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However, * we need to allocate double the largest single packet within that emission * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW). */ #define MIN_SPACE_FOR_ADD_REQUEST 336 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine) { return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR; } static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine) { return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR; } /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */ int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine); static inline void intel_wait_init(struct intel_wait *wait, struct i915_request *rq) { wait->tsk = current; wait->request = rq; } static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno) { wait->tsk = current; wait->seqno = seqno; } static inline bool intel_wait_has_seqno(const struct intel_wait *wait) { return wait->seqno; } static inline bool intel_wait_update_seqno(struct intel_wait *wait, u32 seqno) { wait->seqno = seqno; return intel_wait_has_seqno(wait); } static inline bool intel_wait_update_request(struct intel_wait *wait, const struct i915_request *rq) { return intel_wait_update_seqno(wait, i915_request_global_seqno(rq)); } static inline bool intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno) { return wait->seqno == seqno; } static inline bool intel_wait_check_request(const struct intel_wait *wait, const struct i915_request *rq) { return intel_wait_check_seqno(wait, i915_request_global_seqno(rq)); } static inline bool intel_wait_complete(const struct intel_wait *wait) { return RB_EMPTY_NODE(&wait->node); } bool intel_engine_add_wait(struct intel_engine_cs *engine, struct intel_wait *wait); void intel_engine_remove_wait(struct intel_engine_cs *engine, struct intel_wait *wait); void intel_engine_enable_signaling(struct i915_request *request, bool wakeup); void intel_engine_cancel_signaling(struct i915_request *request); static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine) { return READ_ONCE(engine->breadcrumbs.irq_wait); } unsigned int intel_engine_wakeup(struct intel_engine_cs *engine); #define ENGINE_WAKEUP_WAITER BIT(0) #define ENGINE_WAKEUP_ASLEEP BIT(1) void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine); void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine); void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine); void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset) { memset(batch, 0, 6 * sizeof(u32)); batch[0] = GFX_OP_PIPE_CONTROL(6); batch[1] = flags; batch[2] = offset; return batch + 6; } static inline u32 * gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset) { /* We're using qword write, offset should be aligned to 8 bytes. */ GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); /* w/a for post sync ops following a GPGPU operation we * need a prior CS_STALL, which is emitted by the flush * following the batch. */ *cs++ = GFX_OP_PIPE_CONTROL(6); *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE; *cs++ = gtt_offset; *cs++ = 0; *cs++ = value; /* We're thrashing one dword of HWS. */ *cs++ = 0; return cs; } static inline u32 * gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset) { /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ GEM_BUG_ON(gtt_offset & (1 << 5)); /* Offset should be aligned to 8 bytes for both (QW/DW) write types */ GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW; *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT; *cs++ = 0; *cs++ = value; return cs; } bool intel_engine_is_idle(struct intel_engine_cs *engine); bool intel_engines_are_idle(struct drm_i915_private *dev_priv); bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine); void intel_engines_park(struct drm_i915_private *i915); void intel_engines_unpark(struct drm_i915_private *i915); void intel_engines_reset_default_submission(struct drm_i915_private *i915); unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915); bool intel_engine_can_store_dword(struct intel_engine_cs *engine); __printf(3, 4) void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...); struct intel_engine_cs * intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance); static inline void intel_engine_context_in(struct intel_engine_cs *engine) { unsigned long flags; if (READ_ONCE(engine->stats.enabled) == 0) return; spin_lock_irqsave(&engine->stats.lock, flags); if (engine->stats.enabled > 0) { if (engine->stats.active++ == 0) engine->stats.start = ktime_get(); GEM_BUG_ON(engine->stats.active == 0); } spin_unlock_irqrestore(&engine->stats.lock, flags); } static inline void intel_engine_context_out(struct intel_engine_cs *engine) { unsigned long flags; if (READ_ONCE(engine->stats.enabled) == 0) return; spin_lock_irqsave(&engine->stats.lock, flags); if (engine->stats.enabled > 0) { ktime_t last; if (engine->stats.active && --engine->stats.active == 0) { /* * Decrement the active context count and in case GPU * is now idle add up to the running total. */ last = ktime_sub(ktime_get(), engine->stats.start); engine->stats.total = ktime_add(engine->stats.total, last); } else if (engine->stats.active == 0) { /* * After turning on engine stats, context out might be * the first event in which case we account from the * time stats gathering was turned on. */ last = ktime_sub(ktime_get(), engine->stats.enabled_at); engine->stats.total = ktime_add(engine->stats.total, last); } } spin_unlock_irqrestore(&engine->stats.lock, flags); } int intel_enable_engine_stats(struct intel_engine_cs *engine); void intel_disable_engine_stats(struct intel_engine_cs *engine); ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine); #endif /* _INTEL_RINGBUFFER_H_ */