/* * Copyright © 2008-2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Zou Nan hai * Xiang Hai hao * */ #include #include #include "i915_drv.h" #include #include "i915_trace.h" #include "intel_drv.h" /* Rough estimate of the typical request size, performing a flush, * set-context and then emitting the batch. */ #define LEGACY_REQUEST_SIZE 200 int __intel_ring_space(int head, int tail, int size) { int space = head - tail; if (space <= 0) space += size; return space - I915_RING_FREE_SPACE; } void intel_ring_update_space(struct intel_ringbuffer *ringbuf) { if (ringbuf->last_retired_head != -1) { ringbuf->head = ringbuf->last_retired_head; ringbuf->last_retired_head = -1; } ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size); } static void __intel_ring_advance(struct intel_engine_cs *engine) { struct intel_ringbuffer *ringbuf = engine->buffer; ringbuf->tail &= ringbuf->size - 1; engine->write_tail(engine, ringbuf->tail); } static int gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 invalidate_domains, u32 flush_domains) { struct intel_engine_cs *engine = req->engine; u32 cmd; int ret; cmd = MI_FLUSH; if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0) cmd |= MI_NO_WRITE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER) cmd |= MI_READ_FLUSH; ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, cmd); intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); return 0; } static int gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 invalidate_domains, u32 flush_domains) { struct intel_engine_cs *engine = req->engine; u32 cmd; int ret; /* * read/write caches: * * I915_GEM_DOMAIN_RENDER is always invalidated, but is * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is * also flushed at 2d versus 3d pipeline switches. * * read-only caches: * * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if * MI_READ_FLUSH is set, and is always flushed on 965. * * I915_GEM_DOMAIN_COMMAND may not exist? * * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is * invalidated when MI_EXE_FLUSH is set. * * I915_GEM_DOMAIN_VERTEX, which exists on 965, is * invalidated with every MI_FLUSH. * * TLBs: * * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER * are flushed at any MI_FLUSH. */ cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) cmd &= ~MI_NO_WRITE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION) cmd |= MI_EXE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_COMMAND && (IS_G4X(req->i915) || IS_GEN5(req->i915))) cmd |= MI_INVALIDATE_ISP; ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, cmd); intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); return 0; } /** * Emits a PIPE_CONTROL with a non-zero post-sync operation, for * implementing two workarounds on gen6. From section 1.4.7.1 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: * * [DevSNB-C+{W/A}] Before any depth stall flush (including those * produced by non-pipelined state commands), software needs to first * send a PIPE_CONTROL with no bits set except Post-Sync Operation != * 0. * * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. * * And the workaround for these two requires this workaround first: * * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent * BEFORE the pipe-control with a post-sync op and no write-cache * flushes. * * And this last workaround is tricky because of the requirements on * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM * volume 2 part 1: * * "1 of the following must also be set: * - Render Target Cache Flush Enable ([12] of DW1) * - Depth Cache Flush Enable ([0] of DW1) * - Stall at Pixel Scoreboard ([1] of DW1) * - Depth Stall ([13] of DW1) * - Post-Sync Operation ([13] of DW1) * - Notify Enable ([8] of DW1)" * * The cache flushes require the workaround flush that triggered this * one, so we can't use it. Depth stall would trigger the same. * Post-sync nonzero is what triggered this second workaround, so we * can't use that one either. Notify enable is IRQs, which aren't * really our business. That leaves only stall at scoreboard. */ static int intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES; int ret; ret = intel_ring_begin(req, 6); if (ret) return ret; intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(engine, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(engine, 0); /* low dword */ intel_ring_emit(engine, 0); /* high dword */ intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); ret = intel_ring_begin(req, 6); if (ret) return ret; intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE); intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(engine, 0); intel_ring_emit(engine, 0); intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); return 0; } static int gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 invalidate_domains, u32 flush_domains) { struct intel_engine_cs *engine = req->engine; u32 flags = 0; u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES; int ret; /* Force SNB workarounds for PIPE_CONTROL flushes */ ret = intel_emit_post_sync_nonzero_flush(req); if (ret) return ret; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; /* * Ensure that any following seqno writes only happen * when the render cache is indeed flushed. */ flags |= PIPE_CONTROL_CS_STALL; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL; } ret = intel_ring_begin(req, 4); if (ret) return ret; intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(engine, flags); intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(engine, 0); intel_ring_advance(engine); return 0; } static int gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 4); if (ret) return ret; intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(engine, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); intel_ring_emit(engine, 0); intel_ring_emit(engine, 0); intel_ring_advance(engine); return 0; } static int gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 invalidate_domains, u32 flush_domains) { struct intel_engine_cs *engine = req->engine; u32 flags = 0; u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES; int ret; /* * Ensure that any following seqno writes only happen when the render * cache is indeed flushed. * * Workaround: 4th PIPE_CONTROL command (except the ones with only * read-cache invalidate bits set) must have the CS_STALL bit set. We * don't try to be clever and just set it unconditionally. */ flags |= PIPE_CONTROL_CS_STALL; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD; /* Workaround: we must issue a pipe_control with CS-stall bit * set before a pipe_control command that has the state cache * invalidate bit set. */ gen7_render_ring_cs_stall_wa(req); } ret = intel_ring_begin(req, 4); if (ret) return ret; intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(engine, flags); intel_ring_emit(engine, scratch_addr); intel_ring_emit(engine, 0); intel_ring_advance(engine); return 0; } static int gen8_emit_pipe_control(struct drm_i915_gem_request *req, u32 flags, u32 scratch_addr) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 6); if (ret) return ret; intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(engine, flags); intel_ring_emit(engine, scratch_addr); intel_ring_emit(engine, 0); intel_ring_emit(engine, 0); intel_ring_emit(engine, 0); intel_ring_advance(engine); return 0; } static int gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 invalidate_domains, u32 flush_domains) { u32 flags = 0; u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES; int ret; flags |= PIPE_CONTROL_CS_STALL; if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_DC_FLUSH_ENABLE; flags |= PIPE_CONTROL_FLUSH_ENABLE; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */ ret = gen8_emit_pipe_control(req, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD, 0); if (ret) return ret; } return gen8_emit_pipe_control(req, flags, scratch_addr); } static void ring_write_tail(struct intel_engine_cs *engine, u32 value) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_TAIL(engine, value); } u64 intel_ring_get_active_head(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; u64 acthd; if (INTEL_GEN(dev_priv) >= 8) acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base), RING_ACTHD_UDW(engine->mmio_base)); else if (INTEL_GEN(dev_priv) >= 4) acthd = I915_READ(RING_ACTHD(engine->mmio_base)); else acthd = I915_READ(ACTHD); return acthd; } static void ring_setup_phys_status_page(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; u32 addr; addr = dev_priv->status_page_dmah->busaddr; if (INTEL_GEN(dev_priv) >= 4) addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0; I915_WRITE(HWS_PGA, addr); } static void intel_ring_setup_status_page(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; i915_reg_t mmio; /* The ring status page addresses are no longer next to the rest of * the ring registers as of gen7. */ if (IS_GEN7(dev_priv)) { switch (engine->id) { case RCS: mmio = RENDER_HWS_PGA_GEN7; break; case BCS: mmio = BLT_HWS_PGA_GEN7; break; /* * VCS2 actually doesn't exist on Gen7. Only shut up * gcc switch check warning */ case VCS2: case VCS: mmio = BSD_HWS_PGA_GEN7; break; case VECS: mmio = VEBOX_HWS_PGA_GEN7; break; } } else if (IS_GEN6(dev_priv)) { mmio = RING_HWS_PGA_GEN6(engine->mmio_base); } else { /* XXX: gen8 returns to sanity */ mmio = RING_HWS_PGA(engine->mmio_base); } I915_WRITE(mmio, (u32)engine->status_page.gfx_addr); POSTING_READ(mmio); /* * Flush the TLB for this page * * FIXME: These two bits have disappeared on gen8, so a question * arises: do we still need this and if so how should we go about * invalidating the TLB? */ if (IS_GEN(dev_priv, 6, 7)) { i915_reg_t reg = RING_INSTPM(engine->mmio_base); /* ring should be idle before issuing a sync flush*/ WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0); I915_WRITE(reg, _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE | INSTPM_SYNC_FLUSH)); if (intel_wait_for_register(dev_priv, reg, INSTPM_SYNC_FLUSH, 0, 1000)) DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n", engine->name); } } static bool stop_ring(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; if (!IS_GEN2(dev_priv)) { I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING)); if (intel_wait_for_register(dev_priv, RING_MI_MODE(engine->mmio_base), MODE_IDLE, MODE_IDLE, 1000)) { DRM_ERROR("%s : timed out trying to stop ring\n", engine->name); /* Sometimes we observe that the idle flag is not * set even though the ring is empty. So double * check before giving up. */ if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine)) return false; } } I915_WRITE_CTL(engine, 0); I915_WRITE_HEAD(engine, 0); engine->write_tail(engine, 0); if (!IS_GEN2(dev_priv)) { (void)I915_READ_CTL(engine); I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING)); } return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0; } void intel_engine_init_hangcheck(struct intel_engine_cs *engine) { memset(&engine->hangcheck, 0, sizeof(engine->hangcheck)); } static int init_ring_common(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; struct intel_ringbuffer *ringbuf = engine->buffer; struct drm_i915_gem_object *obj = ringbuf->obj; int ret = 0; intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); if (!stop_ring(engine)) { /* G45 ring initialization often fails to reset head to zero */ DRM_DEBUG_KMS("%s head not reset to zero " "ctl %08x head %08x tail %08x start %08x\n", engine->name, I915_READ_CTL(engine), I915_READ_HEAD(engine), I915_READ_TAIL(engine), I915_READ_START(engine)); if (!stop_ring(engine)) { DRM_ERROR("failed to set %s head to zero " "ctl %08x head %08x tail %08x start %08x\n", engine->name, I915_READ_CTL(engine), I915_READ_HEAD(engine), I915_READ_TAIL(engine), I915_READ_START(engine)); ret = -EIO; goto out; } } if (I915_NEED_GFX_HWS(dev_priv)) intel_ring_setup_status_page(engine); else ring_setup_phys_status_page(engine); /* Enforce ordering by reading HEAD register back */ I915_READ_HEAD(engine); /* Initialize the ring. This must happen _after_ we've cleared the ring * registers with the above sequence (the readback of the HEAD registers * also enforces ordering), otherwise the hw might lose the new ring * register values. */ I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj)); /* WaClearRingBufHeadRegAtInit:ctg,elk */ if (I915_READ_HEAD(engine)) DRM_DEBUG("%s initialization failed [head=%08x], fudging\n", engine->name, I915_READ_HEAD(engine)); I915_WRITE_HEAD(engine, 0); (void)I915_READ_HEAD(engine); I915_WRITE_CTL(engine, ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID); /* If the head is still not zero, the ring is dead */ if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 && I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) && (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) { DRM_ERROR("%s initialization failed " "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n", engine->name, I915_READ_CTL(engine), I915_READ_CTL(engine) & RING_VALID, I915_READ_HEAD(engine), I915_READ_TAIL(engine), I915_READ_START(engine), (unsigned long)i915_gem_obj_ggtt_offset(obj)); ret = -EIO; goto out; } ringbuf->last_retired_head = -1; ringbuf->head = I915_READ_HEAD(engine); ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR; intel_ring_update_space(ringbuf); intel_engine_init_hangcheck(engine); out: intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); return ret; } void intel_fini_pipe_control(struct intel_engine_cs *engine) { if (engine->scratch.obj == NULL) return; i915_gem_object_ggtt_unpin(engine->scratch.obj); drm_gem_object_unreference(&engine->scratch.obj->base); engine->scratch.obj = NULL; } int intel_init_pipe_control(struct intel_engine_cs *engine, int size) { struct drm_i915_gem_object *obj; int ret; WARN_ON(engine->scratch.obj); obj = i915_gem_object_create_stolen(engine->i915->dev, size); if (!obj) obj = i915_gem_object_create(engine->i915->dev, size); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate scratch page\n"); ret = PTR_ERR(obj); goto err; } ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH); if (ret) goto err_unref; engine->scratch.obj = obj; engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj); DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n", engine->name, engine->scratch.gtt_offset); return 0; err_unref: drm_gem_object_unreference(&engine->scratch.obj->base); err: return ret; } static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; struct i915_workarounds *w = &req->i915->workarounds; int ret, i; if (w->count == 0) return 0; engine->gpu_caches_dirty = true; ret = intel_ring_flush_all_caches(req); if (ret) return ret; ret = intel_ring_begin(req, (w->count * 2 + 2)); if (ret) return ret; intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count)); for (i = 0; i < w->count; i++) { intel_ring_emit_reg(engine, w->reg[i].addr); intel_ring_emit(engine, w->reg[i].value); } intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); engine->gpu_caches_dirty = true; ret = intel_ring_flush_all_caches(req); if (ret) return ret; DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count); return 0; } static int intel_rcs_ctx_init(struct drm_i915_gem_request *req) { int ret; ret = intel_ring_workarounds_emit(req); if (ret != 0) return ret; ret = i915_gem_render_state_init(req); if (ret) return ret; return 0; } static int wa_add(struct drm_i915_private *dev_priv, i915_reg_t addr, const u32 mask, const u32 val) { const u32 idx = dev_priv->workarounds.count; if (WARN_ON(idx >= I915_MAX_WA_REGS)) return -ENOSPC; dev_priv->workarounds.reg[idx].addr = addr; dev_priv->workarounds.reg[idx].value = val; dev_priv->workarounds.reg[idx].mask = mask; dev_priv->workarounds.count++; return 0; } #define WA_REG(addr, mask, val) do { \ const int r = wa_add(dev_priv, (addr), (mask), (val)); \ if (r) \ return r; \ } while (0) #define WA_SET_BIT_MASKED(addr, mask) \ WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask)) #define WA_CLR_BIT_MASKED(addr, mask) \ WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask)) #define WA_SET_FIELD_MASKED(addr, mask, value) \ WA_REG(addr, mask, _MASKED_FIELD(mask, value)) #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask)) #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask)) #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val) static int wa_ring_whitelist_reg(struct intel_engine_cs *engine, i915_reg_t reg) { struct drm_i915_private *dev_priv = engine->i915; struct i915_workarounds *wa = &dev_priv->workarounds; const uint32_t index = wa->hw_whitelist_count[engine->id]; if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS)) return -EINVAL; WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index), i915_mmio_reg_offset(reg)); wa->hw_whitelist_count[engine->id]++; return 0; } static int gen8_init_workarounds(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING); /* WaDisableAsyncFlipPerfMode:bdw,chv */ WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE); /* WaDisablePartialInstShootdown:bdw,chv */ WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); /* Use Force Non-Coherent whenever executing a 3D context. This is a * workaround for for a possible hang in the unlikely event a TLB * invalidation occurs during a PSD flush. */ /* WaForceEnableNonCoherent:bdw,chv */ /* WaHdcDisableFetchWhenMasked:bdw,chv */ WA_SET_BIT_MASKED(HDC_CHICKEN0, HDC_DONOT_FETCH_MEM_WHEN_MASKED | HDC_FORCE_NON_COHERENT); /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: * "The Hierarchical Z RAW Stall Optimization allows non-overlapping * polygons in the same 8x4 pixel/sample area to be processed without * stalling waiting for the earlier ones to write to Hierarchical Z * buffer." * * This optimization is off by default for BDW and CHV; turn it on. */ WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); /* Wa4x4STCOptimizationDisable:bdw,chv */ WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); /* * BSpec recommends 8x4 when MSAA is used, * however in practice 16x4 seems fastest. * * Note that PS/WM thread counts depend on the WIZ hashing * disable bit, which we don't touch here, but it's good * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). */ WA_SET_FIELD_MASKED(GEN7_GT_MODE, GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4); return 0; } static int bdw_init_workarounds(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; ret = gen8_init_workarounds(engine); if (ret) return ret; /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* WaDisableDopClockGating:bdw */ WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2, DOP_CLOCK_GATING_DISABLE); WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3, GEN8_SAMPLER_POWER_BYPASS_DIS); WA_SET_BIT_MASKED(HDC_CHICKEN0, /* WaForceContextSaveRestoreNonCoherent:bdw */ HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); return 0; } static int chv_init_workarounds(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; ret = gen8_init_workarounds(engine); if (ret) return ret; /* WaDisableThreadStallDopClockGating:chv */ WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* Improve HiZ throughput on CHV. */ WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); return 0; } static int gen9_init_workarounds(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */ I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE)); /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */ I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) | GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); /* WaDisableKillLogic:bxt,skl,kbl */ I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | ECOCHK_DIS_TLB); /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */ /* WaDisablePartialInstShootdown:skl,bxt,kbl */ WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, FLOW_CONTROL_ENABLE | PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); /* Syncing dependencies between camera and graphics:skl,bxt,kbl */ WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3, GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC); /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */ if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5, GEN9_DG_MIRROR_FIX_ENABLE); /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */ if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) { WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1, GEN9_RHWO_OPTIMIZATION_DISABLE); /* * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set * but we do that in per ctx batchbuffer as there is an issue * with this register not getting restored on ctx restore */ } /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */ /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */ WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7, GEN9_ENABLE_YV12_BUGFIX | GEN9_ENABLE_GPGPU_PREEMPTION); /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */ /* WaDisablePartialResolveInVc:skl,bxt,kbl */ WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE | GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE)); /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */ WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5, GEN9_CCS_TLB_PREFETCH_ENABLE); /* WaDisableMaskBasedCammingInRCC:skl,bxt */ if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0, PIXEL_MASK_CAMMING_DISABLE); /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */ WA_SET_BIT_MASKED(HDC_CHICKEN0, HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are * both tied to WaForceContextSaveRestoreNonCoherent * in some hsds for skl. We keep the tie for all gen9. The * documentation is a bit hazy and so we want to get common behaviour, * even though there is no clear evidence we would need both on kbl/bxt. * This area has been source of system hangs so we play it safe * and mimic the skl regardless of what bspec says. * * Use Force Non-Coherent whenever executing a 3D context. This * is a workaround for a possible hang in the unlikely event * a TLB invalidation occurs during a PSD flush. */ /* WaForceEnableNonCoherent:skl,bxt,kbl */ WA_SET_BIT_MASKED(HDC_CHICKEN0, HDC_FORCE_NON_COHERENT); /* WaDisableHDCInvalidation:skl,bxt,kbl */ I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | BDW_DISABLE_HDC_INVALIDATION); /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */ if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3, GEN8_SAMPLER_POWER_BYPASS_DIS); /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */ WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); /* WaOCLCoherentLineFlush:skl,bxt,kbl */ I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) | GEN8_LQSC_FLUSH_COHERENT_LINES)); /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */ ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG); if (ret) return ret; /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */ ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1); if (ret) return ret; /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */ ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1); if (ret) return ret; return 0; } static int skl_tune_iz_hashing(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; u8 vals[3] = { 0, 0, 0 }; unsigned int i; for (i = 0; i < 3; i++) { u8 ss; /* * Only consider slices where one, and only one, subslice has 7 * EUs */ if (!is_power_of_2(dev_priv->info.subslice_7eu[i])) continue; /* * subslice_7eu[i] != 0 (because of the check above) and * ss_max == 4 (maximum number of subslices possible per slice) * * -> 0 <= ss <= 3; */ ss = ffs(dev_priv->info.subslice_7eu[i]) - 1; vals[i] = 3 - ss; } if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) return 0; /* Tune IZ hashing. See intel_device_info_runtime_init() */ WA_SET_FIELD_MASKED(GEN7_GT_MODE, GEN9_IZ_HASHING_MASK(2) | GEN9_IZ_HASHING_MASK(1) | GEN9_IZ_HASHING_MASK(0), GEN9_IZ_HASHING(2, vals[2]) | GEN9_IZ_HASHING(1, vals[1]) | GEN9_IZ_HASHING(0, vals[0])); return 0; } static int skl_init_workarounds(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; ret = gen9_init_workarounds(engine); if (ret) return ret; /* * Actual WA is to disable percontext preemption granularity control * until D0 which is the default case so this is equivalent to * !WaDisablePerCtxtPreemptionGranularityControl:skl */ if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) { I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1, _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL)); } if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) { /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */ I915_WRITE(FF_SLICE_CS_CHICKEN2, _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE)); } /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes * involving this register should also be added to WA batch as required. */ if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) /* WaDisableLSQCROPERFforOCL:skl */ I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) | GEN8_LQSC_RO_PERF_DIS); /* WaEnableGapsTsvCreditFix:skl */ if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) { I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) | GEN9_GAPS_TSV_CREDIT_DISABLE)); } /* WaDisablePowerCompilerClockGating:skl */ if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0)) WA_SET_BIT_MASKED(HIZ_CHICKEN, BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE); /* WaBarrierPerformanceFixDisable:skl */ if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0)) WA_SET_BIT_MASKED(HDC_CHICKEN0, HDC_FENCE_DEST_SLM_DISABLE | HDC_BARRIER_PERFORMANCE_DISABLE); /* WaDisableSbeCacheDispatchPortSharing:skl */ if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0)) WA_SET_BIT_MASKED( GEN7_HALF_SLICE_CHICKEN1, GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); /* WaDisableGafsUnitClkGating:skl */ WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaDisableLSQCROPERFforOCL:skl */ ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4); if (ret) return ret; return skl_tune_iz_hashing(engine); } static int bxt_init_workarounds(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; ret = gen9_init_workarounds(engine); if (ret) return ret; /* WaStoreMultiplePTEenable:bxt */ /* This is a requirement according to Hardware specification */ if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF); /* WaSetClckGatingDisableMedia:bxt */ if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) { I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE)); } /* WaDisableThreadStallDopClockGating:bxt */ WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); /* WaDisablePooledEuLoadBalancingFix:bxt */ if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) { WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2, GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); } /* WaDisableSbeCacheDispatchPortSharing:bxt */ if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) { WA_SET_BIT_MASKED( GEN7_HALF_SLICE_CHICKEN1, GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); } /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */ /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */ /* WaDisableObjectLevelPreemtionForInstanceId:bxt */ /* WaDisableLSQCROPERFforOCL:bxt */ if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) { ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1); if (ret) return ret; ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4); if (ret) return ret; } /* WaProgramL3SqcReg1DefaultForPerf:bxt */ if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) | L3_HIGH_PRIO_CREDITS(2)); /* WaInsertDummyPushConstPs:bxt */ if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); return 0; } static int kbl_init_workarounds(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret; ret = gen9_init_workarounds(engine); if (ret) return ret; /* WaEnableGapsTsvCreditFix:kbl */ I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) | GEN9_GAPS_TSV_CREDIT_DISABLE)); /* WaDisableDynamicCreditSharing:kbl */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) WA_SET_BIT(GAMT_CHKN_BIT_REG, GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */ if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0)) WA_SET_BIT_MASKED(HDC_CHICKEN0, HDC_FENCE_DEST_SLM_DISABLE); /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes * involving this register should also be added to WA batch as required. */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0)) /* WaDisableLSQCROPERFforOCL:kbl */ I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) | GEN8_LQSC_RO_PERF_DIS); /* WaInsertDummyPushConstPs:kbl */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2, GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); /* WaDisableGafsUnitClkGating:kbl */ WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); /* WaDisableSbeCacheDispatchPortSharing:kbl */ WA_SET_BIT_MASKED( GEN7_HALF_SLICE_CHICKEN1, GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); /* WaDisableLSQCROPERFforOCL:kbl */ ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4); if (ret) return ret; return 0; } int init_workarounds_ring(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; WARN_ON(engine->id != RCS); dev_priv->workarounds.count = 0; dev_priv->workarounds.hw_whitelist_count[RCS] = 0; if (IS_BROADWELL(dev_priv)) return bdw_init_workarounds(engine); if (IS_CHERRYVIEW(dev_priv)) return chv_init_workarounds(engine); if (IS_SKYLAKE(dev_priv)) return skl_init_workarounds(engine); if (IS_BROXTON(dev_priv)) return bxt_init_workarounds(engine); if (IS_KABYLAKE(dev_priv)) return kbl_init_workarounds(engine); return 0; } static int init_render_ring(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; int ret = init_ring_common(engine); if (ret) return ret; /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ if (IS_GEN(dev_priv, 4, 6)) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH)); /* We need to disable the AsyncFlip performance optimisations in order * to use MI_WAIT_FOR_EVENT within the CS. It should already be * programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv */ if (IS_GEN(dev_priv, 6, 7)) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); /* Required for the hardware to program scanline values for waiting */ /* WaEnableFlushTlbInvalidationMode:snb */ if (IS_GEN6(dev_priv)) I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT)); /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ if (IS_GEN7(dev_priv)) I915_WRITE(GFX_MODE_GEN7, _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) | _MASKED_BIT_ENABLE(GFX_REPLAY_MODE)); if (IS_GEN6(dev_priv)) { /* From the Sandybridge PRM, volume 1 part 3, page 24: * "If this bit is set, STCunit will have LRA as replacement * policy. [...] This bit must be reset. LRA replacement * policy is not supported." */ I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); } if (IS_GEN(dev_priv, 6, 7)) I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); I915_WRITE_IMR(engine, ~engine->irq_keep_mask); return init_workarounds_ring(engine); } static void render_ring_cleanup(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; if (dev_priv->semaphore_obj) { i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj); drm_gem_object_unreference(&dev_priv->semaphore_obj->base); dev_priv->semaphore_obj = NULL; } intel_fini_pipe_control(engine); } static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req, unsigned int num_dwords) { #define MBOX_UPDATE_DWORDS 8 struct intel_engine_cs *signaller = signaller_req->engine; struct drm_i915_private *dev_priv = signaller_req->i915; struct intel_engine_cs *waiter; enum intel_engine_id id; int ret, num_rings; num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask); num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS; #undef MBOX_UPDATE_DWORDS ret = intel_ring_begin(signaller_req, num_dwords); if (ret) return ret; for_each_engine_id(waiter, dev_priv, id) { u64 gtt_offset = signaller->semaphore.signal_ggtt[id]; if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID) continue; intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL); intel_ring_emit(signaller, lower_32_bits(gtt_offset)); intel_ring_emit(signaller, upper_32_bits(gtt_offset)); intel_ring_emit(signaller, signaller_req->seqno); intel_ring_emit(signaller, 0); intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL | MI_SEMAPHORE_TARGET(waiter->hw_id)); intel_ring_emit(signaller, 0); } return 0; } static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req, unsigned int num_dwords) { #define MBOX_UPDATE_DWORDS 6 struct intel_engine_cs *signaller = signaller_req->engine; struct drm_i915_private *dev_priv = signaller_req->i915; struct intel_engine_cs *waiter; enum intel_engine_id id; int ret, num_rings; num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask); num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS; #undef MBOX_UPDATE_DWORDS ret = intel_ring_begin(signaller_req, num_dwords); if (ret) return ret; for_each_engine_id(waiter, dev_priv, id) { u64 gtt_offset = signaller->semaphore.signal_ggtt[id]; if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID) continue; intel_ring_emit(signaller, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW); intel_ring_emit(signaller, lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT); intel_ring_emit(signaller, upper_32_bits(gtt_offset)); intel_ring_emit(signaller, signaller_req->seqno); intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL | MI_SEMAPHORE_TARGET(waiter->hw_id)); intel_ring_emit(signaller, 0); } return 0; } static int gen6_signal(struct drm_i915_gem_request *signaller_req, unsigned int num_dwords) { struct intel_engine_cs *signaller = signaller_req->engine; struct drm_i915_private *dev_priv = signaller_req->i915; struct intel_engine_cs *useless; enum intel_engine_id id; int ret, num_rings; #define MBOX_UPDATE_DWORDS 3 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask); num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2); #undef MBOX_UPDATE_DWORDS ret = intel_ring_begin(signaller_req, num_dwords); if (ret) return ret; for_each_engine_id(useless, dev_priv, id) { i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id]; if (i915_mmio_reg_valid(mbox_reg)) { intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit_reg(signaller, mbox_reg); intel_ring_emit(signaller, signaller_req->seqno); } } /* If num_dwords was rounded, make sure the tail pointer is correct */ if (num_rings % 2 == 0) intel_ring_emit(signaller, MI_NOOP); return 0; } /** * gen6_add_request - Update the semaphore mailbox registers * * @request - request to write to the ring * * Update the mailbox registers in the *other* rings with the current seqno. * This acts like a signal in the canonical semaphore. */ static int gen6_add_request(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; int ret; if (engine->semaphore.signal) ret = engine->semaphore.signal(req, 4); else ret = intel_ring_begin(req, 4); if (ret) return ret; intel_ring_emit(engine, MI_STORE_DWORD_INDEX); intel_ring_emit(engine, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(engine, req->seqno); intel_ring_emit(engine, MI_USER_INTERRUPT); __intel_ring_advance(engine); return 0; } static int gen8_render_add_request(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; int ret; if (engine->semaphore.signal) ret = engine->semaphore.signal(req, 8); else ret = intel_ring_begin(req, 8); if (ret) return ret; intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6)); intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE)); intel_ring_emit(engine, intel_hws_seqno_address(req->engine)); intel_ring_emit(engine, 0); intel_ring_emit(engine, i915_gem_request_get_seqno(req)); /* We're thrashing one dword of HWS. */ intel_ring_emit(engine, 0); intel_ring_emit(engine, MI_USER_INTERRUPT); intel_ring_emit(engine, MI_NOOP); __intel_ring_advance(engine); return 0; } static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv, u32 seqno) { return dev_priv->last_seqno < seqno; } /** * intel_ring_sync - sync the waiter to the signaller on seqno * * @waiter - ring that is waiting * @signaller - ring which has, or will signal * @seqno - seqno which the waiter will block on */ static int gen8_ring_sync(struct drm_i915_gem_request *waiter_req, struct intel_engine_cs *signaller, u32 seqno) { struct intel_engine_cs *waiter = waiter_req->engine; struct drm_i915_private *dev_priv = waiter_req->i915; u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id); struct i915_hw_ppgtt *ppgtt; int ret; ret = intel_ring_begin(waiter_req, 4); if (ret) return ret; intel_ring_emit(waiter, MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_SAD_GTE_SDD); intel_ring_emit(waiter, seqno); intel_ring_emit(waiter, lower_32_bits(offset)); intel_ring_emit(waiter, upper_32_bits(offset)); intel_ring_advance(waiter); /* When the !RCS engines idle waiting upon a semaphore, they lose their * pagetables and we must reload them before executing the batch. * We do this on the i915_switch_context() following the wait and * before the dispatch. */ ppgtt = waiter_req->ctx->ppgtt; if (ppgtt && waiter_req->engine->id != RCS) ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine); return 0; } static int gen6_ring_sync(struct drm_i915_gem_request *waiter_req, struct intel_engine_cs *signaller, u32 seqno) { struct intel_engine_cs *waiter = waiter_req->engine; u32 dw1 = MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER; u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id]; int ret; /* Throughout all of the GEM code, seqno passed implies our current * seqno is >= the last seqno executed. However for hardware the * comparison is strictly greater than. */ seqno -= 1; WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID); ret = intel_ring_begin(waiter_req, 4); if (ret) return ret; /* If seqno wrap happened, omit the wait with no-ops */ if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) { intel_ring_emit(waiter, dw1 | wait_mbox); intel_ring_emit(waiter, seqno); intel_ring_emit(waiter, 0); intel_ring_emit(waiter, MI_NOOP); } else { intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); } intel_ring_advance(waiter); return 0; } static void gen5_seqno_barrier(struct intel_engine_cs *ring) { /* MI_STORE are internally buffered by the GPU and not flushed * either by MI_FLUSH or SyncFlush or any other combination of * MI commands. * * "Only the submission of the store operation is guaranteed. * The write result will be complete (coherent) some time later * (this is practically a finite period but there is no guaranteed * latency)." * * Empirically, we observe that we need a delay of at least 75us to * be sure that the seqno write is visible by the CPU. */ usleep_range(125, 250); } static void gen6_seqno_barrier(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; /* Workaround to force correct ordering between irq and seqno writes on * ivb (and maybe also on snb) by reading from a CS register (like * ACTHD) before reading the status page. * * Note that this effectively stalls the read by the time it takes to * do a memory transaction, which more or less ensures that the write * from the GPU has sufficient time to invalidate the CPU cacheline. * Alternatively we could delay the interrupt from the CS ring to give * the write time to land, but that would incur a delay after every * batch i.e. much more frequent than a delay when waiting for the * interrupt (with the same net latency). * * Also note that to prevent whole machine hangs on gen7, we have to * take the spinlock to guard against concurrent cacheline access. */ spin_lock_irq(&dev_priv->uncore.lock); POSTING_READ_FW(RING_ACTHD(engine->mmio_base)); spin_unlock_irq(&dev_priv->uncore.lock); } static void gen5_irq_enable(struct intel_engine_cs *engine) { gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask); } static void gen5_irq_disable(struct intel_engine_cs *engine) { gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask); } static void i9xx_irq_enable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; dev_priv->irq_mask &= ~engine->irq_enable_mask; I915_WRITE(IMR, dev_priv->irq_mask); POSTING_READ_FW(RING_IMR(engine->mmio_base)); } static void i9xx_irq_disable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; dev_priv->irq_mask |= engine->irq_enable_mask; I915_WRITE(IMR, dev_priv->irq_mask); } static void i8xx_irq_enable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; dev_priv->irq_mask &= ~engine->irq_enable_mask; I915_WRITE16(IMR, dev_priv->irq_mask); POSTING_READ16(RING_IMR(engine->mmio_base)); } static void i8xx_irq_disable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; dev_priv->irq_mask |= engine->irq_enable_mask; I915_WRITE16(IMR, dev_priv->irq_mask); } static int bsd_ring_flush(struct drm_i915_gem_request *req, u32 invalidate_domains, u32 flush_domains) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, MI_FLUSH); intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); return 0; } static int i9xx_add_request(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 4); if (ret) return ret; intel_ring_emit(engine, MI_STORE_DWORD_INDEX); intel_ring_emit(engine, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(engine, req->seqno); intel_ring_emit(engine, MI_USER_INTERRUPT); __intel_ring_advance(engine); return 0; } static void gen6_irq_enable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~(engine->irq_enable_mask | engine->irq_keep_mask)); gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask); } static void gen6_irq_disable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~engine->irq_keep_mask); gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask); } static void hsw_vebox_irq_enable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~engine->irq_enable_mask); gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask); } static void hsw_vebox_irq_disable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~0); gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask); } static void gen8_irq_enable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~(engine->irq_enable_mask | engine->irq_keep_mask)); POSTING_READ_FW(RING_IMR(engine->mmio_base)); } static void gen8_irq_disable(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; I915_WRITE_IMR(engine, ~engine->irq_keep_mask); } static int i965_dispatch_execbuffer(struct drm_i915_gem_request *req, u64 offset, u32 length, unsigned dispatch_flags) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965)); intel_ring_emit(engine, offset); intel_ring_advance(engine); return 0; } /* Just userspace ABI convention to limit the wa batch bo to a resonable size */ #define I830_BATCH_LIMIT (256*1024) #define I830_TLB_ENTRIES (2) #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT) static int i830_dispatch_execbuffer(struct drm_i915_gem_request *req, u64 offset, u32 len, unsigned dispatch_flags) { struct intel_engine_cs *engine = req->engine; u32 cs_offset = engine->scratch.gtt_offset; int ret; ret = intel_ring_begin(req, 6); if (ret) return ret; /* Evict the invalid PTE TLBs */ intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA); intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096); intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */ intel_ring_emit(engine, cs_offset); intel_ring_emit(engine, 0xdeadbeef); intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) { if (len > I830_BATCH_LIMIT) return -ENOSPC; ret = intel_ring_begin(req, 6 + 2); if (ret) return ret; /* Blit the batch (which has now all relocs applied) to the * stable batch scratch bo area (so that the CS never * stumbles over its tlb invalidation bug) ... */ intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA); intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096); intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096); intel_ring_emit(engine, cs_offset); intel_ring_emit(engine, 4096); intel_ring_emit(engine, offset); intel_ring_emit(engine, MI_FLUSH); intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); /* ... and execute it. */ offset = cs_offset; } ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT); intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_advance(engine); return 0; } static int i915_dispatch_execbuffer(struct drm_i915_gem_request *req, u64 offset, u32 len, unsigned dispatch_flags) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT); intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_advance(engine); return 0; } static void cleanup_phys_status_page(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; if (!dev_priv->status_page_dmah) return; drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah); engine->status_page.page_addr = NULL; } static void cleanup_status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; obj = engine->status_page.obj; if (obj == NULL) return; kunmap(sg_page(obj->pages->sgl)); i915_gem_object_ggtt_unpin(obj); drm_gem_object_unreference(&obj->base); engine->status_page.obj = NULL; } static int init_status_page(struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj = engine->status_page.obj; if (obj == NULL) { unsigned flags; int ret; obj = i915_gem_object_create(engine->i915->dev, 4096); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate status page\n"); return PTR_ERR(obj); } ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); if (ret) goto err_unref; flags = 0; if (!HAS_LLC(engine->i915)) /* On g33, we cannot place HWS above 256MiB, so * restrict its pinning to the low mappable arena. * Though this restriction is not documented for * gen4, gen5, or byt, they also behave similarly * and hang if the HWS is placed at the top of the * GTT. To generalise, it appears that all !llc * platforms have issues with us placing the HWS * above the mappable region (even though we never * actualy map it). */ flags |= PIN_MAPPABLE; ret = i915_gem_obj_ggtt_pin(obj, 4096, flags); if (ret) { err_unref: drm_gem_object_unreference(&obj->base); return ret; } engine->status_page.obj = obj; } engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj); engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl)); memset(engine->status_page.page_addr, 0, PAGE_SIZE); DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n", engine->name, engine->status_page.gfx_addr); return 0; } static int init_phys_status_page(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = engine->i915; if (!dev_priv->status_page_dmah) { dev_priv->status_page_dmah = drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE); if (!dev_priv->status_page_dmah) return -ENOMEM; } engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr; memset(engine->status_page.page_addr, 0, PAGE_SIZE); return 0; } void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf) { GEM_BUG_ON(ringbuf->vma == NULL); GEM_BUG_ON(ringbuf->virtual_start == NULL); if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen) i915_gem_object_unpin_map(ringbuf->obj); else i915_vma_unpin_iomap(ringbuf->vma); ringbuf->virtual_start = NULL; i915_gem_object_ggtt_unpin(ringbuf->obj); ringbuf->vma = NULL; } int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv, struct intel_ringbuffer *ringbuf) { struct drm_i915_gem_object *obj = ringbuf->obj; /* Ring wraparound at offset 0 sometimes hangs. No idea why. */ unsigned flags = PIN_OFFSET_BIAS | 4096; void *addr; int ret; if (HAS_LLC(dev_priv) && !obj->stolen) { ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags); if (ret) return ret; ret = i915_gem_object_set_to_cpu_domain(obj, true); if (ret) goto err_unpin; addr = i915_gem_object_pin_map(obj); if (IS_ERR(addr)) { ret = PTR_ERR(addr); goto err_unpin; } } else { ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags | PIN_MAPPABLE); if (ret) return ret; ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) goto err_unpin; /* Access through the GTT requires the device to be awake. */ assert_rpm_wakelock_held(dev_priv); addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj)); if (IS_ERR(addr)) { ret = PTR_ERR(addr); goto err_unpin; } } ringbuf->virtual_start = addr; ringbuf->vma = i915_gem_obj_to_ggtt(obj); return 0; err_unpin: i915_gem_object_ggtt_unpin(obj); return ret; } static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf) { drm_gem_object_unreference(&ringbuf->obj->base); ringbuf->obj = NULL; } static int intel_alloc_ringbuffer_obj(struct drm_device *dev, struct intel_ringbuffer *ringbuf) { struct drm_i915_gem_object *obj; obj = NULL; if (!HAS_LLC(dev)) obj = i915_gem_object_create_stolen(dev, ringbuf->size); if (obj == NULL) obj = i915_gem_object_create(dev, ringbuf->size); if (IS_ERR(obj)) return PTR_ERR(obj); /* mark ring buffers as read-only from GPU side by default */ obj->gt_ro = 1; ringbuf->obj = obj; return 0; } struct intel_ringbuffer * intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size) { struct intel_ringbuffer *ring; int ret; ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (ring == NULL) { DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n", engine->name); return ERR_PTR(-ENOMEM); } ring->engine = engine; list_add(&ring->link, &engine->buffers); ring->size = size; /* Workaround an erratum on the i830 which causes a hang if * the TAIL pointer points to within the last 2 cachelines * of the buffer. */ ring->effective_size = size; if (IS_I830(engine->i915) || IS_845G(engine->i915)) ring->effective_size -= 2 * CACHELINE_BYTES; ring->last_retired_head = -1; intel_ring_update_space(ring); ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring); if (ret) { DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n", engine->name, ret); list_del(&ring->link); kfree(ring); return ERR_PTR(ret); } return ring; } void intel_ringbuffer_free(struct intel_ringbuffer *ring) { intel_destroy_ringbuffer_obj(ring); list_del(&ring->link); kfree(ring); } static int intel_ring_context_pin(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct intel_context *ce = &ctx->engine[engine->id]; int ret; lockdep_assert_held(&ctx->i915->dev->struct_mutex); if (ce->pin_count++) return 0; if (ce->state) { ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0); if (ret) goto error; } /* The kernel context is only used as a placeholder for flushing the * active context. It is never used for submitting user rendering and * as such never requires the golden render context, and so we can skip * emitting it when we switch to the kernel context. This is required * as during eviction we cannot allocate and pin the renderstate in * order to initialise the context. */ if (ctx == ctx->i915->kernel_context) ce->initialised = true; i915_gem_context_reference(ctx); return 0; error: ce->pin_count = 0; return ret; } static void intel_ring_context_unpin(struct i915_gem_context *ctx, struct intel_engine_cs *engine) { struct intel_context *ce = &ctx->engine[engine->id]; lockdep_assert_held(&ctx->i915->dev->struct_mutex); if (--ce->pin_count) return; if (ce->state) i915_gem_object_ggtt_unpin(ce->state); i915_gem_context_unreference(ctx); } static int intel_init_ring_buffer(struct drm_device *dev, struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_ringbuffer *ringbuf; int ret; WARN_ON(engine->buffer); engine->i915 = dev_priv; INIT_LIST_HEAD(&engine->active_list); INIT_LIST_HEAD(&engine->request_list); INIT_LIST_HEAD(&engine->execlist_queue); INIT_LIST_HEAD(&engine->buffers); i915_gem_batch_pool_init(dev, &engine->batch_pool); memset(engine->semaphore.sync_seqno, 0, sizeof(engine->semaphore.sync_seqno)); ret = intel_engine_init_breadcrumbs(engine); if (ret) goto error; /* We may need to do things with the shrinker which * require us to immediately switch back to the default * context. This can cause a problem as pinning the * default context also requires GTT space which may not * be available. To avoid this we always pin the default * context. */ ret = intel_ring_context_pin(dev_priv->kernel_context, engine); if (ret) goto error; ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE); if (IS_ERR(ringbuf)) { ret = PTR_ERR(ringbuf); goto error; } engine->buffer = ringbuf; if (I915_NEED_GFX_HWS(dev_priv)) { ret = init_status_page(engine); if (ret) goto error; } else { WARN_ON(engine->id != RCS); ret = init_phys_status_page(engine); if (ret) goto error; } ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf); if (ret) { DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n", engine->name, ret); intel_destroy_ringbuffer_obj(ringbuf); goto error; } ret = i915_cmd_parser_init_ring(engine); if (ret) goto error; return 0; error: intel_cleanup_engine(engine); return ret; } void intel_cleanup_engine(struct intel_engine_cs *engine) { struct drm_i915_private *dev_priv; if (!intel_engine_initialized(engine)) return; dev_priv = engine->i915; if (engine->buffer) { intel_stop_engine(engine); WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0); intel_unpin_ringbuffer_obj(engine->buffer); intel_ringbuffer_free(engine->buffer); engine->buffer = NULL; } if (engine->cleanup) engine->cleanup(engine); if (I915_NEED_GFX_HWS(dev_priv)) { cleanup_status_page(engine); } else { WARN_ON(engine->id != RCS); cleanup_phys_status_page(engine); } i915_cmd_parser_fini_ring(engine); i915_gem_batch_pool_fini(&engine->batch_pool); intel_engine_fini_breadcrumbs(engine); intel_ring_context_unpin(dev_priv->kernel_context, engine); engine->i915 = NULL; } int intel_engine_idle(struct intel_engine_cs *engine) { struct drm_i915_gem_request *req; /* Wait upon the last request to be completed */ if (list_empty(&engine->request_list)) return 0; req = list_entry(engine->request_list.prev, struct drm_i915_gem_request, list); /* Make sure we do not trigger any retires */ return __i915_wait_request(req, req->i915->mm.interruptible, NULL, NULL); } int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request) { int ret; /* Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ request->reserved_space += LEGACY_REQUEST_SIZE; request->ringbuf = request->engine->buffer; ret = intel_ring_begin(request, 0); if (ret) return ret; request->reserved_space -= LEGACY_REQUEST_SIZE; return 0; } static int wait_for_space(struct drm_i915_gem_request *req, int bytes) { struct intel_ringbuffer *ringbuf = req->ringbuf; struct intel_engine_cs *engine = req->engine; struct drm_i915_gem_request *target; intel_ring_update_space(ringbuf); if (ringbuf->space >= bytes) return 0; /* * Space is reserved in the ringbuffer for finalising the request, * as that cannot be allowed to fail. During request finalisation, * reserved_space is set to 0 to stop the overallocation and the * assumption is that then we never need to wait (which has the * risk of failing with EINTR). * * See also i915_gem_request_alloc() and i915_add_request(). */ GEM_BUG_ON(!req->reserved_space); list_for_each_entry(target, &engine->request_list, list) { unsigned space; /* * The request queue is per-engine, so can contain requests * from multiple ringbuffers. Here, we must ignore any that * aren't from the ringbuffer we're considering. */ if (target->ringbuf != ringbuf) continue; /* Would completion of this request free enough space? */ space = __intel_ring_space(target->postfix, ringbuf->tail, ringbuf->size); if (space >= bytes) break; } if (WARN_ON(&target->list == &engine->request_list)) return -ENOSPC; return i915_wait_request(target); } int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords) { struct intel_ringbuffer *ringbuf = req->ringbuf; int remain_actual = ringbuf->size - ringbuf->tail; int remain_usable = ringbuf->effective_size - ringbuf->tail; int bytes = num_dwords * sizeof(u32); int total_bytes, wait_bytes; bool need_wrap = false; total_bytes = bytes + req->reserved_space; if (unlikely(bytes > remain_usable)) { /* * Not enough space for the basic request. So need to flush * out the remainder and then wait for base + reserved. */ wait_bytes = remain_actual + total_bytes; need_wrap = true; } else if (unlikely(total_bytes > remain_usable)) { /* * The base request will fit but the reserved space * falls off the end. So we don't need an immediate wrap * and only need to effectively wait for the reserved * size space from the start of ringbuffer. */ wait_bytes = remain_actual + req->reserved_space; } else { /* No wrapping required, just waiting. */ wait_bytes = total_bytes; } if (wait_bytes > ringbuf->space) { int ret = wait_for_space(req, wait_bytes); if (unlikely(ret)) return ret; intel_ring_update_space(ringbuf); if (unlikely(ringbuf->space < wait_bytes)) return -EAGAIN; } if (unlikely(need_wrap)) { GEM_BUG_ON(remain_actual > ringbuf->space); GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size); /* Fill the tail with MI_NOOP */ memset(ringbuf->virtual_start + ringbuf->tail, 0, remain_actual); ringbuf->tail = 0; ringbuf->space -= remain_actual; } ringbuf->space -= bytes; GEM_BUG_ON(ringbuf->space < 0); return 0; } /* Align the ring tail to a cacheline boundary */ int intel_ring_cacheline_align(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t); int ret; if (num_dwords == 0) return 0; num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords; ret = intel_ring_begin(req, num_dwords); if (ret) return ret; while (num_dwords--) intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); return 0; } void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno) { struct drm_i915_private *dev_priv = engine->i915; /* Our semaphore implementation is strictly monotonic (i.e. we proceed * so long as the semaphore value in the register/page is greater * than the sync value), so whenever we reset the seqno, * so long as we reset the tracking semaphore value to 0, it will * always be before the next request's seqno. If we don't reset * the semaphore value, then when the seqno moves backwards all * future waits will complete instantly (causing rendering corruption). */ if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) { I915_WRITE(RING_SYNC_0(engine->mmio_base), 0); I915_WRITE(RING_SYNC_1(engine->mmio_base), 0); if (HAS_VEBOX(dev_priv)) I915_WRITE(RING_SYNC_2(engine->mmio_base), 0); } if (dev_priv->semaphore_obj) { struct drm_i915_gem_object *obj = dev_priv->semaphore_obj; struct page *page = i915_gem_object_get_dirty_page(obj, 0); void *semaphores = kmap(page); memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0), 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size); kunmap(page); } memset(engine->semaphore.sync_seqno, 0, sizeof(engine->semaphore.sync_seqno)); intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno); if (engine->irq_seqno_barrier) engine->irq_seqno_barrier(engine); engine->last_submitted_seqno = seqno; engine->hangcheck.seqno = seqno; /* After manually advancing the seqno, fake the interrupt in case * there are any waiters for that seqno. */ rcu_read_lock(); intel_engine_wakeup(engine); rcu_read_unlock(); } static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine, u32 value) { struct drm_i915_private *dev_priv = engine->i915; intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* Every tail move must follow the sequence below */ /* Disable notification that the ring is IDLE. The GT * will then assume that it is busy and bring it out of rc6. */ I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); /* Clear the context id. Here be magic! */ I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0); /* Wait for the ring not to be idle, i.e. for it to wake up. */ if (intel_wait_for_register_fw(dev_priv, GEN6_BSD_SLEEP_PSMI_CONTROL, GEN6_BSD_SLEEP_INDICATOR, 0, 50)) DRM_ERROR("timed out waiting for the BSD ring to wake up\n"); /* Now that the ring is fully powered up, update the tail */ I915_WRITE_FW(RING_TAIL(engine->mmio_base), value); POSTING_READ_FW(RING_TAIL(engine->mmio_base)); /* Let the ring send IDLE messages to the GT again, * and so let it sleep to conserve power when idle. */ I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); } static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 invalidate, u32 flush) { struct intel_engine_cs *engine = req->engine; uint32_t cmd; int ret; ret = intel_ring_begin(req, 4); if (ret) return ret; cmd = MI_FLUSH_DW; if (INTEL_GEN(req->i915) >= 8) cmd += 1; /* We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; /* * Bspec vol 1c.5 - video engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ if (invalidate & I915_GEM_GPU_DOMAINS) cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD; intel_ring_emit(engine, cmd); intel_ring_emit(engine, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); if (INTEL_GEN(req->i915) >= 8) { intel_ring_emit(engine, 0); /* upper addr */ intel_ring_emit(engine, 0); /* value */ } else { intel_ring_emit(engine, 0); intel_ring_emit(engine, MI_NOOP); } intel_ring_advance(engine); return 0; } static int gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req, u64 offset, u32 len, unsigned dispatch_flags) { struct intel_engine_cs *engine = req->engine; bool ppgtt = USES_PPGTT(engine->dev) && !(dispatch_flags & I915_DISPATCH_SECURE); int ret; ret = intel_ring_begin(req, 4); if (ret) return ret; /* FIXME(BDW): Address space and security selectors. */ intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) | (dispatch_flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0)); intel_ring_emit(engine, lower_32_bits(offset)); intel_ring_emit(engine, upper_32_bits(offset)); intel_ring_emit(engine, MI_NOOP); intel_ring_advance(engine); return 0; } static int hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req, u64 offset, u32 len, unsigned dispatch_flags) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) | (dispatch_flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0)); /* bit0-7 is the length on GEN6+ */ intel_ring_emit(engine, offset); intel_ring_advance(engine); return 0; } static int gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req, u64 offset, u32 len, unsigned dispatch_flags) { struct intel_engine_cs *engine = req->engine; int ret; ret = intel_ring_begin(req, 2); if (ret) return ret; intel_ring_emit(engine, MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965)); /* bit0-7 is the length on GEN6+ */ intel_ring_emit(engine, offset); intel_ring_advance(engine); return 0; } /* Blitter support (SandyBridge+) */ static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 invalidate, u32 flush) { struct intel_engine_cs *engine = req->engine; uint32_t cmd; int ret; ret = intel_ring_begin(req, 4); if (ret) return ret; cmd = MI_FLUSH_DW; if (INTEL_GEN(req->i915) >= 8) cmd += 1; /* We always require a command barrier so that subsequent * commands, such as breadcrumb interrupts, are strictly ordered * wrt the contents of the write cache being flushed to memory * (and thus being coherent from the CPU). */ cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; /* * Bspec vol 1c.3 - blitter engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ if (invalidate & I915_GEM_DOMAIN_RENDER) cmd |= MI_INVALIDATE_TLB; intel_ring_emit(engine, cmd); intel_ring_emit(engine, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); if (INTEL_GEN(req->i915) >= 8) { intel_ring_emit(engine, 0); /* upper addr */ intel_ring_emit(engine, 0); /* value */ } else { intel_ring_emit(engine, 0); intel_ring_emit(engine, MI_NOOP); } intel_ring_advance(engine); return 0; } static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv, struct intel_engine_cs *engine) { struct drm_i915_gem_object *obj; int ret, i; if (!i915_semaphore_is_enabled(dev_priv)) return; if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) { obj = i915_gem_object_create(dev_priv->dev, 4096); if (IS_ERR(obj)) { DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n"); i915.semaphores = 0; } else { i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK); if (ret != 0) { drm_gem_object_unreference(&obj->base); DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n"); i915.semaphores = 0; } else { dev_priv->semaphore_obj = obj; } } } if (!i915_semaphore_is_enabled(dev_priv)) return; if (INTEL_GEN(dev_priv) >= 8) { u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj); engine->semaphore.sync_to = gen8_ring_sync; engine->semaphore.signal = gen8_xcs_signal; for (i = 0; i < I915_NUM_ENGINES; i++) { u64 ring_offset; if (i != engine->id) ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i); else ring_offset = MI_SEMAPHORE_SYNC_INVALID; engine->semaphore.signal_ggtt[i] = ring_offset; } } else if (INTEL_GEN(dev_priv) >= 6) { engine->semaphore.sync_to = gen6_ring_sync; engine->semaphore.signal = gen6_signal; /* * The current semaphore is only applied on pre-gen8 * platform. And there is no VCS2 ring on the pre-gen8 * platform. So the semaphore between RCS and VCS2 is * initialized as INVALID. Gen8 will initialize the * sema between VCS2 and RCS later. */ for (i = 0; i < I915_NUM_ENGINES; i++) { static const struct { u32 wait_mbox; i915_reg_t mbox_reg; } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = { [RCS] = { [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC }, [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC }, [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC }, }, [VCS] = { [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC }, [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC }, [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC }, }, [BCS] = { [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC }, [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC }, [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC }, }, [VECS] = { [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC }, [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC }, [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC }, }, }; u32 wait_mbox; i915_reg_t mbox_reg; if (i == engine->id || i == VCS2) { wait_mbox = MI_SEMAPHORE_SYNC_INVALID; mbox_reg = GEN6_NOSYNC; } else { wait_mbox = sem_data[engine->id][i].wait_mbox; mbox_reg = sem_data[engine->id][i].mbox_reg; } engine->semaphore.mbox.wait[i] = wait_mbox; engine->semaphore.mbox.signal[i] = mbox_reg; } } } static void intel_ring_init_irq(struct drm_i915_private *dev_priv, struct intel_engine_cs *engine) { if (INTEL_GEN(dev_priv) >= 8) { engine->irq_enable = gen8_irq_enable; engine->irq_disable = gen8_irq_disable; engine->irq_seqno_barrier = gen6_seqno_barrier; } else if (INTEL_GEN(dev_priv) >= 6) { engine->irq_enable = gen6_irq_enable; engine->irq_disable = gen6_irq_disable; engine->irq_seqno_barrier = gen6_seqno_barrier; } else if (INTEL_GEN(dev_priv) >= 5) { engine->irq_enable = gen5_irq_enable; engine->irq_disable = gen5_irq_disable; engine->irq_seqno_barrier = gen5_seqno_barrier; } else if (INTEL_GEN(dev_priv) >= 3) { engine->irq_enable = i9xx_irq_enable; engine->irq_disable = i9xx_irq_disable; } else { engine->irq_enable = i8xx_irq_enable; engine->irq_disable = i8xx_irq_disable; } } static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv, struct intel_engine_cs *engine) { engine->init_hw = init_ring_common; engine->write_tail = ring_write_tail; engine->add_request = i9xx_add_request; if (INTEL_GEN(dev_priv) >= 6) engine->add_request = gen6_add_request; if (INTEL_GEN(dev_priv) >= 8) engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer; else if (INTEL_GEN(dev_priv) >= 6) engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; else if (INTEL_GEN(dev_priv) >= 4) engine->dispatch_execbuffer = i965_dispatch_execbuffer; else if (IS_I830(dev_priv) || IS_845G(dev_priv)) engine->dispatch_execbuffer = i830_dispatch_execbuffer; else engine->dispatch_execbuffer = i915_dispatch_execbuffer; intel_ring_init_irq(dev_priv, engine); intel_ring_init_semaphores(dev_priv, engine); } int intel_init_render_ring_buffer(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine = &dev_priv->engine[RCS]; int ret; engine->name = "render ring"; engine->id = RCS; engine->exec_id = I915_EXEC_RENDER; engine->hw_id = 0; engine->mmio_base = RENDER_RING_BASE; intel_ring_default_vfuncs(dev_priv, engine); engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT; if (HAS_L3_DPF(dev_priv)) engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT; if (INTEL_GEN(dev_priv) >= 8) { engine->init_context = intel_rcs_ctx_init; engine->add_request = gen8_render_add_request; engine->flush = gen8_render_ring_flush; if (i915_semaphore_is_enabled(dev_priv)) engine->semaphore.signal = gen8_rcs_signal; } else if (INTEL_GEN(dev_priv) >= 6) { engine->init_context = intel_rcs_ctx_init; engine->flush = gen7_render_ring_flush; if (IS_GEN6(dev_priv)) engine->flush = gen6_render_ring_flush; } else if (IS_GEN5(dev_priv)) { engine->flush = gen4_render_ring_flush; } else { if (INTEL_GEN(dev_priv) < 4) engine->flush = gen2_render_ring_flush; else engine->flush = gen4_render_ring_flush; engine->irq_enable_mask = I915_USER_INTERRUPT; } if (IS_HASWELL(dev_priv)) engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer; engine->init_hw = init_render_ring; engine->cleanup = render_ring_cleanup; ret = intel_init_ring_buffer(dev, engine); if (ret) return ret; if (INTEL_GEN(dev_priv) >= 6) { ret = intel_init_pipe_control(engine, 4096); if (ret) return ret; } else if (HAS_BROKEN_CS_TLB(dev_priv)) { ret = intel_init_pipe_control(engine, I830_WA_SIZE); if (ret) return ret; } return 0; } int intel_init_bsd_ring_buffer(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine = &dev_priv->engine[VCS]; engine->name = "bsd ring"; engine->id = VCS; engine->exec_id = I915_EXEC_BSD; engine->hw_id = 1; intel_ring_default_vfuncs(dev_priv, engine); if (INTEL_GEN(dev_priv) >= 6) { engine->mmio_base = GEN6_BSD_RING_BASE; /* gen6 bsd needs a special wa for tail updates */ if (IS_GEN6(dev_priv)) engine->write_tail = gen6_bsd_ring_write_tail; engine->flush = gen6_bsd_ring_flush; if (INTEL_GEN(dev_priv) >= 8) engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT; else engine->irq_enable_mask = GT_BSD_USER_INTERRUPT; } else { engine->mmio_base = BSD_RING_BASE; engine->flush = bsd_ring_flush; if (IS_GEN5(dev_priv)) engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT; else engine->irq_enable_mask = I915_BSD_USER_INTERRUPT; } return intel_init_ring_buffer(dev, engine); } /** * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3) */ int intel_init_bsd2_ring_buffer(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine = &dev_priv->engine[VCS2]; engine->name = "bsd2 ring"; engine->id = VCS2; engine->exec_id = I915_EXEC_BSD; engine->hw_id = 4; engine->mmio_base = GEN8_BSD2_RING_BASE; intel_ring_default_vfuncs(dev_priv, engine); engine->flush = gen6_bsd_ring_flush; engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT; return intel_init_ring_buffer(dev, engine); } int intel_init_blt_ring_buffer(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine = &dev_priv->engine[BCS]; engine->name = "blitter ring"; engine->id = BCS; engine->exec_id = I915_EXEC_BLT; engine->hw_id = 2; engine->mmio_base = BLT_RING_BASE; intel_ring_default_vfuncs(dev_priv, engine); engine->flush = gen6_ring_flush; if (INTEL_GEN(dev_priv) >= 8) engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; else engine->irq_enable_mask = GT_BLT_USER_INTERRUPT; return intel_init_ring_buffer(dev, engine); } int intel_init_vebox_ring_buffer(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_engine_cs *engine = &dev_priv->engine[VECS]; engine->name = "video enhancement ring"; engine->id = VECS; engine->exec_id = I915_EXEC_VEBOX; engine->hw_id = 3; engine->mmio_base = VEBOX_RING_BASE; intel_ring_default_vfuncs(dev_priv, engine); engine->flush = gen6_ring_flush; if (INTEL_GEN(dev_priv) >= 8) { engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT; } else { engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; engine->irq_enable = hsw_vebox_irq_enable; engine->irq_disable = hsw_vebox_irq_disable; } return intel_init_ring_buffer(dev, engine); } int intel_ring_flush_all_caches(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; int ret; if (!engine->gpu_caches_dirty) return 0; ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS); if (ret) return ret; trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS); engine->gpu_caches_dirty = false; return 0; } int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; uint32_t flush_domains; int ret; flush_domains = 0; if (engine->gpu_caches_dirty) flush_domains = I915_GEM_GPU_DOMAINS; ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains); if (ret) return ret; trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains); engine->gpu_caches_dirty = false; return 0; } void intel_stop_engine(struct intel_engine_cs *engine) { int ret; if (!intel_engine_initialized(engine)) return; ret = intel_engine_idle(engine); if (ret) DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n", engine->name, ret); stop_ring(engine); }