/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include #include "i915_drv.h" #include "intel_drv.h" struct ddi_buf_trans { u32 trans1; /* balance leg enable, de-emph level */ u32 trans2; /* vref sel, vswing */ u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */ }; static const u8 index_to_dp_signal_levels[] = { [0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0, [1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1, [2] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2, [3] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3, [4] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0, [5] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1, [6] = DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2, [7] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0, [8] = DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1, [9] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0, }; /* HDMI/DVI modes ignore everything but the last 2 items. So we share * them for both DP and FDI transports, allowing those ports to * automatically adapt to HDMI connections as well */ static const struct ddi_buf_trans hsw_ddi_translations_dp[] = { { 0x00FFFFFF, 0x0006000E, 0x0 }, { 0x00D75FFF, 0x0005000A, 0x0 }, { 0x00C30FFF, 0x00040006, 0x0 }, { 0x80AAAFFF, 0x000B0000, 0x0 }, { 0x00FFFFFF, 0x0005000A, 0x0 }, { 0x00D75FFF, 0x000C0004, 0x0 }, { 0x80C30FFF, 0x000B0000, 0x0 }, { 0x00FFFFFF, 0x00040006, 0x0 }, { 0x80D75FFF, 0x000B0000, 0x0 }, }; static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = { { 0x00FFFFFF, 0x0007000E, 0x0 }, { 0x00D75FFF, 0x000F000A, 0x0 }, { 0x00C30FFF, 0x00060006, 0x0 }, { 0x00AAAFFF, 0x001E0000, 0x0 }, { 0x00FFFFFF, 0x000F000A, 0x0 }, { 0x00D75FFF, 0x00160004, 0x0 }, { 0x00C30FFF, 0x001E0000, 0x0 }, { 0x00FFFFFF, 0x00060006, 0x0 }, { 0x00D75FFF, 0x001E0000, 0x0 }, }; static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = { /* Idx NT mV d T mV d db */ { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */ { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */ { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */ { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */ { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */ { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */ { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */ { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */ { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */ { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */ { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */ { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */ }; static const struct ddi_buf_trans bdw_ddi_translations_edp[] = { { 0x00FFFFFF, 0x00000012, 0x0 }, { 0x00EBAFFF, 0x00020011, 0x0 }, { 0x00C71FFF, 0x0006000F, 0x0 }, { 0x00AAAFFF, 0x000E000A, 0x0 }, { 0x00FFFFFF, 0x00020011, 0x0 }, { 0x00DB6FFF, 0x0005000F, 0x0 }, { 0x00BEEFFF, 0x000A000C, 0x0 }, { 0x00FFFFFF, 0x0005000F, 0x0 }, { 0x00DB6FFF, 0x000A000C, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_dp[] = { { 0x00FFFFFF, 0x0007000E, 0x0 }, { 0x00D75FFF, 0x000E000A, 0x0 }, { 0x00BEFFFF, 0x00140006, 0x0 }, { 0x80B2CFFF, 0x001B0002, 0x0 }, { 0x00FFFFFF, 0x000E000A, 0x0 }, { 0x00DB6FFF, 0x00160005, 0x0 }, { 0x80C71FFF, 0x001A0002, 0x0 }, { 0x00F7DFFF, 0x00180004, 0x0 }, { 0x80D75FFF, 0x001B0002, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = { { 0x00FFFFFF, 0x0001000E, 0x0 }, { 0x00D75FFF, 0x0004000A, 0x0 }, { 0x00C30FFF, 0x00070006, 0x0 }, { 0x00AAAFFF, 0x000C0000, 0x0 }, { 0x00FFFFFF, 0x0004000A, 0x0 }, { 0x00D75FFF, 0x00090004, 0x0 }, { 0x00C30FFF, 0x000C0000, 0x0 }, { 0x00FFFFFF, 0x00070006, 0x0 }, { 0x00D75FFF, 0x000C0000, 0x0 }, }; static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = { /* Idx NT mV d T mV df db */ { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */ { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */ { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */ { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */ { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */ { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */ { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */ { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */ { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */ { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */ }; /* Skylake H and S */ static const struct ddi_buf_trans skl_ddi_translations_dp[] = { { 0x00002016, 0x000000A0, 0x0 }, { 0x00005012, 0x0000009B, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x80009010, 0x000000C0, 0x1 }, { 0x00002016, 0x0000009B, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000C0, 0x1 }, { 0x00002016, 0x000000DF, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, }; /* Skylake U */ static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = { { 0x0000201B, 0x000000A2, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x1 }, { 0x80009010, 0x000000C0, 0x1 }, { 0x0000201B, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, { 0x80007011, 0x000000C0, 0x1 }, { 0x00002016, 0x00000088, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, }; /* Skylake Y */ static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = { { 0x00000018, 0x000000A2, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x3 }, { 0x80009010, 0x000000C0, 0x3 }, { 0x00000018, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, { 0x80007011, 0x000000C0, 0x3 }, { 0x00000018, 0x00000088, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, }; /* Kabylake H and S */ static const struct ddi_buf_trans kbl_ddi_translations_dp[] = { { 0x00002016, 0x000000A0, 0x0 }, { 0x00005012, 0x0000009B, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x80009010, 0x000000C0, 0x1 }, { 0x00002016, 0x0000009B, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000C0, 0x1 }, { 0x00002016, 0x00000097, 0x0 }, { 0x80005012, 0x000000C0, 0x1 }, }; /* Kabylake U */ static const struct ddi_buf_trans kbl_u_ddi_translations_dp[] = { { 0x0000201B, 0x000000A1, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x3 }, { 0x80009010, 0x000000C0, 0x3 }, { 0x0000201B, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, { 0x80007011, 0x000000C0, 0x3 }, { 0x00002016, 0x0000004F, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, }; /* Kabylake Y */ static const struct ddi_buf_trans kbl_y_ddi_translations_dp[] = { { 0x00001017, 0x000000A1, 0x0 }, { 0x00005012, 0x00000088, 0x0 }, { 0x80007011, 0x000000CD, 0x3 }, { 0x8000800F, 0x000000C0, 0x3 }, { 0x00001017, 0x0000009D, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, { 0x80007011, 0x000000C0, 0x3 }, { 0x00001017, 0x0000004C, 0x0 }, { 0x80005012, 0x000000C0, 0x3 }, }; /* * Skylake/Kabylake H and S * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000A9, 0x0 }, { 0x00007011, 0x000000A2, 0x0 }, { 0x00009010, 0x0000009C, 0x0 }, { 0x00000018, 0x000000A9, 0x0 }, { 0x00006013, 0x000000A2, 0x0 }, { 0x00007011, 0x000000A6, 0x0 }, { 0x00000018, 0x000000AB, 0x0 }, { 0x00007013, 0x0000009F, 0x0 }, { 0x00000018, 0x000000DF, 0x0 }, }; /* * Skylake/Kabylake U * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000A9, 0x0 }, { 0x00007011, 0x000000A2, 0x0 }, { 0x00009010, 0x0000009C, 0x0 }, { 0x00000018, 0x000000A9, 0x0 }, { 0x00006013, 0x000000A2, 0x0 }, { 0x00007011, 0x000000A6, 0x0 }, { 0x00002016, 0x000000AB, 0x0 }, { 0x00005013, 0x0000009F, 0x0 }, { 0x00000018, 0x000000DF, 0x0 }, }; /* * Skylake/Kabylake Y * eDP 1.4 low vswing translation parameters */ static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = { { 0x00000018, 0x000000A8, 0x0 }, { 0x00004013, 0x000000AB, 0x0 }, { 0x00007011, 0x000000A4, 0x0 }, { 0x00009010, 0x000000DF, 0x0 }, { 0x00000018, 0x000000AA, 0x0 }, { 0x00006013, 0x000000A4, 0x0 }, { 0x00007011, 0x0000009D, 0x0 }, { 0x00000018, 0x000000A0, 0x0 }, { 0x00006012, 0x000000DF, 0x0 }, { 0x00000018, 0x0000008A, 0x0 }, }; /* Skylake/Kabylake U, H and S */ static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = { { 0x00000018, 0x000000AC, 0x0 }, { 0x00005012, 0x0000009D, 0x0 }, { 0x00007011, 0x00000088, 0x0 }, { 0x00000018, 0x000000A1, 0x0 }, { 0x00000018, 0x00000098, 0x0 }, { 0x00004013, 0x00000088, 0x0 }, { 0x80006012, 0x000000CD, 0x1 }, { 0x00000018, 0x000000DF, 0x0 }, { 0x80003015, 0x000000CD, 0x1 }, /* Default */ { 0x80003015, 0x000000C0, 0x1 }, { 0x80000018, 0x000000C0, 0x1 }, }; /* Skylake/Kabylake Y */ static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = { { 0x00000018, 0x000000A1, 0x0 }, { 0x00005012, 0x000000DF, 0x0 }, { 0x80007011, 0x000000CB, 0x3 }, { 0x00000018, 0x000000A4, 0x0 }, { 0x00000018, 0x0000009D, 0x0 }, { 0x00004013, 0x00000080, 0x0 }, { 0x80006013, 0x000000C0, 0x3 }, { 0x00000018, 0x0000008A, 0x0 }, { 0x80003015, 0x000000C0, 0x3 }, /* Default */ { 0x80003015, 0x000000C0, 0x3 }, { 0x80000018, 0x000000C0, 0x3 }, }; struct bxt_ddi_buf_trans { u8 margin; /* swing value */ u8 scale; /* scale value */ u8 enable; /* scale enable */ u8 deemphasis; }; static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = { /* Idx NT mV diff db */ { 52, 0x9A, 0, 128, }, /* 0: 400 0 */ { 78, 0x9A, 0, 85, }, /* 1: 400 3.5 */ { 104, 0x9A, 0, 64, }, /* 2: 400 6 */ { 154, 0x9A, 0, 43, }, /* 3: 400 9.5 */ { 77, 0x9A, 0, 128, }, /* 4: 600 0 */ { 116, 0x9A, 0, 85, }, /* 5: 600 3.5 */ { 154, 0x9A, 0, 64, }, /* 6: 600 6 */ { 102, 0x9A, 0, 128, }, /* 7: 800 0 */ { 154, 0x9A, 0, 85, }, /* 8: 800 3.5 */ { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */ }; static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = { /* Idx NT mV diff db */ { 26, 0, 0, 128, }, /* 0: 200 0 */ { 38, 0, 0, 112, }, /* 1: 200 1.5 */ { 48, 0, 0, 96, }, /* 2: 200 4 */ { 54, 0, 0, 69, }, /* 3: 200 6 */ { 32, 0, 0, 128, }, /* 4: 250 0 */ { 48, 0, 0, 104, }, /* 5: 250 1.5 */ { 54, 0, 0, 85, }, /* 6: 250 4 */ { 43, 0, 0, 128, }, /* 7: 300 0 */ { 54, 0, 0, 101, }, /* 8: 300 1.5 */ { 48, 0, 0, 128, }, /* 9: 300 0 */ }; /* BSpec has 2 recommended values - entries 0 and 8. * Using the entry with higher vswing. */ static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = { /* Idx NT mV diff db */ { 52, 0x9A, 0, 128, }, /* 0: 400 0 */ { 52, 0x9A, 0, 85, }, /* 1: 400 3.5 */ { 52, 0x9A, 0, 64, }, /* 2: 400 6 */ { 42, 0x9A, 0, 43, }, /* 3: 400 9.5 */ { 77, 0x9A, 0, 128, }, /* 4: 600 0 */ { 77, 0x9A, 0, 85, }, /* 5: 600 3.5 */ { 77, 0x9A, 0, 64, }, /* 6: 600 6 */ { 102, 0x9A, 0, 128, }, /* 7: 800 0 */ { 102, 0x9A, 0, 85, }, /* 8: 800 3.5 */ { 154, 0x9A, 1, 128, }, /* 9: 1200 0 */ }; struct cnl_ddi_buf_trans { u8 dw2_swing_sel; u8 dw7_n_scalar; u8 dw4_cursor_coeff; u8 dw4_post_cursor_2; u8 dw4_post_cursor_1; }; /* Voltage Swing Programming for VccIO 0.85V for DP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_85V[] = { /* NT mV Trans mV db */ { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */ { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */ { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */ { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */ { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */ { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */ { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */ { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; /* Voltage Swing Programming for VccIO 0.85V for HDMI */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_85V[] = { /* NT mV Trans mV db */ { 0xA, 0x60, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */ { 0xB, 0x73, 0x36, 0x00, 0x09 }, /* 450 650 3.2 */ { 0x6, 0x7F, 0x31, 0x00, 0x0E }, /* 450 850 5.5 */ { 0xB, 0x73, 0x3F, 0x00, 0x00 }, /* 650 650 0.0 */ { 0x6, 0x7F, 0x37, 0x00, 0x08 }, /* 650 850 2.3 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 850 850 0.0 */ { 0x6, 0x7F, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ }; /* Voltage Swing Programming for VccIO 0.85V for eDP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_85V[] = { /* NT mV Trans mV db */ { 0xA, 0x66, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */ { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */ { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */ { 0xA, 0x66, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */ { 0xB, 0x70, 0x3C, 0x00, 0x03 }, /* 460 600 2.3 */ { 0xC, 0x75, 0x3C, 0x00, 0x03 }, /* 537 700 2.3 */ { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ }; /* Voltage Swing Programming for VccIO 0.95V for DP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_0_95V[] = { /* NT mV Trans mV db */ { 0xA, 0x5D, 0x3F, 0x00, 0x00 }, /* 350 350 0.0 */ { 0xA, 0x6A, 0x38, 0x00, 0x07 }, /* 350 500 3.1 */ { 0xB, 0x7A, 0x32, 0x00, 0x0D }, /* 350 700 6.0 */ { 0x6, 0x7C, 0x2D, 0x00, 0x12 }, /* 350 900 8.2 */ { 0xA, 0x69, 0x3F, 0x00, 0x00 }, /* 500 500 0.0 */ { 0xB, 0x7A, 0x36, 0x00, 0x09 }, /* 500 700 2.9 */ { 0x6, 0x7C, 0x30, 0x00, 0x0F }, /* 500 900 5.1 */ { 0xB, 0x7D, 0x3C, 0x00, 0x03 }, /* 650 725 0.9 */ { 0x6, 0x7C, 0x34, 0x00, 0x0B }, /* 600 900 3.5 */ { 0x6, 0x7B, 0x3F, 0x00, 0x00 }, /* 900 900 0.0 */ }; /* Voltage Swing Programming for VccIO 0.95V for HDMI */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_0_95V[] = { /* NT mV Trans mV db */ { 0xA, 0x5C, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ { 0xB, 0x69, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */ { 0x5, 0x76, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */ { 0xA, 0x5E, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */ { 0xB, 0x69, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */ { 0xB, 0x79, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ { 0x6, 0x7D, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */ { 0x5, 0x76, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */ { 0x6, 0x7D, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */ { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */ }; /* Voltage Swing Programming for VccIO 0.95V for eDP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_0_95V[] = { /* NT mV Trans mV db */ { 0xA, 0x61, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */ { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */ { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */ { 0xA, 0x61, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */ { 0xB, 0x68, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */ { 0xC, 0x6E, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */ { 0x4, 0x7F, 0x3A, 0x00, 0x05 }, /* 460 600 2.3 */ { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ }; /* Voltage Swing Programming for VccIO 1.05V for DP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_dp_1_05V[] = { /* NT mV Trans mV db */ { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */ { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */ { 0x6, 0x7F, 0x2C, 0x00, 0x13 }, /* 400 1050 8.4 */ { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */ { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ { 0x6, 0x7F, 0x30, 0x00, 0x0F }, /* 550 1050 5.6 */ { 0x5, 0x76, 0x3E, 0x00, 0x01 }, /* 850 900 0.5 */ { 0x6, 0x7F, 0x36, 0x00, 0x09 }, /* 750 1050 2.9 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */ }; /* Voltage Swing Programming for VccIO 1.05V for HDMI */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_hdmi_1_05V[] = { /* NT mV Trans mV db */ { 0xA, 0x58, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ { 0xB, 0x64, 0x37, 0x00, 0x08 }, /* 400 600 3.5 */ { 0x5, 0x70, 0x31, 0x00, 0x0E }, /* 400 800 6.0 */ { 0xA, 0x5B, 0x3F, 0x00, 0x00 }, /* 450 450 0.0 */ { 0xB, 0x64, 0x3F, 0x00, 0x00 }, /* 600 600 0.0 */ { 0x5, 0x73, 0x35, 0x00, 0x0A }, /* 600 850 3.0 */ { 0x6, 0x7C, 0x32, 0x00, 0x0D }, /* 600 1000 4.4 */ { 0x5, 0x70, 0x3F, 0x00, 0x00 }, /* 800 800 0.0 */ { 0x6, 0x7C, 0x39, 0x00, 0x06 }, /* 800 1000 1.9 */ { 0x6, 0x7F, 0x39, 0x00, 0x06 }, /* 850 1050 1.8 */ { 0x6, 0x7F, 0x3F, 0x00, 0x00 }, /* 1050 1050 0.0 */ }; /* Voltage Swing Programming for VccIO 1.05V for eDP */ static const struct cnl_ddi_buf_trans cnl_ddi_translations_edp_1_05V[] = { /* NT mV Trans mV db */ { 0xA, 0x5E, 0x3A, 0x00, 0x05 }, /* 384 500 2.3 */ { 0x0, 0x7F, 0x38, 0x00, 0x07 }, /* 153 200 2.3 */ { 0x8, 0x7F, 0x38, 0x00, 0x07 }, /* 192 250 2.3 */ { 0x1, 0x7F, 0x38, 0x00, 0x07 }, /* 230 300 2.3 */ { 0x9, 0x7F, 0x38, 0x00, 0x07 }, /* 269 350 2.3 */ { 0xA, 0x5E, 0x3C, 0x00, 0x03 }, /* 446 500 1.0 */ { 0xB, 0x64, 0x39, 0x00, 0x06 }, /* 460 600 2.3 */ { 0xE, 0x6A, 0x39, 0x00, 0x06 }, /* 537 700 2.3 */ { 0x2, 0x7F, 0x3F, 0x00, 0x00 }, /* 400 400 0.0 */ }; struct icl_combo_phy_ddi_buf_trans { u32 dw2_swing_select; u32 dw2_swing_scalar; u32 dw4_scaling; }; /* Voltage Swing Programming for VccIO 0.85V for DP */ static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_0_85V[] = { /* Voltage mV db */ { 0x2, 0x98, 0x0018 }, /* 400 0.0 */ { 0x2, 0x98, 0x3015 }, /* 400 3.5 */ { 0x2, 0x98, 0x6012 }, /* 400 6.0 */ { 0x2, 0x98, 0x900F }, /* 400 9.5 */ { 0xB, 0x70, 0x0018 }, /* 600 0.0 */ { 0xB, 0x70, 0x3015 }, /* 600 3.5 */ { 0xB, 0x70, 0x6012 }, /* 600 6.0 */ { 0x5, 0x00, 0x0018 }, /* 800 0.0 */ { 0x5, 0x00, 0x3015 }, /* 800 3.5 */ { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */ }; /* FIXME - After table is updated in Bspec */ /* Voltage Swing Programming for VccIO 0.85V for eDP */ static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_0_85V[] = { /* Voltage mV db */ { 0x0, 0x00, 0x00 }, /* 200 0.0 */ { 0x0, 0x00, 0x00 }, /* 200 1.5 */ { 0x0, 0x00, 0x00 }, /* 200 4.0 */ { 0x0, 0x00, 0x00 }, /* 200 6.0 */ { 0x0, 0x00, 0x00 }, /* 250 0.0 */ { 0x0, 0x00, 0x00 }, /* 250 1.5 */ { 0x0, 0x00, 0x00 }, /* 250 4.0 */ { 0x0, 0x00, 0x00 }, /* 300 0.0 */ { 0x0, 0x00, 0x00 }, /* 300 1.5 */ { 0x0, 0x00, 0x00 }, /* 350 0.0 */ }; /* Voltage Swing Programming for VccIO 0.95V for DP */ static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_0_95V[] = { /* Voltage mV db */ { 0x2, 0x98, 0x0018 }, /* 400 0.0 */ { 0x2, 0x98, 0x3015 }, /* 400 3.5 */ { 0x2, 0x98, 0x6012 }, /* 400 6.0 */ { 0x2, 0x98, 0x900F }, /* 400 9.5 */ { 0x4, 0x98, 0x0018 }, /* 600 0.0 */ { 0x4, 0x98, 0x3015 }, /* 600 3.5 */ { 0x4, 0x98, 0x6012 }, /* 600 6.0 */ { 0x5, 0x76, 0x0018 }, /* 800 0.0 */ { 0x5, 0x76, 0x3015 }, /* 800 3.5 */ { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */ }; /* FIXME - After table is updated in Bspec */ /* Voltage Swing Programming for VccIO 0.95V for eDP */ static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_0_95V[] = { /* Voltage mV db */ { 0x0, 0x00, 0x00 }, /* 200 0.0 */ { 0x0, 0x00, 0x00 }, /* 200 1.5 */ { 0x0, 0x00, 0x00 }, /* 200 4.0 */ { 0x0, 0x00, 0x00 }, /* 200 6.0 */ { 0x0, 0x00, 0x00 }, /* 250 0.0 */ { 0x0, 0x00, 0x00 }, /* 250 1.5 */ { 0x0, 0x00, 0x00 }, /* 250 4.0 */ { 0x0, 0x00, 0x00 }, /* 300 0.0 */ { 0x0, 0x00, 0x00 }, /* 300 1.5 */ { 0x0, 0x00, 0x00 }, /* 350 0.0 */ }; /* Voltage Swing Programming for VccIO 1.05V for DP */ static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_dp_hdmi_1_05V[] = { /* Voltage mV db */ { 0x2, 0x98, 0x0018 }, /* 400 0.0 */ { 0x2, 0x98, 0x3015 }, /* 400 3.5 */ { 0x2, 0x98, 0x6012 }, /* 400 6.0 */ { 0x2, 0x98, 0x900F }, /* 400 9.5 */ { 0x4, 0x98, 0x0018 }, /* 600 0.0 */ { 0x4, 0x98, 0x3015 }, /* 600 3.5 */ { 0x4, 0x98, 0x6012 }, /* 600 6.0 */ { 0x5, 0x71, 0x0018 }, /* 800 0.0 */ { 0x5, 0x71, 0x3015 }, /* 800 3.5 */ { 0x6, 0x98, 0x0018 }, /* 1200 0.0 */ }; /* FIXME - After table is updated in Bspec */ /* Voltage Swing Programming for VccIO 1.05V for eDP */ static const struct icl_combo_phy_ddi_buf_trans icl_combo_phy_ddi_translations_edp_1_05V[] = { /* Voltage mV db */ { 0x0, 0x00, 0x00 }, /* 200 0.0 */ { 0x0, 0x00, 0x00 }, /* 200 1.5 */ { 0x0, 0x00, 0x00 }, /* 200 4.0 */ { 0x0, 0x00, 0x00 }, /* 200 6.0 */ { 0x0, 0x00, 0x00 }, /* 250 0.0 */ { 0x0, 0x00, 0x00 }, /* 250 1.5 */ { 0x0, 0x00, 0x00 }, /* 250 4.0 */ { 0x0, 0x00, 0x00 }, /* 300 0.0 */ { 0x0, 0x00, 0x00 }, /* 300 1.5 */ { 0x0, 0x00, 0x00 }, /* 350 0.0 */ }; struct icl_mg_phy_ddi_buf_trans { u32 cri_txdeemph_override_5_0; u32 cri_txdeemph_override_11_6; u32 cri_txdeemph_override_17_12; }; static const struct icl_mg_phy_ddi_buf_trans icl_mg_phy_ddi_translations[] = { /* Voltage swing pre-emphasis */ { 0x0, 0x1B, 0x00 }, /* 0 0 */ { 0x0, 0x23, 0x08 }, /* 0 1 */ { 0x0, 0x2D, 0x12 }, /* 0 2 */ { 0x0, 0x00, 0x00 }, /* 0 3 */ { 0x0, 0x23, 0x00 }, /* 1 0 */ { 0x0, 0x2B, 0x09 }, /* 1 1 */ { 0x0, 0x2E, 0x11 }, /* 1 2 */ { 0x0, 0x2F, 0x00 }, /* 2 0 */ { 0x0, 0x33, 0x0C }, /* 2 1 */ { 0x0, 0x00, 0x00 }, /* 3 0 */ }; static const struct ddi_buf_trans * bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries) { if (dev_priv->vbt.edp.low_vswing) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_edp); return bdw_ddi_translations_edp; } else { *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp); return bdw_ddi_translations_dp; } } static const struct ddi_buf_trans * skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries) { if (IS_SKL_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp); return skl_y_ddi_translations_dp; } else if (IS_SKL_ULT(dev_priv)) { *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp); return skl_u_ddi_translations_dp; } else { *n_entries = ARRAY_SIZE(skl_ddi_translations_dp); return skl_ddi_translations_dp; } } static const struct ddi_buf_trans * kbl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries) { if (IS_KBL_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(kbl_y_ddi_translations_dp); return kbl_y_ddi_translations_dp; } else if (IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv)) { *n_entries = ARRAY_SIZE(kbl_u_ddi_translations_dp); return kbl_u_ddi_translations_dp; } else { *n_entries = ARRAY_SIZE(kbl_ddi_translations_dp); return kbl_ddi_translations_dp; } } static const struct ddi_buf_trans * skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries) { if (dev_priv->vbt.edp.low_vswing) { if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp); return skl_y_ddi_translations_edp; } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv) || IS_CFL_ULT(dev_priv)) { *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp); return skl_u_ddi_translations_edp; } else { *n_entries = ARRAY_SIZE(skl_ddi_translations_edp); return skl_ddi_translations_edp; } } if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) return kbl_get_buf_trans_dp(dev_priv, n_entries); else return skl_get_buf_trans_dp(dev_priv, n_entries); } static const struct ddi_buf_trans * skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries) { if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) { *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi); return skl_y_ddi_translations_hdmi; } else { *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi); return skl_ddi_translations_hdmi; } } static int skl_buf_trans_num_entries(enum port port, int n_entries) { /* Only DDIA and DDIE can select the 10th register with DP */ if (port == PORT_A || port == PORT_E) return min(n_entries, 10); else return min(n_entries, 9); } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_dp(struct drm_i915_private *dev_priv, enum port port, int *n_entries) { if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) { const struct ddi_buf_trans *ddi_translations = kbl_get_buf_trans_dp(dev_priv, n_entries); *n_entries = skl_buf_trans_num_entries(port, *n_entries); return ddi_translations; } else if (IS_SKYLAKE(dev_priv)) { const struct ddi_buf_trans *ddi_translations = skl_get_buf_trans_dp(dev_priv, n_entries); *n_entries = skl_buf_trans_num_entries(port, *n_entries); return ddi_translations; } else if (IS_BROADWELL(dev_priv)) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_dp); return bdw_ddi_translations_dp; } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp); return hsw_ddi_translations_dp; } *n_entries = 0; return NULL; } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_edp(struct drm_i915_private *dev_priv, enum port port, int *n_entries) { if (IS_GEN9_BC(dev_priv)) { const struct ddi_buf_trans *ddi_translations = skl_get_buf_trans_edp(dev_priv, n_entries); *n_entries = skl_buf_trans_num_entries(port, *n_entries); return ddi_translations; } else if (IS_BROADWELL(dev_priv)) { return bdw_get_buf_trans_edp(dev_priv, n_entries); } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_dp); return hsw_ddi_translations_dp; } *n_entries = 0; return NULL; } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_fdi(struct drm_i915_private *dev_priv, int *n_entries) { if (IS_BROADWELL(dev_priv)) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_fdi); return bdw_ddi_translations_fdi; } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_fdi); return hsw_ddi_translations_fdi; } *n_entries = 0; return NULL; } static const struct ddi_buf_trans * intel_ddi_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries) { if (IS_GEN9_BC(dev_priv)) { return skl_get_buf_trans_hdmi(dev_priv, n_entries); } else if (IS_BROADWELL(dev_priv)) { *n_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi); return bdw_ddi_translations_hdmi; } else if (IS_HASWELL(dev_priv)) { *n_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi); return hsw_ddi_translations_hdmi; } *n_entries = 0; return NULL; } static const struct bxt_ddi_buf_trans * bxt_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries) { *n_entries = ARRAY_SIZE(bxt_ddi_translations_dp); return bxt_ddi_translations_dp; } static const struct bxt_ddi_buf_trans * bxt_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries) { if (dev_priv->vbt.edp.low_vswing) { *n_entries = ARRAY_SIZE(bxt_ddi_translations_edp); return bxt_ddi_translations_edp; } return bxt_get_buf_trans_dp(dev_priv, n_entries); } static const struct bxt_ddi_buf_trans * bxt_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries) { *n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi); return bxt_ddi_translations_hdmi; } static const struct cnl_ddi_buf_trans * cnl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries) { u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; if (voltage == VOLTAGE_INFO_0_85V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_85V); return cnl_ddi_translations_hdmi_0_85V; } else if (voltage == VOLTAGE_INFO_0_95V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_0_95V); return cnl_ddi_translations_hdmi_0_95V; } else if (voltage == VOLTAGE_INFO_1_05V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_hdmi_1_05V); return cnl_ddi_translations_hdmi_1_05V; } else { *n_entries = 1; /* shut up gcc */ MISSING_CASE(voltage); } return NULL; } static const struct cnl_ddi_buf_trans * cnl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries) { u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; if (voltage == VOLTAGE_INFO_0_85V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_85V); return cnl_ddi_translations_dp_0_85V; } else if (voltage == VOLTAGE_INFO_0_95V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_0_95V); return cnl_ddi_translations_dp_0_95V; } else if (voltage == VOLTAGE_INFO_1_05V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_dp_1_05V); return cnl_ddi_translations_dp_1_05V; } else { *n_entries = 1; /* shut up gcc */ MISSING_CASE(voltage); } return NULL; } static const struct cnl_ddi_buf_trans * cnl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries) { u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; if (dev_priv->vbt.edp.low_vswing) { if (voltage == VOLTAGE_INFO_0_85V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_85V); return cnl_ddi_translations_edp_0_85V; } else if (voltage == VOLTAGE_INFO_0_95V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_0_95V); return cnl_ddi_translations_edp_0_95V; } else if (voltage == VOLTAGE_INFO_1_05V) { *n_entries = ARRAY_SIZE(cnl_ddi_translations_edp_1_05V); return cnl_ddi_translations_edp_1_05V; } else { *n_entries = 1; /* shut up gcc */ MISSING_CASE(voltage); } return NULL; } else { return cnl_get_buf_trans_dp(dev_priv, n_entries); } } static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port) { int n_entries, level, default_entry; level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift; if (IS_CANNONLAKE(dev_priv)) { cnl_get_buf_trans_hdmi(dev_priv, &n_entries); default_entry = n_entries - 1; } else if (IS_GEN9_LP(dev_priv)) { bxt_get_buf_trans_hdmi(dev_priv, &n_entries); default_entry = n_entries - 1; } else if (IS_GEN9_BC(dev_priv)) { intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries); default_entry = 8; } else if (IS_BROADWELL(dev_priv)) { intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries); default_entry = 7; } else if (IS_HASWELL(dev_priv)) { intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries); default_entry = 6; } else { WARN(1, "ddi translation table missing\n"); return 0; } /* Choose a good default if VBT is badly populated */ if (level == HDMI_LEVEL_SHIFT_UNKNOWN || level >= n_entries) level = default_entry; if (WARN_ON_ONCE(n_entries == 0)) return 0; if (WARN_ON_ONCE(level >= n_entries)) level = n_entries - 1; return level; } /* * Starting with Haswell, DDI port buffers must be programmed with correct * values in advance. This function programs the correct values for * DP/eDP/FDI use cases. */ static void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 iboost_bit = 0; int i, n_entries; enum port port = encoder->port; const struct ddi_buf_trans *ddi_translations; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) ddi_translations = intel_ddi_get_buf_trans_fdi(dev_priv, &n_entries); else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries); else ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries); /* If we're boosting the current, set bit 31 of trans1 */ if (IS_GEN9_BC(dev_priv) && dev_priv->vbt.ddi_port_info[port].dp_boost_level) iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE; for (i = 0; i < n_entries; i++) { I915_WRITE(DDI_BUF_TRANS_LO(port, i), ddi_translations[i].trans1 | iboost_bit); I915_WRITE(DDI_BUF_TRANS_HI(port, i), ddi_translations[i].trans2); } } /* * Starting with Haswell, DDI port buffers must be programmed with correct * values in advance. This function programs the correct values for * HDMI/DVI use cases. */ static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder, int level) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 iboost_bit = 0; int n_entries; enum port port = encoder->port; const struct ddi_buf_trans *ddi_translations; ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries); if (WARN_ON_ONCE(!ddi_translations)) return; if (WARN_ON_ONCE(level >= n_entries)) level = n_entries - 1; /* If we're boosting the current, set bit 31 of trans1 */ if (IS_GEN9_BC(dev_priv) && dev_priv->vbt.ddi_port_info[port].hdmi_boost_level) iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE; /* Entry 9 is for HDMI: */ I915_WRITE(DDI_BUF_TRANS_LO(port, 9), ddi_translations[level].trans1 | iboost_bit); I915_WRITE(DDI_BUF_TRANS_HI(port, 9), ddi_translations[level].trans2); } static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv, enum port port) { i915_reg_t reg = DDI_BUF_CTL(port); int i; for (i = 0; i < 16; i++) { udelay(1); if (I915_READ(reg) & DDI_BUF_IS_IDLE) return; } DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port)); } static uint32_t hsw_pll_to_ddi_pll_sel(const struct intel_shared_dpll *pll) { switch (pll->info->id) { case DPLL_ID_WRPLL1: return PORT_CLK_SEL_WRPLL1; case DPLL_ID_WRPLL2: return PORT_CLK_SEL_WRPLL2; case DPLL_ID_SPLL: return PORT_CLK_SEL_SPLL; case DPLL_ID_LCPLL_810: return PORT_CLK_SEL_LCPLL_810; case DPLL_ID_LCPLL_1350: return PORT_CLK_SEL_LCPLL_1350; case DPLL_ID_LCPLL_2700: return PORT_CLK_SEL_LCPLL_2700; default: MISSING_CASE(pll->info->id); return PORT_CLK_SEL_NONE; } } /* Starting with Haswell, different DDI ports can work in FDI mode for * connection to the PCH-located connectors. For this, it is necessary to train * both the DDI port and PCH receiver for the desired DDI buffer settings. * * The recommended port to work in FDI mode is DDI E, which we use here. Also, * please note that when FDI mode is active on DDI E, it shares 2 lines with * DDI A (which is used for eDP) */ void hsw_fdi_link_train(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_encoder *encoder; u32 temp, i, rx_ctl_val, ddi_pll_sel; for_each_encoder_on_crtc(dev, &crtc->base, encoder) { WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG); intel_prepare_dp_ddi_buffers(encoder, crtc_state); } /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the * mode set "sequence for CRT port" document: * - TP1 to TP2 time with the default value * - FDI delay to 90h * * WaFDIAutoLinkSetTimingOverrride:hsw */ I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2) | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); /* Enable the PCH Receiver FDI PLL */ rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE | FDI_RX_PLL_ENABLE | FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes); I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); POSTING_READ(FDI_RX_CTL(PIPE_A)); udelay(220); /* Switch from Rawclk to PCDclk */ rx_ctl_val |= FDI_PCDCLK; I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); /* Configure Port Clock Select */ ddi_pll_sel = hsw_pll_to_ddi_pll_sel(crtc_state->shared_dpll); I915_WRITE(PORT_CLK_SEL(PORT_E), ddi_pll_sel); WARN_ON(ddi_pll_sel != PORT_CLK_SEL_SPLL); /* Start the training iterating through available voltages and emphasis, * testing each value twice. */ for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) { /* Configure DP_TP_CTL with auto-training */ I915_WRITE(DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_ENABLE); /* Configure and enable DDI_BUF_CTL for DDI E with next voltage. * DDI E does not support port reversal, the functionality is * achieved on the PCH side in FDI_RX_CTL, so no need to set the * port reversal bit */ I915_WRITE(DDI_BUF_CTL(PORT_E), DDI_BUF_CTL_ENABLE | ((crtc_state->fdi_lanes - 1) << 1) | DDI_BUF_TRANS_SELECT(i / 2)); POSTING_READ(DDI_BUF_CTL(PORT_E)); udelay(600); /* Program PCH FDI Receiver TU */ I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64)); /* Enable PCH FDI Receiver with auto-training */ rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO; I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); POSTING_READ(FDI_RX_CTL(PIPE_A)); /* Wait for FDI receiver lane calibration */ udelay(30); /* Unset FDI_RX_MISC pwrdn lanes */ temp = I915_READ(FDI_RX_MISC(PIPE_A)); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); I915_WRITE(FDI_RX_MISC(PIPE_A), temp); POSTING_READ(FDI_RX_MISC(PIPE_A)); /* Wait for FDI auto training time */ udelay(5); temp = I915_READ(DP_TP_STATUS(PORT_E)); if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) { DRM_DEBUG_KMS("FDI link training done on step %d\n", i); break; } /* * Leave things enabled even if we failed to train FDI. * Results in less fireworks from the state checker. */ if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) { DRM_ERROR("FDI link training failed!\n"); break; } rx_ctl_val &= ~FDI_RX_ENABLE; I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val); POSTING_READ(FDI_RX_CTL(PIPE_A)); temp = I915_READ(DDI_BUF_CTL(PORT_E)); temp &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(PORT_E), temp); POSTING_READ(DDI_BUF_CTL(PORT_E)); /* Disable DP_TP_CTL and FDI_RX_CTL and retry */ temp = I915_READ(DP_TP_CTL(PORT_E)); temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); temp |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(PORT_E), temp); POSTING_READ(DP_TP_CTL(PORT_E)); intel_wait_ddi_buf_idle(dev_priv, PORT_E); /* Reset FDI_RX_MISC pwrdn lanes */ temp = I915_READ(FDI_RX_MISC(PIPE_A)); temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); I915_WRITE(FDI_RX_MISC(PIPE_A), temp); POSTING_READ(FDI_RX_MISC(PIPE_A)); } /* Enable normal pixel sending for FDI */ I915_WRITE(DP_TP_CTL(PORT_E), DP_TP_CTL_FDI_AUTOTRAIN | DP_TP_CTL_LINK_TRAIN_NORMAL | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_ENABLE); } static void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base); intel_dp->DP = intel_dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0); intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count); } static struct intel_encoder * intel_ddi_get_crtc_encoder(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder, *ret = NULL; int num_encoders = 0; for_each_encoder_on_crtc(dev, &crtc->base, encoder) { ret = encoder; num_encoders++; } if (num_encoders != 1) WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders, pipe_name(crtc->pipe)); BUG_ON(ret == NULL); return ret; } /* Finds the only possible encoder associated with the given CRTC. */ struct intel_encoder * intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_encoder *ret = NULL; struct drm_atomic_state *state; struct drm_connector *connector; struct drm_connector_state *connector_state; int num_encoders = 0; int i; state = crtc_state->base.state; for_each_new_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc_state->base.crtc) continue; ret = to_intel_encoder(connector_state->best_encoder); num_encoders++; } WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders, pipe_name(crtc->pipe)); BUG_ON(ret == NULL); return ret; } #define LC_FREQ 2700 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, i915_reg_t reg) { int refclk = LC_FREQ; int n, p, r; u32 wrpll; wrpll = I915_READ(reg); switch (wrpll & WRPLL_PLL_REF_MASK) { case WRPLL_PLL_SSC: case WRPLL_PLL_NON_SSC: /* * We could calculate spread here, but our checking * code only cares about 5% accuracy, and spread is a max of * 0.5% downspread. */ refclk = 135; break; case WRPLL_PLL_LCPLL: refclk = LC_FREQ; break; default: WARN(1, "bad wrpll refclk\n"); return 0; } r = wrpll & WRPLL_DIVIDER_REF_MASK; p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; /* Convert to KHz, p & r have a fixed point portion */ return (refclk * n * 100) / (p * r); } static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv, enum intel_dpll_id pll_id) { i915_reg_t cfgcr1_reg, cfgcr2_reg; uint32_t cfgcr1_val, cfgcr2_val; uint32_t p0, p1, p2, dco_freq; cfgcr1_reg = DPLL_CFGCR1(pll_id); cfgcr2_reg = DPLL_CFGCR2(pll_id); cfgcr1_val = I915_READ(cfgcr1_reg); cfgcr2_val = I915_READ(cfgcr2_reg); p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK; p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK; if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1)) p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8; else p1 = 1; switch (p0) { case DPLL_CFGCR2_PDIV_1: p0 = 1; break; case DPLL_CFGCR2_PDIV_2: p0 = 2; break; case DPLL_CFGCR2_PDIV_3: p0 = 3; break; case DPLL_CFGCR2_PDIV_7: p0 = 7; break; } switch (p2) { case DPLL_CFGCR2_KDIV_5: p2 = 5; break; case DPLL_CFGCR2_KDIV_2: p2 = 2; break; case DPLL_CFGCR2_KDIV_3: p2 = 3; break; case DPLL_CFGCR2_KDIV_1: p2 = 1; break; } dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000; dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 * 1000) / 0x8000; return dco_freq / (p0 * p1 * p2 * 5); } static int cnl_calc_wrpll_link(struct drm_i915_private *dev_priv, enum intel_dpll_id pll_id) { uint32_t cfgcr0, cfgcr1; uint32_t p0, p1, p2, dco_freq, ref_clock; cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id)); cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(pll_id)); p0 = cfgcr1 & DPLL_CFGCR1_PDIV_MASK; p2 = cfgcr1 & DPLL_CFGCR1_KDIV_MASK; if (cfgcr1 & DPLL_CFGCR1_QDIV_MODE(1)) p1 = (cfgcr1 & DPLL_CFGCR1_QDIV_RATIO_MASK) >> DPLL_CFGCR1_QDIV_RATIO_SHIFT; else p1 = 1; switch (p0) { case DPLL_CFGCR1_PDIV_2: p0 = 2; break; case DPLL_CFGCR1_PDIV_3: p0 = 3; break; case DPLL_CFGCR1_PDIV_5: p0 = 5; break; case DPLL_CFGCR1_PDIV_7: p0 = 7; break; } switch (p2) { case DPLL_CFGCR1_KDIV_1: p2 = 1; break; case DPLL_CFGCR1_KDIV_2: p2 = 2; break; case DPLL_CFGCR1_KDIV_4: p2 = 4; break; } ref_clock = dev_priv->cdclk.hw.ref; dco_freq = (cfgcr0 & DPLL_CFGCR0_DCO_INTEGER_MASK) * ref_clock; dco_freq += (((cfgcr0 & DPLL_CFGCR0_DCO_FRACTION_MASK) >> DPLL_CFGCR0_DCO_FRACTION_SHIFT) * ref_clock) / 0x8000; if (WARN_ON(p0 == 0 || p1 == 0 || p2 == 0)) return 0; return dco_freq / (p0 * p1 * p2 * 5); } static void ddi_dotclock_get(struct intel_crtc_state *pipe_config) { int dotclock; if (pipe_config->has_pch_encoder) dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->fdi_m_n); else if (intel_crtc_has_dp_encoder(pipe_config)) dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36) dotclock = pipe_config->port_clock * 2 / 3; else dotclock = pipe_config->port_clock; if (pipe_config->ycbcr420) dotclock *= 2; if (pipe_config->pixel_multiplier) dotclock /= pipe_config->pixel_multiplier; pipe_config->base.adjusted_mode.crtc_clock = dotclock; } static void cnl_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int link_clock = 0; uint32_t cfgcr0; enum intel_dpll_id pll_id; pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll); cfgcr0 = I915_READ(CNL_DPLL_CFGCR0(pll_id)); if (cfgcr0 & DPLL_CFGCR0_HDMI_MODE) { link_clock = cnl_calc_wrpll_link(dev_priv, pll_id); } else { link_clock = cfgcr0 & DPLL_CFGCR0_LINK_RATE_MASK; switch (link_clock) { case DPLL_CFGCR0_LINK_RATE_810: link_clock = 81000; break; case DPLL_CFGCR0_LINK_RATE_1080: link_clock = 108000; break; case DPLL_CFGCR0_LINK_RATE_1350: link_clock = 135000; break; case DPLL_CFGCR0_LINK_RATE_1620: link_clock = 162000; break; case DPLL_CFGCR0_LINK_RATE_2160: link_clock = 216000; break; case DPLL_CFGCR0_LINK_RATE_2700: link_clock = 270000; break; case DPLL_CFGCR0_LINK_RATE_3240: link_clock = 324000; break; case DPLL_CFGCR0_LINK_RATE_4050: link_clock = 405000; break; default: WARN(1, "Unsupported link rate\n"); break; } link_clock *= 2; } pipe_config->port_clock = link_clock; ddi_dotclock_get(pipe_config); } static void skl_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int link_clock = 0; uint32_t dpll_ctl1; enum intel_dpll_id pll_id; pll_id = intel_get_shared_dpll_id(dev_priv, pipe_config->shared_dpll); dpll_ctl1 = I915_READ(DPLL_CTRL1); if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(pll_id)) { link_clock = skl_calc_wrpll_link(dev_priv, pll_id); } else { link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(pll_id); link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(pll_id); switch (link_clock) { case DPLL_CTRL1_LINK_RATE_810: link_clock = 81000; break; case DPLL_CTRL1_LINK_RATE_1080: link_clock = 108000; break; case DPLL_CTRL1_LINK_RATE_1350: link_clock = 135000; break; case DPLL_CTRL1_LINK_RATE_1620: link_clock = 162000; break; case DPLL_CTRL1_LINK_RATE_2160: link_clock = 216000; break; case DPLL_CTRL1_LINK_RATE_2700: link_clock = 270000; break; default: WARN(1, "Unsupported link rate\n"); break; } link_clock *= 2; } pipe_config->port_clock = link_clock; ddi_dotclock_get(pipe_config); } static void hsw_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int link_clock = 0; u32 val, pll; val = hsw_pll_to_ddi_pll_sel(pipe_config->shared_dpll); switch (val & PORT_CLK_SEL_MASK) { case PORT_CLK_SEL_LCPLL_810: link_clock = 81000; break; case PORT_CLK_SEL_LCPLL_1350: link_clock = 135000; break; case PORT_CLK_SEL_LCPLL_2700: link_clock = 270000; break; case PORT_CLK_SEL_WRPLL1: link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0)); break; case PORT_CLK_SEL_WRPLL2: link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1)); break; case PORT_CLK_SEL_SPLL: pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK; if (pll == SPLL_PLL_FREQ_810MHz) link_clock = 81000; else if (pll == SPLL_PLL_FREQ_1350MHz) link_clock = 135000; else if (pll == SPLL_PLL_FREQ_2700MHz) link_clock = 270000; else { WARN(1, "bad spll freq\n"); return; } break; default: WARN(1, "bad port clock sel\n"); return; } pipe_config->port_clock = link_clock * 2; ddi_dotclock_get(pipe_config); } static int bxt_calc_pll_link(struct intel_crtc_state *crtc_state) { struct intel_dpll_hw_state *state; struct dpll clock; /* For DDI ports we always use a shared PLL. */ if (WARN_ON(!crtc_state->shared_dpll)) return 0; state = &crtc_state->dpll_hw_state; clock.m1 = 2; clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22; if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE) clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK; clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT; clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT; clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT; return chv_calc_dpll_params(100000, &clock); } static void bxt_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { pipe_config->port_clock = bxt_calc_pll_link(pipe_config); ddi_dotclock_get(pipe_config); } static void intel_ddi_clock_get(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (INTEL_GEN(dev_priv) <= 8) hsw_ddi_clock_get(encoder, pipe_config); else if (IS_GEN9_BC(dev_priv)) skl_ddi_clock_get(encoder, pipe_config); else if (IS_GEN9_LP(dev_priv)) bxt_ddi_clock_get(encoder, pipe_config); else if (IS_CANNONLAKE(dev_priv)) cnl_ddi_clock_get(encoder, pipe_config); } void intel_ddi_set_pipe_settings(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 temp; if (!intel_crtc_has_dp_encoder(crtc_state)) return; WARN_ON(transcoder_is_dsi(cpu_transcoder)); temp = TRANS_MSA_SYNC_CLK; switch (crtc_state->pipe_bpp) { case 18: temp |= TRANS_MSA_6_BPC; break; case 24: temp |= TRANS_MSA_8_BPC; break; case 30: temp |= TRANS_MSA_10_BPC; break; case 36: temp |= TRANS_MSA_12_BPC; break; default: MISSING_CASE(crtc_state->pipe_bpp); break; } I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp); } void intel_ddi_set_vc_payload_alloc(const struct intel_crtc_state *crtc_state, bool state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; uint32_t temp; temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (state == true) temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC; else temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC; I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); } void intel_ddi_enable_transcoder_func(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; enum port port = encoder->port; uint32_t temp; /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */ temp = TRANS_DDI_FUNC_ENABLE; temp |= TRANS_DDI_SELECT_PORT(port); switch (crtc_state->pipe_bpp) { case 18: temp |= TRANS_DDI_BPC_6; break; case 24: temp |= TRANS_DDI_BPC_8; break; case 30: temp |= TRANS_DDI_BPC_10; break; case 36: temp |= TRANS_DDI_BPC_12; break; default: BUG(); } if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DDI_PVSYNC; if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DDI_PHSYNC; if (cpu_transcoder == TRANSCODER_EDP) { switch (pipe) { case PIPE_A: /* On Haswell, can only use the always-on power well for * eDP when not using the panel fitter, and when not * using motion blur mitigation (which we don't * support). */ if (IS_HASWELL(dev_priv) && (crtc_state->pch_pfit.enabled || crtc_state->pch_pfit.force_thru)) temp |= TRANS_DDI_EDP_INPUT_A_ONOFF; else temp |= TRANS_DDI_EDP_INPUT_A_ON; break; case PIPE_B: temp |= TRANS_DDI_EDP_INPUT_B_ONOFF; break; case PIPE_C: temp |= TRANS_DDI_EDP_INPUT_C_ONOFF; break; default: BUG(); break; } } if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { if (crtc_state->has_hdmi_sink) temp |= TRANS_DDI_MODE_SELECT_HDMI; else temp |= TRANS_DDI_MODE_SELECT_DVI; if (crtc_state->hdmi_scrambling) temp |= TRANS_DDI_HDMI_SCRAMBLING_MASK; if (crtc_state->hdmi_high_tmds_clock_ratio) temp |= TRANS_DDI_HIGH_TMDS_CHAR_RATE; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { temp |= TRANS_DDI_MODE_SELECT_FDI; temp |= (crtc_state->fdi_lanes - 1) << 1; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) { temp |= TRANS_DDI_MODE_SELECT_DP_MST; temp |= DDI_PORT_WIDTH(crtc_state->lane_count); } else { temp |= TRANS_DDI_MODE_SELECT_DP_SST; temp |= DDI_PORT_WIDTH(crtc_state->lane_count); } I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp); } void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); uint32_t val = I915_READ(reg); val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC); val |= TRANS_DDI_PORT_NONE; I915_WRITE(reg, val); } int intel_ddi_toggle_hdcp_signalling(struct intel_encoder *intel_encoder, bool enable) { struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = 0; int ret = 0; uint32_t tmp; if (WARN_ON(!intel_display_power_get_if_enabled(dev_priv, intel_encoder->power_domain))) return -ENXIO; if (WARN_ON(!intel_encoder->get_hw_state(intel_encoder, &pipe))) { ret = -EIO; goto out; } tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe)); if (enable) tmp |= TRANS_DDI_HDCP_SIGNALLING; else tmp &= ~TRANS_DDI_HDCP_SIGNALLING; I915_WRITE(TRANS_DDI_FUNC_CTL(pipe), tmp); out: intel_display_power_put(dev_priv, intel_encoder->power_domain); return ret; } bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector) { struct drm_device *dev = intel_connector->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_encoder *encoder = intel_connector->encoder; int type = intel_connector->base.connector_type; enum port port = encoder->port; enum pipe pipe = 0; enum transcoder cpu_transcoder; uint32_t tmp; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, encoder->power_domain)) return false; if (!encoder->get_hw_state(encoder, &pipe)) { ret = false; goto out; } if (port == PORT_A) cpu_transcoder = TRANSCODER_EDP; else cpu_transcoder = (enum transcoder) pipe; tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); switch (tmp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: case TRANS_DDI_MODE_SELECT_DVI: ret = type == DRM_MODE_CONNECTOR_HDMIA; break; case TRANS_DDI_MODE_SELECT_DP_SST: ret = type == DRM_MODE_CONNECTOR_eDP || type == DRM_MODE_CONNECTOR_DisplayPort; break; case TRANS_DDI_MODE_SELECT_DP_MST: /* if the transcoder is in MST state then * connector isn't connected */ ret = false; break; case TRANS_DDI_MODE_SELECT_FDI: ret = type == DRM_MODE_CONNECTOR_VGA; break; default: ret = false; break; } out: intel_display_power_put(dev_priv, encoder->power_domain); return ret; } bool intel_ddi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = encoder->port; enum pipe p; u32 tmp; bool ret; if (!intel_display_power_get_if_enabled(dev_priv, encoder->power_domain)) return false; ret = false; tmp = I915_READ(DDI_BUF_CTL(port)); if (!(tmp & DDI_BUF_CTL_ENABLE)) goto out; if (port == PORT_A) { tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { case TRANS_DDI_EDP_INPUT_A_ON: case TRANS_DDI_EDP_INPUT_A_ONOFF: *pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: *pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: *pipe = PIPE_C; break; } ret = true; goto out; } for_each_pipe(dev_priv, p) { enum transcoder cpu_transcoder = (enum transcoder) p; tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) { if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST) goto out; *pipe = p; ret = true; goto out; } } DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port)); out: if (ret && IS_GEN9_LP(dev_priv)) { tmp = I915_READ(BXT_PHY_CTL(port)); if ((tmp & (BXT_PHY_CMNLANE_POWERDOWN_ACK | BXT_PHY_LANE_POWERDOWN_ACK | BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED) DRM_ERROR("Port %c enabled but PHY powered down? " "(PHY_CTL %08x)\n", port_name(port), tmp); } intel_display_power_put(dev_priv, encoder->power_domain); return ret; } static u64 intel_ddi_get_power_domains(struct intel_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); enum pipe pipe; if (intel_ddi_get_hw_state(encoder, &pipe)) return BIT_ULL(dig_port->ddi_io_power_domain); return 0; } void intel_ddi_enable_pipe_clock(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_encoder *encoder = intel_ddi_get_crtc_encoder(crtc); enum port port = encoder->port; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_PORT(port)); } void intel_ddi_disable_pipe_clock(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (cpu_transcoder != TRANSCODER_EDP) I915_WRITE(TRANS_CLK_SEL(cpu_transcoder), TRANS_CLK_SEL_DISABLED); } static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv, enum port port, uint8_t iboost) { u32 tmp; tmp = I915_READ(DISPIO_CR_TX_BMU_CR0); tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port)); if (iboost) tmp |= iboost << BALANCE_LEG_SHIFT(port); else tmp |= BALANCE_LEG_DISABLE(port); I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp); } static void skl_ddi_set_iboost(struct intel_encoder *encoder, int level, enum intel_output_type type) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; uint8_t iboost; if (type == INTEL_OUTPUT_HDMI) iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level; else iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level; if (iboost == 0) { const struct ddi_buf_trans *ddi_translations; int n_entries; if (type == INTEL_OUTPUT_HDMI) ddi_translations = intel_ddi_get_buf_trans_hdmi(dev_priv, &n_entries); else if (type == INTEL_OUTPUT_EDP) ddi_translations = intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries); else ddi_translations = intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries); if (WARN_ON_ONCE(!ddi_translations)) return; if (WARN_ON_ONCE(level >= n_entries)) level = n_entries - 1; iboost = ddi_translations[level].i_boost; } /* Make sure that the requested I_boost is valid */ if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) { DRM_ERROR("Invalid I_boost value %u\n", iboost); return; } _skl_ddi_set_iboost(dev_priv, port, iboost); if (port == PORT_A && intel_dig_port->max_lanes == 4) _skl_ddi_set_iboost(dev_priv, PORT_E, iboost); } static void bxt_ddi_vswing_sequence(struct intel_encoder *encoder, int level, enum intel_output_type type) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct bxt_ddi_buf_trans *ddi_translations; enum port port = encoder->port; int n_entries; if (type == INTEL_OUTPUT_HDMI) ddi_translations = bxt_get_buf_trans_hdmi(dev_priv, &n_entries); else if (type == INTEL_OUTPUT_EDP) ddi_translations = bxt_get_buf_trans_edp(dev_priv, &n_entries); else ddi_translations = bxt_get_buf_trans_dp(dev_priv, &n_entries); if (WARN_ON_ONCE(!ddi_translations)) return; if (WARN_ON_ONCE(level >= n_entries)) level = n_entries - 1; bxt_ddi_phy_set_signal_level(dev_priv, port, ddi_translations[level].margin, ddi_translations[level].scale, ddi_translations[level].enable, ddi_translations[level].deemphasis); } u8 intel_ddi_dp_voltage_max(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; int n_entries; if (IS_CANNONLAKE(dev_priv)) { if (encoder->type == INTEL_OUTPUT_EDP) cnl_get_buf_trans_edp(dev_priv, &n_entries); else cnl_get_buf_trans_dp(dev_priv, &n_entries); } else if (IS_GEN9_LP(dev_priv)) { if (encoder->type == INTEL_OUTPUT_EDP) bxt_get_buf_trans_edp(dev_priv, &n_entries); else bxt_get_buf_trans_dp(dev_priv, &n_entries); } else { if (encoder->type == INTEL_OUTPUT_EDP) intel_ddi_get_buf_trans_edp(dev_priv, port, &n_entries); else intel_ddi_get_buf_trans_dp(dev_priv, port, &n_entries); } if (WARN_ON(n_entries < 1)) n_entries = 1; if (WARN_ON(n_entries > ARRAY_SIZE(index_to_dp_signal_levels))) n_entries = ARRAY_SIZE(index_to_dp_signal_levels); return index_to_dp_signal_levels[n_entries - 1] & DP_TRAIN_VOLTAGE_SWING_MASK; } static void cnl_ddi_vswing_program(struct intel_encoder *encoder, int level, enum intel_output_type type) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct cnl_ddi_buf_trans *ddi_translations; enum port port = encoder->port; int n_entries, ln; u32 val; if (type == INTEL_OUTPUT_HDMI) ddi_translations = cnl_get_buf_trans_hdmi(dev_priv, &n_entries); else if (type == INTEL_OUTPUT_EDP) ddi_translations = cnl_get_buf_trans_edp(dev_priv, &n_entries); else ddi_translations = cnl_get_buf_trans_dp(dev_priv, &n_entries); if (WARN_ON_ONCE(!ddi_translations)) return; if (WARN_ON_ONCE(level >= n_entries)) level = n_entries - 1; /* Set PORT_TX_DW5 Scaling Mode Sel to 010b. */ val = I915_READ(CNL_PORT_TX_DW5_LN0(port)); val &= ~SCALING_MODE_SEL_MASK; val |= SCALING_MODE_SEL(2); I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val); /* Program PORT_TX_DW2 */ val = I915_READ(CNL_PORT_TX_DW2_LN0(port)); val &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK | RCOMP_SCALAR_MASK); val |= SWING_SEL_UPPER(ddi_translations[level].dw2_swing_sel); val |= SWING_SEL_LOWER(ddi_translations[level].dw2_swing_sel); /* Rcomp scalar is fixed as 0x98 for every table entry */ val |= RCOMP_SCALAR(0x98); I915_WRITE(CNL_PORT_TX_DW2_GRP(port), val); /* Program PORT_TX_DW4 */ /* We cannot write to GRP. It would overrite individual loadgen */ for (ln = 0; ln < 4; ln++) { val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln)); val &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK | CURSOR_COEFF_MASK); val |= POST_CURSOR_1(ddi_translations[level].dw4_post_cursor_1); val |= POST_CURSOR_2(ddi_translations[level].dw4_post_cursor_2); val |= CURSOR_COEFF(ddi_translations[level].dw4_cursor_coeff); I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val); } /* Program PORT_TX_DW5 */ /* All DW5 values are fixed for every table entry */ val = I915_READ(CNL_PORT_TX_DW5_LN0(port)); val &= ~RTERM_SELECT_MASK; val |= RTERM_SELECT(6); val |= TAP3_DISABLE; I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val); /* Program PORT_TX_DW7 */ val = I915_READ(CNL_PORT_TX_DW7_LN0(port)); val &= ~N_SCALAR_MASK; val |= N_SCALAR(ddi_translations[level].dw7_n_scalar); I915_WRITE(CNL_PORT_TX_DW7_GRP(port), val); } static void cnl_ddi_vswing_sequence(struct intel_encoder *encoder, int level, enum intel_output_type type) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; int width, rate, ln; u32 val; if (type == INTEL_OUTPUT_HDMI) { width = 4; rate = 0; /* Rate is always < than 6GHz for HDMI */ } else { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); width = intel_dp->lane_count; rate = intel_dp->link_rate; } /* * 1. If port type is eDP or DP, * set PORT_PCS_DW1 cmnkeeper_enable to 1b, * else clear to 0b. */ val = I915_READ(CNL_PORT_PCS_DW1_LN0(port)); if (type != INTEL_OUTPUT_HDMI) val |= COMMON_KEEPER_EN; else val &= ~COMMON_KEEPER_EN; I915_WRITE(CNL_PORT_PCS_DW1_GRP(port), val); /* 2. Program loadgen select */ /* * Program PORT_TX_DW4_LN depending on Bit rate and used lanes * <= 6 GHz and 4 lanes (LN0=0, LN1=1, LN2=1, LN3=1) * <= 6 GHz and 1,2 lanes (LN0=0, LN1=1, LN2=1, LN3=0) * > 6 GHz (LN0=0, LN1=0, LN2=0, LN3=0) */ for (ln = 0; ln <= 3; ln++) { val = I915_READ(CNL_PORT_TX_DW4_LN(port, ln)); val &= ~LOADGEN_SELECT; if ((rate <= 600000 && width == 4 && ln >= 1) || (rate <= 600000 && width < 4 && (ln == 1 || ln == 2))) { val |= LOADGEN_SELECT; } I915_WRITE(CNL_PORT_TX_DW4_LN(port, ln), val); } /* 3. Set PORT_CL_DW5 SUS Clock Config to 11b */ val = I915_READ(CNL_PORT_CL1CM_DW5); val |= SUS_CLOCK_CONFIG; I915_WRITE(CNL_PORT_CL1CM_DW5, val); /* 4. Clear training enable to change swing values */ val = I915_READ(CNL_PORT_TX_DW5_LN0(port)); val &= ~TX_TRAINING_EN; I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val); /* 5. Program swing and de-emphasis */ cnl_ddi_vswing_program(encoder, level, type); /* 6. Set training enable to trigger update */ val = I915_READ(CNL_PORT_TX_DW5_LN0(port)); val |= TX_TRAINING_EN; I915_WRITE(CNL_PORT_TX_DW5_GRP(port), val); } static uint32_t translate_signal_level(int signal_levels) { int i; for (i = 0; i < ARRAY_SIZE(index_to_dp_signal_levels); i++) { if (index_to_dp_signal_levels[i] == signal_levels) return i; } WARN(1, "Unsupported voltage swing/pre-emphasis level: 0x%x\n", signal_levels); return 0; } static uint32_t intel_ddi_dp_level(struct intel_dp *intel_dp) { uint8_t train_set = intel_dp->train_set[0]; int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); return translate_signal_level(signal_levels); } u32 bxt_signal_levels(struct intel_dp *intel_dp) { struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev); struct intel_encoder *encoder = &dport->base; int level = intel_ddi_dp_level(intel_dp); if (IS_CANNONLAKE(dev_priv)) cnl_ddi_vswing_sequence(encoder, level, encoder->type); else bxt_ddi_vswing_sequence(encoder, level, encoder->type); return 0; } uint32_t ddi_signal_levels(struct intel_dp *intel_dp) { struct intel_digital_port *dport = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev); struct intel_encoder *encoder = &dport->base; int level = intel_ddi_dp_level(intel_dp); if (IS_GEN9_BC(dev_priv)) skl_ddi_set_iboost(encoder, level, encoder->type); return DDI_BUF_TRANS_SELECT(level); } static void intel_ddi_clk_select(struct intel_encoder *encoder, const struct intel_shared_dpll *pll) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; uint32_t val; if (WARN_ON(!pll)) return; mutex_lock(&dev_priv->dpll_lock); if (IS_CANNONLAKE(dev_priv)) { /* Configure DPCLKA_CFGCR0 to map the DPLL to the DDI. */ val = I915_READ(DPCLKA_CFGCR0); val &= ~DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port); val |= DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, port); I915_WRITE(DPCLKA_CFGCR0, val); /* * Configure DPCLKA_CFGCR0 to turn on the clock for the DDI. * This step and the step before must be done with separate * register writes. */ val = I915_READ(DPCLKA_CFGCR0); val &= ~DPCLKA_CFGCR0_DDI_CLK_OFF(port); I915_WRITE(DPCLKA_CFGCR0, val); } else if (IS_GEN9_BC(dev_priv)) { /* DDI -> PLL mapping */ val = I915_READ(DPLL_CTRL2); val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) | DPLL_CTRL2_DDI_CLK_SEL_MASK(port)); val |= (DPLL_CTRL2_DDI_CLK_SEL(pll->info->id, port) | DPLL_CTRL2_DDI_SEL_OVERRIDE(port)); I915_WRITE(DPLL_CTRL2, val); } else if (INTEL_GEN(dev_priv) < 9) { I915_WRITE(PORT_CLK_SEL(port), hsw_pll_to_ddi_pll_sel(pll)); } mutex_unlock(&dev_priv->dpll_lock); } static void intel_ddi_clk_disable(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; if (IS_CANNONLAKE(dev_priv)) I915_WRITE(DPCLKA_CFGCR0, I915_READ(DPCLKA_CFGCR0) | DPCLKA_CFGCR0_DDI_CLK_OFF(port)); else if (IS_GEN9_BC(dev_priv)) I915_WRITE(DPLL_CTRL2, I915_READ(DPLL_CTRL2) | DPLL_CTRL2_DDI_CLK_OFF(port)); else if (INTEL_GEN(dev_priv) < 9) I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE); } static void intel_ddi_pre_enable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); bool is_mst = intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST); int level = intel_ddi_dp_level(intel_dp); WARN_ON(is_mst && (port == PORT_A || port == PORT_E)); intel_dp_set_link_params(intel_dp, crtc_state->port_clock, crtc_state->lane_count, is_mst); intel_edp_panel_on(intel_dp); intel_ddi_clk_select(encoder, crtc_state->shared_dpll); intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain); if (IS_CANNONLAKE(dev_priv)) cnl_ddi_vswing_sequence(encoder, level, encoder->type); else if (IS_GEN9_LP(dev_priv)) bxt_ddi_vswing_sequence(encoder, level, encoder->type); else intel_prepare_dp_ddi_buffers(encoder, crtc_state); intel_ddi_init_dp_buf_reg(encoder); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); intel_dp_start_link_train(intel_dp); if (port != PORT_A || INTEL_GEN(dev_priv) >= 9) intel_dp_stop_link_train(intel_dp); } static void intel_ddi_pre_enable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base); struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; int level = intel_ddi_hdmi_level(dev_priv, port); struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); intel_ddi_clk_select(encoder, crtc_state->shared_dpll); intel_display_power_get(dev_priv, dig_port->ddi_io_power_domain); if (IS_CANNONLAKE(dev_priv)) cnl_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI); else if (IS_GEN9_LP(dev_priv)) bxt_ddi_vswing_sequence(encoder, level, INTEL_OUTPUT_HDMI); else intel_prepare_hdmi_ddi_buffers(encoder, level); if (IS_GEN9_BC(dev_priv)) skl_ddi_set_iboost(encoder, level, INTEL_OUTPUT_HDMI); intel_dig_port->set_infoframes(&encoder->base, crtc_state->has_infoframe, crtc_state, conn_state); } static void intel_ddi_pre_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* * When called from DP MST code: * - conn_state will be NULL * - encoder will be the main encoder (ie. mst->primary) * - the main connector associated with this port * won't be active or linked to a crtc * - crtc_state will be the state of the first stream to * be activated on this port, and it may not be the same * stream that will be deactivated last, but each stream * should have a state that is identical when it comes to * the DP link parameteres */ WARN_ON(crtc_state->has_pch_encoder); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) intel_ddi_pre_enable_hdmi(encoder, crtc_state, conn_state); else intel_ddi_pre_enable_dp(encoder, crtc_state, conn_state); } static void intel_disable_ddi_buf(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; bool wait = false; u32 val; val = I915_READ(DDI_BUF_CTL(port)); if (val & DDI_BUF_CTL_ENABLE) { val &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), val); wait = true; } val = I915_READ(DP_TP_CTL(port)); val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); val |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(port), val); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); } static void intel_ddi_post_disable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); struct intel_dp *intel_dp = &dig_port->dp; /* * Power down sink before disabling the port, otherwise we end * up getting interrupts from the sink on detecting link loss. */ intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); intel_disable_ddi_buf(encoder); intel_edp_panel_vdd_on(intel_dp); intel_edp_panel_off(intel_dp); intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain); intel_ddi_clk_disable(encoder); } static void intel_ddi_post_disable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); struct intel_hdmi *intel_hdmi = &dig_port->hdmi; intel_disable_ddi_buf(encoder); dig_port->set_infoframes(&encoder->base, false, old_crtc_state, old_conn_state); intel_display_power_put(dev_priv, dig_port->ddi_io_power_domain); intel_ddi_clk_disable(encoder); intel_dp_dual_mode_set_tmds_output(intel_hdmi, false); } static void intel_ddi_post_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { /* * When called from DP MST code: * - old_conn_state will be NULL * - encoder will be the main encoder (ie. mst->primary) * - the main connector associated with this port * won't be active or linked to a crtc * - old_crtc_state will be the state of the last stream to * be deactivated on this port, and it may not be the same * stream that was activated last, but each stream * should have a state that is identical when it comes to * the DP link parameteres */ if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI)) intel_ddi_post_disable_hdmi(encoder, old_crtc_state, old_conn_state); else intel_ddi_post_disable_dp(encoder, old_crtc_state, old_conn_state); } void intel_ddi_fdi_post_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); uint32_t val; /* * Bspec lists this as both step 13 (before DDI_BUF_CTL disable) * and step 18 (after clearing PORT_CLK_SEL). Based on a BUN, * step 13 is the correct place for it. Step 18 is where it was * originally before the BUN. */ val = I915_READ(FDI_RX_CTL(PIPE_A)); val &= ~FDI_RX_ENABLE; I915_WRITE(FDI_RX_CTL(PIPE_A), val); intel_disable_ddi_buf(encoder); intel_ddi_clk_disable(encoder); val = I915_READ(FDI_RX_MISC(PIPE_A)); val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK); val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2); I915_WRITE(FDI_RX_MISC(PIPE_A), val); val = I915_READ(FDI_RX_CTL(PIPE_A)); val &= ~FDI_PCDCLK; I915_WRITE(FDI_RX_CTL(PIPE_A), val); val = I915_READ(FDI_RX_CTL(PIPE_A)); val &= ~FDI_RX_PLL_ENABLE; I915_WRITE(FDI_RX_CTL(PIPE_A), val); } static void intel_enable_ddi_dp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = encoder->port; if (port == PORT_A && INTEL_GEN(dev_priv) < 9) intel_dp_stop_link_train(intel_dp); intel_edp_backlight_on(crtc_state, conn_state); intel_psr_enable(intel_dp, crtc_state); intel_edp_drrs_enable(intel_dp, crtc_state); if (crtc_state->has_audio) intel_audio_codec_enable(encoder, crtc_state, conn_state); } static void intel_enable_ddi_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base); struct drm_connector *connector = conn_state->connector; enum port port = encoder->port; if (!intel_hdmi_handle_sink_scrambling(encoder, connector, crtc_state->hdmi_high_tmds_clock_ratio, crtc_state->hdmi_scrambling)) DRM_ERROR("[CONNECTOR:%d:%s] Failed to configure sink scrambling/TMDS bit clock ratio\n", connector->base.id, connector->name); /* Display WA #1143: skl,kbl,cfl */ if (IS_GEN9_BC(dev_priv)) { /* * For some reason these chicken bits have been * stuffed into a transcoder register, event though * the bits affect a specific DDI port rather than * a specific transcoder. */ static const enum transcoder port_to_transcoder[] = { [PORT_A] = TRANSCODER_EDP, [PORT_B] = TRANSCODER_A, [PORT_C] = TRANSCODER_B, [PORT_D] = TRANSCODER_C, [PORT_E] = TRANSCODER_A, }; enum transcoder transcoder = port_to_transcoder[port]; u32 val; val = I915_READ(CHICKEN_TRANS(transcoder)); if (port == PORT_E) val |= DDIE_TRAINING_OVERRIDE_ENABLE | DDIE_TRAINING_OVERRIDE_VALUE; else val |= DDI_TRAINING_OVERRIDE_ENABLE | DDI_TRAINING_OVERRIDE_VALUE; I915_WRITE(CHICKEN_TRANS(transcoder), val); POSTING_READ(CHICKEN_TRANS(transcoder)); udelay(1); if (port == PORT_E) val &= ~(DDIE_TRAINING_OVERRIDE_ENABLE | DDIE_TRAINING_OVERRIDE_VALUE); else val &= ~(DDI_TRAINING_OVERRIDE_ENABLE | DDI_TRAINING_OVERRIDE_VALUE); I915_WRITE(CHICKEN_TRANS(transcoder), val); } /* In HDMI/DVI mode, the port width, and swing/emphasis values * are ignored so nothing special needs to be done besides * enabling the port. */ I915_WRITE(DDI_BUF_CTL(port), dig_port->saved_port_bits | DDI_BUF_CTL_ENABLE); if (crtc_state->has_audio) intel_audio_codec_enable(encoder, crtc_state, conn_state); } static void intel_enable_ddi(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) intel_enable_ddi_hdmi(encoder, crtc_state, conn_state); else intel_enable_ddi_dp(encoder, crtc_state, conn_state); /* Enable hdcp if it's desired */ if (conn_state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED) intel_hdcp_enable(to_intel_connector(conn_state->connector)); } static void intel_disable_ddi_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); intel_dp->link_trained = false; if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); intel_edp_drrs_disable(intel_dp, old_crtc_state); intel_psr_disable(intel_dp, old_crtc_state); intel_edp_backlight_off(old_conn_state); } static void intel_disable_ddi_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_connector *connector = old_conn_state->connector; if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); if (!intel_hdmi_handle_sink_scrambling(encoder, connector, false, false)) DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Failed to reset sink scrambling/TMDS bit clock ratio\n", connector->base.id, connector->name); } static void intel_disable_ddi(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_hdcp_disable(to_intel_connector(old_conn_state->connector)); if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_HDMI)) intel_disable_ddi_hdmi(encoder, old_crtc_state, old_conn_state); else intel_disable_ddi_dp(encoder, old_crtc_state, old_conn_state); } static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { uint8_t mask = pipe_config->lane_lat_optim_mask; bxt_ddi_phy_set_lane_optim_mask(encoder, mask); } void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); enum port port = intel_dig_port->base.port; uint32_t val; bool wait = false; if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) { val = I915_READ(DDI_BUF_CTL(port)); if (val & DDI_BUF_CTL_ENABLE) { val &= ~DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), val); wait = true; } val = I915_READ(DP_TP_CTL(port)); val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK); val |= DP_TP_CTL_LINK_TRAIN_PAT1; I915_WRITE(DP_TP_CTL(port), val); POSTING_READ(DP_TP_CTL(port)); if (wait) intel_wait_ddi_buf_idle(dev_priv, port); } val = DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE; if (intel_dp->link_mst) val |= DP_TP_CTL_MODE_MST; else { val |= DP_TP_CTL_MODE_SST; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE; } I915_WRITE(DP_TP_CTL(port), val); POSTING_READ(DP_TP_CTL(port)); intel_dp->DP |= DDI_BUF_CTL_ENABLE; I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP); POSTING_READ(DDI_BUF_CTL(port)); udelay(600); } static bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { if (cpu_transcoder == TRANSCODER_EDP) return false; if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) return false; return I915_READ(HSW_AUD_PIN_ELD_CP_VLD) & AUDIO_OUTPUT_ENABLE(cpu_transcoder); } void intel_ddi_compute_min_voltage_level(struct drm_i915_private *dev_priv, struct intel_crtc_state *crtc_state) { if (IS_CANNONLAKE(dev_priv) && crtc_state->port_clock > 594000) crtc_state->min_voltage_level = 2; } void intel_ddi_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; struct intel_digital_port *intel_dig_port; u32 temp, flags = 0; /* XXX: DSI transcoder paranoia */ if (WARN_ON(transcoder_is_dsi(cpu_transcoder))) return; temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (temp & TRANS_DDI_PHSYNC) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (temp & TRANS_DDI_PVSYNC) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; pipe_config->base.adjusted_mode.flags |= flags; switch (temp & TRANS_DDI_BPC_MASK) { case TRANS_DDI_BPC_6: pipe_config->pipe_bpp = 18; break; case TRANS_DDI_BPC_8: pipe_config->pipe_bpp = 24; break; case TRANS_DDI_BPC_10: pipe_config->pipe_bpp = 30; break; case TRANS_DDI_BPC_12: pipe_config->pipe_bpp = 36; break; default: break; } switch (temp & TRANS_DDI_MODE_SELECT_MASK) { case TRANS_DDI_MODE_SELECT_HDMI: pipe_config->has_hdmi_sink = true; intel_dig_port = enc_to_dig_port(&encoder->base); if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config)) pipe_config->has_infoframe = true; if ((temp & TRANS_DDI_HDMI_SCRAMBLING_MASK) == TRANS_DDI_HDMI_SCRAMBLING_MASK) pipe_config->hdmi_scrambling = true; if (temp & TRANS_DDI_HIGH_TMDS_CHAR_RATE) pipe_config->hdmi_high_tmds_clock_ratio = true; /* fall through */ case TRANS_DDI_MODE_SELECT_DVI: pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI); pipe_config->lane_count = 4; break; case TRANS_DDI_MODE_SELECT_FDI: pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG); break; case TRANS_DDI_MODE_SELECT_DP_SST: if (encoder->type == INTEL_OUTPUT_EDP) pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); else pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); pipe_config->lane_count = ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1; intel_dp_get_m_n(intel_crtc, pipe_config); break; case TRANS_DDI_MODE_SELECT_DP_MST: pipe_config->output_types |= BIT(INTEL_OUTPUT_DP_MST); pipe_config->lane_count = ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1; intel_dp_get_m_n(intel_crtc, pipe_config); break; default: break; } pipe_config->has_audio = intel_ddi_is_audio_enabled(dev_priv, cpu_transcoder); if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; } intel_ddi_clock_get(encoder, pipe_config); if (IS_GEN9_LP(dev_priv)) pipe_config->lane_lat_optim_mask = bxt_ddi_phy_get_lane_lat_optim_mask(encoder); intel_ddi_compute_min_voltage_level(dev_priv, pipe_config); } static enum intel_output_type intel_ddi_compute_output_type(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { switch (conn_state->connector->connector_type) { case DRM_MODE_CONNECTOR_HDMIA: return INTEL_OUTPUT_HDMI; case DRM_MODE_CONNECTOR_eDP: return INTEL_OUTPUT_EDP; case DRM_MODE_CONNECTOR_DisplayPort: return INTEL_OUTPUT_DP; default: MISSING_CASE(conn_state->connector->connector_type); return INTEL_OUTPUT_UNUSED; } } static bool intel_ddi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; int ret; if (port == PORT_A) pipe_config->cpu_transcoder = TRANSCODER_EDP; if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI)) ret = intel_hdmi_compute_config(encoder, pipe_config, conn_state); else ret = intel_dp_compute_config(encoder, pipe_config, conn_state); if (IS_GEN9_LP(dev_priv) && ret) pipe_config->lane_lat_optim_mask = bxt_ddi_phy_calc_lane_lat_optim_mask(pipe_config->lane_count); intel_ddi_compute_min_voltage_level(dev_priv, pipe_config); return ret; } static const struct drm_encoder_funcs intel_ddi_funcs = { .reset = intel_dp_encoder_reset, .destroy = intel_dp_encoder_destroy, }; static struct intel_connector * intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port) { struct intel_connector *connector; enum port port = intel_dig_port->base.port; connector = intel_connector_alloc(); if (!connector) return NULL; intel_dig_port->dp.output_reg = DDI_BUF_CTL(port); if (!intel_dp_init_connector(intel_dig_port, connector)) { kfree(connector); return NULL; } return connector; } static int modeset_pipe(struct drm_crtc *crtc, struct drm_modeset_acquire_ctx *ctx) { struct drm_atomic_state *state; struct drm_crtc_state *crtc_state; int ret; state = drm_atomic_state_alloc(crtc->dev); if (!state) return -ENOMEM; state->acquire_ctx = ctx; crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto out; } crtc_state->mode_changed = true; ret = drm_atomic_add_affected_connectors(state, crtc); if (ret) goto out; ret = drm_atomic_add_affected_planes(state, crtc); if (ret) goto out; ret = drm_atomic_commit(state); if (ret) goto out; return 0; out: drm_atomic_state_put(state); return ret; } static int intel_hdmi_reset_link(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_hdmi *hdmi = enc_to_intel_hdmi(&encoder->base); struct intel_connector *connector = hdmi->attached_connector; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); struct drm_connector_state *conn_state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; u8 config; int ret; if (!connector || connector->base.status != connector_status_connected) return 0; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; conn_state = connector->base.state; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) return 0; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) return ret; crtc_state = to_intel_crtc_state(crtc->base.state); WARN_ON(!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)); if (!crtc_state->base.active) return 0; if (!crtc_state->hdmi_high_tmds_clock_ratio && !crtc_state->hdmi_scrambling) return 0; if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) return 0; ret = drm_scdc_readb(adapter, SCDC_TMDS_CONFIG, &config); if (ret < 0) { DRM_ERROR("Failed to read TMDS config: %d\n", ret); return 0; } if (!!(config & SCDC_TMDS_BIT_CLOCK_RATIO_BY_40) == crtc_state->hdmi_high_tmds_clock_ratio && !!(config & SCDC_SCRAMBLING_ENABLE) == crtc_state->hdmi_scrambling) return 0; /* * HDMI 2.0 says that one should not send scrambled data * prior to configuring the sink scrambling, and that * TMDS clock/data transmission should be suspended when * changing the TMDS clock rate in the sink. So let's * just do a full modeset here, even though some sinks * would be perfectly happy if were to just reconfigure * the SCDC settings on the fly. */ return modeset_pipe(&crtc->base, ctx); } static bool intel_ddi_hotplug(struct intel_encoder *encoder, struct intel_connector *connector) { struct drm_modeset_acquire_ctx ctx; bool changed; int ret; changed = intel_encoder_hotplug(encoder, connector); drm_modeset_acquire_init(&ctx, 0); for (;;) { if (connector->base.connector_type == DRM_MODE_CONNECTOR_HDMIA) ret = intel_hdmi_reset_link(encoder, &ctx); else ret = intel_dp_retrain_link(encoder, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); continue; } break; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); WARN(ret, "Acquiring modeset locks failed with %i\n", ret); return changed; } static struct intel_connector * intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port) { struct intel_connector *connector; enum port port = intel_dig_port->base.port; connector = intel_connector_alloc(); if (!connector) return NULL; intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port); intel_hdmi_init_connector(intel_dig_port, connector); return connector; } static bool intel_ddi_a_force_4_lanes(struct intel_digital_port *dport) { struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev); if (dport->base.port != PORT_A) return false; if (dport->saved_port_bits & DDI_A_4_LANES) return false; /* Broxton/Geminilake: Bspec says that DDI_A_4_LANES is the only * supported configuration */ if (IS_GEN9_LP(dev_priv)) return true; /* Cannonlake: Most of SKUs don't support DDI_E, and the only * one who does also have a full A/E split called * DDI_F what makes DDI_E useless. However for this * case let's trust VBT info. */ if (IS_CANNONLAKE(dev_priv) && !intel_bios_is_port_present(dev_priv, PORT_E)) return true; return false; } static int intel_ddi_max_lanes(struct intel_digital_port *intel_dport) { struct drm_i915_private *dev_priv = to_i915(intel_dport->base.base.dev); enum port port = intel_dport->base.port; int max_lanes = 4; if (INTEL_GEN(dev_priv) >= 11) return max_lanes; if (port == PORT_A || port == PORT_E) { if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) max_lanes = port == PORT_A ? 4 : 0; else /* Both A and E share 2 lanes */ max_lanes = 2; } /* * Some BIOS might fail to set this bit on port A if eDP * wasn't lit up at boot. Force this bit set when needed * so we use the proper lane count for our calculations. */ if (intel_ddi_a_force_4_lanes(intel_dport)) { DRM_DEBUG_KMS("Forcing DDI_A_4_LANES for port A\n"); intel_dport->saved_port_bits |= DDI_A_4_LANES; max_lanes = 4; } return max_lanes; } void intel_ddi_init(struct drm_i915_private *dev_priv, enum port port) { struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; bool init_hdmi, init_dp, init_lspcon = false; init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi || dev_priv->vbt.ddi_port_info[port].supports_hdmi); init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp; if (intel_bios_is_lspcon_present(dev_priv, port)) { /* * Lspcon device needs to be driven with DP connector * with special detection sequence. So make sure DP * is initialized before lspcon. */ init_dp = true; init_lspcon = true; init_hdmi = false; DRM_DEBUG_KMS("VBT says port %c has lspcon\n", port_name(port)); } if (!init_dp && !init_hdmi) { DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n", port_name(port)); return; } intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return; intel_encoder = &intel_dig_port->base; encoder = &intel_encoder->base; drm_encoder_init(&dev_priv->drm, encoder, &intel_ddi_funcs, DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port)); intel_encoder->hotplug = intel_ddi_hotplug; intel_encoder->compute_output_type = intel_ddi_compute_output_type; intel_encoder->compute_config = intel_ddi_compute_config; intel_encoder->enable = intel_enable_ddi; if (IS_GEN9_LP(dev_priv)) intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable; intel_encoder->pre_enable = intel_ddi_pre_enable; intel_encoder->disable = intel_disable_ddi; intel_encoder->post_disable = intel_ddi_post_disable; intel_encoder->get_hw_state = intel_ddi_get_hw_state; intel_encoder->get_config = intel_ddi_get_config; intel_encoder->suspend = intel_dp_encoder_suspend; intel_encoder->get_power_domains = intel_ddi_get_power_domains; intel_encoder->type = INTEL_OUTPUT_DDI; intel_encoder->power_domain = intel_port_to_power_domain(port); intel_encoder->port = port; intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); intel_encoder->cloneable = 0; if (INTEL_GEN(dev_priv) >= 11) intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) & DDI_BUF_PORT_REVERSAL; else intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) & (DDI_BUF_PORT_REVERSAL | DDI_A_4_LANES); intel_dig_port->dp.output_reg = INVALID_MMIO_REG; intel_dig_port->max_lanes = intel_ddi_max_lanes(intel_dig_port); switch (port) { case PORT_A: intel_dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_A_IO; break; case PORT_B: intel_dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_B_IO; break; case PORT_C: intel_dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_C_IO; break; case PORT_D: intel_dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_D_IO; break; case PORT_E: intel_dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_E_IO; break; case PORT_F: intel_dig_port->ddi_io_power_domain = POWER_DOMAIN_PORT_DDI_F_IO; break; default: MISSING_CASE(port); } intel_infoframe_init(intel_dig_port); if (init_dp) { if (!intel_ddi_init_dp_connector(intel_dig_port)) goto err; intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; dev_priv->hotplug.irq_port[port] = intel_dig_port; } /* In theory we don't need the encoder->type check, but leave it just in * case we have some really bad VBTs... */ if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) { if (!intel_ddi_init_hdmi_connector(intel_dig_port)) goto err; } if (init_lspcon) { if (lspcon_init(intel_dig_port)) /* TODO: handle hdmi info frame part */ DRM_DEBUG_KMS("LSPCON init success on port %c\n", port_name(port)); else /* * LSPCON init faied, but DP init was success, so * lets try to drive as DP++ port. */ DRM_ERROR("LSPCON init failed on port %c\n", port_name(port)); } return; err: drm_encoder_cleanup(encoder); kfree(intel_dig_port); }