/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*- */ /* * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" static const u32 hpd_ibx[] = { [HPD_CRT] = SDE_CRT_HOTPLUG, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG, [HPD_PORT_B] = SDE_PORTB_HOTPLUG, [HPD_PORT_C] = SDE_PORTC_HOTPLUG, [HPD_PORT_D] = SDE_PORTD_HOTPLUG }; static const u32 hpd_cpt[] = { [HPD_CRT] = SDE_CRT_HOTPLUG_CPT, [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT, [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT, [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT, [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT }; static const u32 hpd_mask_i915[] = { [HPD_CRT] = CRT_HOTPLUG_INT_EN, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN, [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN, [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN, [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN }; static const u32 hpd_status_gen4[] = { [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */ [HPD_CRT] = CRT_HOTPLUG_INT_STATUS, [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915, [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915, [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS, [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS, [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS }; /* For display hotplug interrupt */ static void ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask) { assert_spin_locked(&dev_priv->irq_lock); if (dev_priv->pc8.irqs_disabled) { WARN(1, "IRQs disabled\n"); dev_priv->pc8.regsave.deimr &= ~mask; return; } if ((dev_priv->irq_mask & mask) != 0) { dev_priv->irq_mask &= ~mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } static void ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask) { assert_spin_locked(&dev_priv->irq_lock); if (dev_priv->pc8.irqs_disabled) { WARN(1, "IRQs disabled\n"); dev_priv->pc8.regsave.deimr |= mask; return; } if ((dev_priv->irq_mask & mask) != mask) { dev_priv->irq_mask |= mask; I915_WRITE(DEIMR, dev_priv->irq_mask); POSTING_READ(DEIMR); } } /** * ilk_update_gt_irq - update GTIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void ilk_update_gt_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { assert_spin_locked(&dev_priv->irq_lock); if (dev_priv->pc8.irqs_disabled) { WARN(1, "IRQs disabled\n"); dev_priv->pc8.regsave.gtimr &= ~interrupt_mask; dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask & interrupt_mask); return; } dev_priv->gt_irq_mask &= ~interrupt_mask; dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); POSTING_READ(GTIMR); } void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) { ilk_update_gt_irq(dev_priv, mask, mask); } void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask) { ilk_update_gt_irq(dev_priv, mask, 0); } /** * snb_update_pm_irq - update GEN6_PMIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void snb_update_pm_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t new_val; assert_spin_locked(&dev_priv->irq_lock); if (dev_priv->pc8.irqs_disabled) { WARN(1, "IRQs disabled\n"); dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask; dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask & interrupt_mask); return; } new_val = dev_priv->pm_irq_mask; new_val &= ~interrupt_mask; new_val |= (~enabled_irq_mask & interrupt_mask); if (new_val != dev_priv->pm_irq_mask) { dev_priv->pm_irq_mask = new_val; I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask); POSTING_READ(GEN6_PMIMR); } } void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) { snb_update_pm_irq(dev_priv, mask, mask); } void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask) { snb_update_pm_irq(dev_priv, mask, 0); } static bool ivb_can_enable_err_int(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc; enum pipe pipe; assert_spin_locked(&dev_priv->irq_lock); for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); if (crtc->cpu_fifo_underrun_disabled) return false; } return true; } static bool cpt_can_enable_serr_int(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; struct intel_crtc *crtc; assert_spin_locked(&dev_priv->irq_lock); for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); if (crtc->pch_fifo_underrun_disabled) return false; } return true; } static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev, enum pipe pipe, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN : DE_PIPEB_FIFO_UNDERRUN; if (enable) ironlake_enable_display_irq(dev_priv, bit); else ironlake_disable_display_irq(dev_priv, bit); } static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev, enum pipe pipe, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; if (enable) { I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe)); if (!ivb_can_enable_err_int(dev)) return; ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB); } else { bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB); /* Change the state _after_ we've read out the current one. */ ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB); if (!was_enabled && (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) { DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n", pipe_name(pipe)); } } } static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev, enum pipe pipe, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; assert_spin_locked(&dev_priv->irq_lock); if (enable) dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN; else dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN; I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); } /** * ibx_display_interrupt_update - update SDEIMR * @dev_priv: driver private * @interrupt_mask: mask of interrupt bits to update * @enabled_irq_mask: mask of interrupt bits to enable */ static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask) { uint32_t sdeimr = I915_READ(SDEIMR); sdeimr &= ~interrupt_mask; sdeimr |= (~enabled_irq_mask & interrupt_mask); assert_spin_locked(&dev_priv->irq_lock); if (dev_priv->pc8.irqs_disabled && (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) { WARN(1, "IRQs disabled\n"); dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask; dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask & interrupt_mask); return; } I915_WRITE(SDEIMR, sdeimr); POSTING_READ(SDEIMR); } #define ibx_enable_display_interrupt(dev_priv, bits) \ ibx_display_interrupt_update((dev_priv), (bits), (bits)) #define ibx_disable_display_interrupt(dev_priv, bits) \ ibx_display_interrupt_update((dev_priv), (bits), 0) static void ibx_set_fifo_underrun_reporting(struct drm_device *dev, enum transcoder pch_transcoder, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t bit = (pch_transcoder == TRANSCODER_A) ? SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER; if (enable) ibx_enable_display_interrupt(dev_priv, bit); else ibx_disable_display_interrupt(dev_priv, bit); } static void cpt_set_fifo_underrun_reporting(struct drm_device *dev, enum transcoder pch_transcoder, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; if (enable) { I915_WRITE(SERR_INT, SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)); if (!cpt_can_enable_serr_int(dev)) return; ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT); } else { uint32_t tmp = I915_READ(SERR_INT); bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT); /* Change the state _after_ we've read out the current one. */ ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT); if (!was_enabled && (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) { DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n", transcoder_name(pch_transcoder)); } } } /** * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages * @dev: drm device * @pipe: pipe * @enable: true if we want to report FIFO underrun errors, false otherwise * * This function makes us disable or enable CPU fifo underruns for a specific * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun * reporting for one pipe may also disable all the other CPU error interruts for * the other pipes, due to the fact that there's just one interrupt mask/enable * bit for all the pipes. * * Returns the previous state of underrun reporting. */ bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev, enum pipe pipe, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); unsigned long flags; bool ret; spin_lock_irqsave(&dev_priv->irq_lock, flags); ret = !intel_crtc->cpu_fifo_underrun_disabled; if (enable == ret) goto done; intel_crtc->cpu_fifo_underrun_disabled = !enable; if (IS_GEN5(dev) || IS_GEN6(dev)) ironlake_set_fifo_underrun_reporting(dev, pipe, enable); else if (IS_GEN7(dev)) ivybridge_set_fifo_underrun_reporting(dev, pipe, enable); else if (IS_GEN8(dev)) broadwell_set_fifo_underrun_reporting(dev, pipe, enable); done: spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return ret; } /** * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages * @dev: drm device * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older) * @enable: true if we want to report FIFO underrun errors, false otherwise * * This function makes us disable or enable PCH fifo underruns for a specific * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO * underrun reporting for one transcoder may also disable all the other PCH * error interruts for the other transcoders, due to the fact that there's just * one interrupt mask/enable bit for all the transcoders. * * Returns the previous state of underrun reporting. */ bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev, enum transcoder pch_transcoder, bool enable) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); unsigned long flags; bool ret; /* * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT * has only one pch transcoder A that all pipes can use. To avoid racy * pch transcoder -> pipe lookups from interrupt code simply store the * underrun statistics in crtc A. Since we never expose this anywhere * nor use it outside of the fifo underrun code here using the "wrong" * crtc on LPT won't cause issues. */ spin_lock_irqsave(&dev_priv->irq_lock, flags); ret = !intel_crtc->pch_fifo_underrun_disabled; if (enable == ret) goto done; intel_crtc->pch_fifo_underrun_disabled = !enable; if (HAS_PCH_IBX(dev)) ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable); else cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable); done: spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return ret; } void i915_enable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask) { u32 reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & 0x7fff0000; assert_spin_locked(&dev_priv->irq_lock); if ((pipestat & mask) == mask) return; /* Enable the interrupt, clear any pending status */ pipestat |= mask | (mask >> 16); I915_WRITE(reg, pipestat); POSTING_READ(reg); } void i915_disable_pipestat(drm_i915_private_t *dev_priv, enum pipe pipe, u32 mask) { u32 reg = PIPESTAT(pipe); u32 pipestat = I915_READ(reg) & 0x7fff0000; assert_spin_locked(&dev_priv->irq_lock); if ((pipestat & mask) == 0) return; pipestat &= ~mask; I915_WRITE(reg, pipestat); POSTING_READ(reg); } /** * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion */ static void i915_enable_asle_pipestat(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; unsigned long irqflags; if (!dev_priv->opregion.asle || !IS_MOBILE(dev)) return; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_ENABLE); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, PIPE_A, PIPE_LEGACY_BLC_EVENT_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } /** * i915_pipe_enabled - check if a pipe is enabled * @dev: DRM device * @pipe: pipe to check * * Reading certain registers when the pipe is disabled can hang the chip. * Use this routine to make sure the PLL is running and the pipe is active * before reading such registers if unsure. */ static int i915_pipe_enabled(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (drm_core_check_feature(dev, DRIVER_MODESET)) { /* Locking is horribly broken here, but whatever. */ struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); return intel_crtc->active; } else { return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE; } } static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe) { /* Gen2 doesn't have a hardware frame counter */ return 0; } /* Called from drm generic code, passed a 'crtc', which * we use as a pipe index */ static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long high_frame; unsigned long low_frame; u32 high1, high2, low, pixel, vbl_start; if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG_DRIVER("trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } if (drm_core_check_feature(dev, DRIVER_MODESET)) { struct intel_crtc *intel_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode; vbl_start = mode->crtc_vblank_start * mode->crtc_htotal; } else { enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); u32 htotal; htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1; vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1; vbl_start *= htotal; } high_frame = PIPEFRAME(pipe); low_frame = PIPEFRAMEPIXEL(pipe); /* * High & low register fields aren't synchronized, so make sure * we get a low value that's stable across two reads of the high * register. */ do { high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; low = I915_READ(low_frame); high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK; } while (high1 != high2); high1 >>= PIPE_FRAME_HIGH_SHIFT; pixel = low & PIPE_PIXEL_MASK; low >>= PIPE_FRAME_LOW_SHIFT; /* * The frame counter increments at beginning of active. * Cook up a vblank counter by also checking the pixel * counter against vblank start. */ return ((high1 << 8) | low) + (pixel >= vbl_start); } static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int reg = PIPE_FRMCOUNT_GM45(pipe); if (!i915_pipe_enabled(dev, pipe)) { DRM_DEBUG_DRIVER("trying to get vblank count for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } return I915_READ(reg); } static bool intel_pipe_in_vblank(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t status; if (IS_VALLEYVIEW(dev)) { status = pipe == PIPE_A ? I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT : I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; return I915_READ(VLV_ISR) & status; } else if (IS_GEN2(dev)) { status = pipe == PIPE_A ? I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT : I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; return I915_READ16(ISR) & status; } else if (INTEL_INFO(dev)->gen < 5) { status = pipe == PIPE_A ? I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT : I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; return I915_READ(ISR) & status; } else if (INTEL_INFO(dev)->gen < 7) { status = pipe == PIPE_A ? DE_PIPEA_VBLANK : DE_PIPEB_VBLANK; return I915_READ(DEISR) & status; } else { switch (pipe) { default: case PIPE_A: status = DE_PIPEA_VBLANK_IVB; break; case PIPE_B: status = DE_PIPEB_VBLANK_IVB; break; case PIPE_C: status = DE_PIPEC_VBLANK_IVB; break; } return I915_READ(DEISR) & status; } } static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe, int *vpos, int *hpos) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode; int position; int vbl_start, vbl_end, htotal, vtotal; bool in_vbl = true; int ret = 0; if (!intel_crtc->active) { DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled " "pipe %c\n", pipe_name(pipe)); return 0; } htotal = mode->crtc_htotal; vtotal = mode->crtc_vtotal; vbl_start = mode->crtc_vblank_start; vbl_end = mode->crtc_vblank_end; ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE; if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { /* No obvious pixelcount register. Only query vertical * scanout position from Display scan line register. */ if (IS_GEN2(dev)) position = I915_READ(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2; else position = I915_READ(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3; /* * The scanline counter increments at the leading edge * of hsync, ie. it completely misses the active portion * of the line. Fix up the counter at both edges of vblank * to get a more accurate picture whether we're in vblank * or not. */ in_vbl = intel_pipe_in_vblank(dev, pipe); if ((in_vbl && position == vbl_start - 1) || (!in_vbl && position == vbl_end - 1)) position = (position + 1) % vtotal; } else { /* Have access to pixelcount since start of frame. * We can split this into vertical and horizontal * scanout position. */ position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; /* convert to pixel counts */ vbl_start *= htotal; vbl_end *= htotal; vtotal *= htotal; } in_vbl = position >= vbl_start && position < vbl_end; /* * While in vblank, position will be negative * counting up towards 0 at vbl_end. And outside * vblank, position will be positive counting * up since vbl_end. */ if (position >= vbl_start) position -= vbl_end; else position += vtotal - vbl_end; if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { *vpos = position; *hpos = 0; } else { *vpos = position / htotal; *hpos = position - (*vpos * htotal); } /* In vblank? */ if (in_vbl) ret |= DRM_SCANOUTPOS_INVBL; return ret; } static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe, int *max_error, struct timeval *vblank_time, unsigned flags) { struct drm_crtc *crtc; if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } /* Get drm_crtc to timestamp: */ crtc = intel_get_crtc_for_pipe(dev, pipe); if (crtc == NULL) { DRM_ERROR("Invalid crtc %d\n", pipe); return -EINVAL; } if (!crtc->enabled) { DRM_DEBUG_KMS("crtc %d is disabled\n", pipe); return -EBUSY; } /* Helper routine in DRM core does all the work: */ return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error, vblank_time, flags, crtc); } static bool intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector) { enum drm_connector_status old_status; WARN_ON(!mutex_is_locked(&dev->mode_config.mutex)); old_status = connector->status; connector->status = connector->funcs->detect(connector, false); if (old_status == connector->status) return false; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n", connector->base.id, drm_get_connector_name(connector), drm_get_connector_status_name(old_status), drm_get_connector_status_name(connector->status)); return true; } /* * Handle hotplug events outside the interrupt handler proper. */ #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000) static void i915_hotplug_work_func(struct work_struct *work) { drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, hotplug_work); struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_connector *intel_connector; struct intel_encoder *intel_encoder; struct drm_connector *connector; unsigned long irqflags; bool hpd_disabled = false; bool changed = false; u32 hpd_event_bits; /* HPD irq before everything is fully set up. */ if (!dev_priv->enable_hotplug_processing) return; mutex_lock(&mode_config->mutex); DRM_DEBUG_KMS("running encoder hotplug functions\n"); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); hpd_event_bits = dev_priv->hpd_event_bits; dev_priv->hpd_event_bits = 0; list_for_each_entry(connector, &mode_config->connector_list, head) { intel_connector = to_intel_connector(connector); intel_encoder = intel_connector->encoder; if (intel_encoder->hpd_pin > HPD_NONE && dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED && connector->polled == DRM_CONNECTOR_POLL_HPD) { DRM_INFO("HPD interrupt storm detected on connector %s: " "switching from hotplug detection to polling\n", drm_get_connector_name(connector)); dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED; connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; hpd_disabled = true; } if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n", drm_get_connector_name(connector), intel_encoder->hpd_pin); } } /* if there were no outputs to poll, poll was disabled, * therefore make sure it's enabled when disabling HPD on * some connectors */ if (hpd_disabled) { drm_kms_helper_poll_enable(dev); mod_timer(&dev_priv->hotplug_reenable_timer, jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY)); } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); list_for_each_entry(connector, &mode_config->connector_list, head) { intel_connector = to_intel_connector(connector); intel_encoder = intel_connector->encoder; if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) { if (intel_encoder->hot_plug) intel_encoder->hot_plug(intel_encoder); if (intel_hpd_irq_event(dev, connector)) changed = true; } } mutex_unlock(&mode_config->mutex); if (changed) drm_kms_helper_hotplug_event(dev); } static void ironlake_rps_change_irq_handler(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u32 busy_up, busy_down, max_avg, min_avg; u8 new_delay; spin_lock(&mchdev_lock); I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS)); new_delay = dev_priv->ips.cur_delay; I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = I915_READ(RCPREVBSYTUPAVG); busy_down = I915_READ(RCPREVBSYTDNAVG); max_avg = I915_READ(RCBMAXAVG); min_avg = I915_READ(RCBMINAVG); /* Handle RCS change request from hw */ if (busy_up > max_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay) new_delay = dev_priv->ips.cur_delay - 1; if (new_delay < dev_priv->ips.max_delay) new_delay = dev_priv->ips.max_delay; } else if (busy_down < min_avg) { if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay) new_delay = dev_priv->ips.cur_delay + 1; if (new_delay > dev_priv->ips.min_delay) new_delay = dev_priv->ips.min_delay; } if (ironlake_set_drps(dev, new_delay)) dev_priv->ips.cur_delay = new_delay; spin_unlock(&mchdev_lock); return; } static void notify_ring(struct drm_device *dev, struct intel_ring_buffer *ring) { if (ring->obj == NULL) return; trace_i915_gem_request_complete(ring); wake_up_all(&ring->irq_queue); i915_queue_hangcheck(dev); } static void gen6_pm_rps_work(struct work_struct *work) { drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, rps.work); u32 pm_iir; int new_delay, adj; spin_lock_irq(&dev_priv->irq_lock); pm_iir = dev_priv->rps.pm_iir; dev_priv->rps.pm_iir = 0; /* Make sure not to corrupt PMIMR state used by ringbuffer code */ snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS); spin_unlock_irq(&dev_priv->irq_lock); /* Make sure we didn't queue anything we're not going to process. */ WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS); if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0) return; mutex_lock(&dev_priv->rps.hw_lock); adj = dev_priv->rps.last_adj; if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (adj > 0) adj *= 2; else adj = 1; new_delay = dev_priv->rps.cur_delay + adj; /* * For better performance, jump directly * to RPe if we're below it. */ if (new_delay < dev_priv->rps.rpe_delay) new_delay = dev_priv->rps.rpe_delay; } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay) new_delay = dev_priv->rps.rpe_delay; else new_delay = dev_priv->rps.min_delay; adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { if (adj < 0) adj *= 2; else adj = -1; new_delay = dev_priv->rps.cur_delay + adj; } else { /* unknown event */ new_delay = dev_priv->rps.cur_delay; } /* sysfs frequency interfaces may have snuck in while servicing the * interrupt */ if (new_delay < (int)dev_priv->rps.min_delay) new_delay = dev_priv->rps.min_delay; if (new_delay > (int)dev_priv->rps.max_delay) new_delay = dev_priv->rps.max_delay; dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_delay; if (IS_VALLEYVIEW(dev_priv->dev)) valleyview_set_rps(dev_priv->dev, new_delay); else gen6_set_rps(dev_priv->dev, new_delay); mutex_unlock(&dev_priv->rps.hw_lock); } /** * ivybridge_parity_work - Workqueue called when a parity error interrupt * occurred. * @work: workqueue struct * * Doesn't actually do anything except notify userspace. As a consequence of * this event, userspace should try to remap the bad rows since statistically * it is likely the same row is more likely to go bad again. */ static void ivybridge_parity_work(struct work_struct *work) { drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t, l3_parity.error_work); u32 error_status, row, bank, subbank; char *parity_event[6]; uint32_t misccpctl; unsigned long flags; uint8_t slice = 0; /* We must turn off DOP level clock gating to access the L3 registers. * In order to prevent a get/put style interface, acquire struct mutex * any time we access those registers. */ mutex_lock(&dev_priv->dev->struct_mutex); /* If we've screwed up tracking, just let the interrupt fire again */ if (WARN_ON(!dev_priv->l3_parity.which_slice)) goto out; misccpctl = I915_READ(GEN7_MISCCPCTL); I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); POSTING_READ(GEN7_MISCCPCTL); while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) { u32 reg; slice--; if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev))) break; dev_priv->l3_parity.which_slice &= ~(1<dev->primary->kdev.kobj, KOBJ_CHANGE, parity_event); DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n", slice, row, bank, subbank); kfree(parity_event[4]); kfree(parity_event[3]); kfree(parity_event[2]); kfree(parity_event[1]); } I915_WRITE(GEN7_MISCCPCTL, misccpctl); out: WARN_ON(dev_priv->l3_parity.which_slice); spin_lock_irqsave(&dev_priv->irq_lock, flags); ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev)); spin_unlock_irqrestore(&dev_priv->irq_lock, flags); mutex_unlock(&dev_priv->dev->struct_mutex); } static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (!HAS_L3_DPF(dev)) return; spin_lock(&dev_priv->irq_lock); ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev)); spin_unlock(&dev_priv->irq_lock); iir &= GT_PARITY_ERROR(dev); if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1) dev_priv->l3_parity.which_slice |= 1 << 1; if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT) dev_priv->l3_parity.which_slice |= 1 << 0; queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work); } static void ilk_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) notify_ring(dev, &dev_priv->ring[RCS]); if (gt_iir & ILK_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); } static void snb_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 gt_iir) { if (gt_iir & (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT)) notify_ring(dev, &dev_priv->ring[RCS]); if (gt_iir & GT_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); if (gt_iir & GT_BLT_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[BCS]); if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT | GT_BSD_CS_ERROR_INTERRUPT | GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) { DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir); i915_handle_error(dev, false); } if (gt_iir & GT_PARITY_ERROR(dev)) ivybridge_parity_error_irq_handler(dev, gt_iir); } static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev, struct drm_i915_private *dev_priv, u32 master_ctl) { u32 rcs, bcs, vcs; uint32_t tmp = 0; irqreturn_t ret = IRQ_NONE; if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) { tmp = I915_READ(GEN8_GT_IIR(0)); if (tmp) { ret = IRQ_HANDLED; rcs = tmp >> GEN8_RCS_IRQ_SHIFT; bcs = tmp >> GEN8_BCS_IRQ_SHIFT; if (rcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); if (bcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[BCS]); I915_WRITE(GEN8_GT_IIR(0), tmp); } else DRM_ERROR("The master control interrupt lied (GT0)!\n"); } if (master_ctl & GEN8_GT_VCS1_IRQ) { tmp = I915_READ(GEN8_GT_IIR(1)); if (tmp) { ret = IRQ_HANDLED; vcs = tmp >> GEN8_VCS1_IRQ_SHIFT; if (vcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); I915_WRITE(GEN8_GT_IIR(1), tmp); } else DRM_ERROR("The master control interrupt lied (GT1)!\n"); } if (master_ctl & GEN8_GT_VECS_IRQ) { tmp = I915_READ(GEN8_GT_IIR(3)); if (tmp) { ret = IRQ_HANDLED; vcs = tmp >> GEN8_VECS_IRQ_SHIFT; if (vcs & GT_RENDER_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VECS]); I915_WRITE(GEN8_GT_IIR(3), tmp); } else DRM_ERROR("The master control interrupt lied (GT3)!\n"); } return ret; } #define HPD_STORM_DETECT_PERIOD 1000 #define HPD_STORM_THRESHOLD 5 static inline void intel_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger, const u32 *hpd) { drm_i915_private_t *dev_priv = dev->dev_private; int i; bool storm_detected = false; if (!hotplug_trigger) return; spin_lock(&dev_priv->irq_lock); for (i = 1; i < HPD_NUM_PINS; i++) { WARN(((hpd[i] & hotplug_trigger) && dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED), "Received HPD interrupt although disabled\n"); if (!(hpd[i] & hotplug_trigger) || dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED) continue; dev_priv->hpd_event_bits |= (1 << i); if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) { dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies; dev_priv->hpd_stats[i].hpd_cnt = 0; DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i); } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) { dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED; dev_priv->hpd_event_bits &= ~(1 << i); DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i); storm_detected = true; } else { dev_priv->hpd_stats[i].hpd_cnt++; DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i, dev_priv->hpd_stats[i].hpd_cnt); } } if (storm_detected) dev_priv->display.hpd_irq_setup(dev); spin_unlock(&dev_priv->irq_lock); /* * Our hotplug handler can grab modeset locks (by calling down into the * fb helpers). Hence it must not be run on our own dev-priv->wq work * queue for otherwise the flush_work in the pageflip code will * deadlock. */ schedule_work(&dev_priv->hotplug_work); } static void gmbus_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private; wake_up_all(&dev_priv->gmbus_wait_queue); } static void dp_aux_irq_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private; wake_up_all(&dev_priv->gmbus_wait_queue); } #if defined(CONFIG_DEBUG_FS) static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe, uint32_t crc0, uint32_t crc1, uint32_t crc2, uint32_t crc3, uint32_t crc4) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe]; struct intel_pipe_crc_entry *entry; int head, tail; spin_lock(&pipe_crc->lock); if (!pipe_crc->entries) { spin_unlock(&pipe_crc->lock); DRM_ERROR("spurious interrupt\n"); return; } head = pipe_crc->head; tail = pipe_crc->tail; if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) { spin_unlock(&pipe_crc->lock); DRM_ERROR("CRC buffer overflowing\n"); return; } entry = &pipe_crc->entries[head]; entry->frame = dev->driver->get_vblank_counter(dev, pipe); entry->crc[0] = crc0; entry->crc[1] = crc1; entry->crc[2] = crc2; entry->crc[3] = crc3; entry->crc[4] = crc4; head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1); pipe_crc->head = head; spin_unlock(&pipe_crc->lock); wake_up_interruptible(&pipe_crc->wq); } #else static inline void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe, uint32_t crc0, uint32_t crc1, uint32_t crc2, uint32_t crc3, uint32_t crc4) {} #endif static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; display_pipe_crc_irq_handler(dev, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), 0, 0, 0, 0); } static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; display_pipe_crc_irq_handler(dev, pipe, I915_READ(PIPE_CRC_RES_1_IVB(pipe)), I915_READ(PIPE_CRC_RES_2_IVB(pipe)), I915_READ(PIPE_CRC_RES_3_IVB(pipe)), I915_READ(PIPE_CRC_RES_4_IVB(pipe)), I915_READ(PIPE_CRC_RES_5_IVB(pipe))); } static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t res1, res2; if (INTEL_INFO(dev)->gen >= 3) res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe)); else res1 = 0; if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe)); else res2 = 0; display_pipe_crc_irq_handler(dev, pipe, I915_READ(PIPE_CRC_RES_RED(pipe)), I915_READ(PIPE_CRC_RES_GREEN(pipe)), I915_READ(PIPE_CRC_RES_BLUE(pipe)), res1, res2); } /* The RPS events need forcewake, so we add them to a work queue and mask their * IMR bits until the work is done. Other interrupts can be processed without * the work queue. */ static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir) { if (pm_iir & GEN6_PM_RPS_EVENTS) { spin_lock(&dev_priv->irq_lock); dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS; snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS); spin_unlock(&dev_priv->irq_lock); queue_work(dev_priv->wq, &dev_priv->rps.work); } if (HAS_VEBOX(dev_priv->dev)) { if (pm_iir & PM_VEBOX_USER_INTERRUPT) notify_ring(dev_priv->dev, &dev_priv->ring[VECS]); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) { DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir); i915_handle_error(dev_priv->dev, false); } } } static irqreturn_t valleyview_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 iir, gt_iir, pm_iir; irqreturn_t ret = IRQ_NONE; unsigned long irqflags; int pipe; u32 pipe_stats[I915_MAX_PIPES]; atomic_inc(&dev_priv->irq_received); while (true) { iir = I915_READ(VLV_IIR); gt_iir = I915_READ(GTIIR); pm_iir = I915_READ(GEN6_PMIIR); if (gt_iir == 0 && pm_iir == 0 && iir == 0) goto out; ret = IRQ_HANDLED; snb_gt_irq_handler(dev, dev_priv, gt_iir); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); for_each_pipe(pipe) { if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS) drm_handle_vblank(dev, pipe); if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip(dev, pipe); } if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); } /* Consume port. Then clear IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n", hotplug_status); intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915); I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); I915_READ(PORT_HOTPLUG_STAT); } if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev); if (pm_iir) gen6_rps_irq_handler(dev_priv, pm_iir); I915_WRITE(GTIIR, gt_iir); I915_WRITE(GEN6_PMIIR, pm_iir); I915_WRITE(VLV_IIR, iir); } out: return ret; } static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK; intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx); if (pch_iir & SDE_AUDIO_POWER_MASK) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >> SDE_AUDIO_POWER_SHIFT); DRM_DEBUG_DRIVER("PCH audio power change on port %d\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK) dp_aux_irq_handler(dev); if (pch_iir & SDE_GMBUS) gmbus_irq_handler(dev); if (pch_iir & SDE_AUDIO_HDCP_MASK) DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n"); if (pch_iir & SDE_AUDIO_TRANS_MASK) DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n"); if (pch_iir & SDE_POISON) DRM_ERROR("PCH poison interrupt\n"); if (pch_iir & SDE_FDI_MASK) for_each_pipe(pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE)) DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n"); if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR)) DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n"); if (pch_iir & SDE_TRANSA_FIFO_UNDER) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false)) DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n"); if (pch_iir & SDE_TRANSB_FIFO_UNDER) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B, false)) DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n"); } static void ivb_err_int_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 err_int = I915_READ(GEN7_ERR_INT); enum pipe pipe; if (err_int & ERR_INT_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(pipe) { if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) { if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n", pipe_name(pipe)); } if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) { if (IS_IVYBRIDGE(dev)) ivb_pipe_crc_irq_handler(dev, pipe); else hsw_pipe_crc_irq_handler(dev, pipe); } } I915_WRITE(GEN7_ERR_INT, err_int); } static void cpt_serr_int_handler(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 serr_int = I915_READ(SERR_INT); if (serr_int & SERR_INT_POISON) DRM_ERROR("PCH poison interrupt\n"); if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false)) DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n"); if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B, false)) DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n"); if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN) if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C, false)) DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n"); I915_WRITE(SERR_INT, serr_int); } static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT; intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt); if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) { int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >> SDE_AUDIO_POWER_SHIFT_CPT); DRM_DEBUG_DRIVER("PCH audio power change on port %c\n", port_name(port)); } if (pch_iir & SDE_AUX_MASK_CPT) dp_aux_irq_handler(dev); if (pch_iir & SDE_GMBUS_CPT) gmbus_irq_handler(dev); if (pch_iir & SDE_AUDIO_CP_REQ_CPT) DRM_DEBUG_DRIVER("Audio CP request interrupt\n"); if (pch_iir & SDE_AUDIO_CP_CHG_CPT) DRM_DEBUG_DRIVER("Audio CP change interrupt\n"); if (pch_iir & SDE_FDI_MASK_CPT) for_each_pipe(pipe) DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n", pipe_name(pipe), I915_READ(FDI_RX_IIR(pipe))); if (pch_iir & SDE_ERROR_CPT) cpt_serr_int_handler(dev); } static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; if (de_iir & DE_AUX_CHANNEL_A) dp_aux_irq_handler(dev); if (de_iir & DE_GSE) intel_opregion_asle_intr(dev); if (de_iir & DE_POISON) DRM_ERROR("Poison interrupt\n"); for_each_pipe(pipe) { if (de_iir & DE_PIPE_VBLANK(pipe)) drm_handle_vblank(dev, pipe); if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe)) if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n", pipe_name(pipe)); if (de_iir & DE_PIPE_CRC_DONE(pipe)) i9xx_pipe_crc_irq_handler(dev, pipe); /* plane/pipes map 1:1 on ilk+ */ if (de_iir & DE_PLANE_FLIP_DONE(pipe)) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip_plane(dev, pipe); } } /* check event from PCH */ if (de_iir & DE_PCH_EVENT) { u32 pch_iir = I915_READ(SDEIIR); if (HAS_PCH_CPT(dev)) cpt_irq_handler(dev, pch_iir); else ibx_irq_handler(dev, pch_iir); /* should clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT) ironlake_rps_change_irq_handler(dev); } static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe i; if (de_iir & DE_ERR_INT_IVB) ivb_err_int_handler(dev); if (de_iir & DE_AUX_CHANNEL_A_IVB) dp_aux_irq_handler(dev); if (de_iir & DE_GSE_IVB) intel_opregion_asle_intr(dev); for_each_pipe(i) { if (de_iir & (DE_PIPE_VBLANK_IVB(i))) drm_handle_vblank(dev, i); /* plane/pipes map 1:1 on ilk+ */ if (de_iir & DE_PLANE_FLIP_DONE_IVB(i)) { intel_prepare_page_flip(dev, i); intel_finish_page_flip_plane(dev, i); } } /* check event from PCH */ if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) { u32 pch_iir = I915_READ(SDEIIR); cpt_irq_handler(dev, pch_iir); /* clear PCH hotplug event before clear CPU irq */ I915_WRITE(SDEIIR, pch_iir); } } static irqreturn_t ironlake_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 de_iir, gt_iir, de_ier, sde_ier = 0; irqreturn_t ret = IRQ_NONE; atomic_inc(&dev_priv->irq_received); /* We get interrupts on unclaimed registers, so check for this before we * do any I915_{READ,WRITE}. */ intel_uncore_check_errors(dev); /* disable master interrupt before clearing iir */ de_ier = I915_READ(DEIER); I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL); POSTING_READ(DEIER); /* Disable south interrupts. We'll only write to SDEIIR once, so further * interrupts will will be stored on its back queue, and then we'll be * able to process them after we restore SDEIER (as soon as we restore * it, we'll get an interrupt if SDEIIR still has something to process * due to its back queue). */ if (!HAS_PCH_NOP(dev)) { sde_ier = I915_READ(SDEIER); I915_WRITE(SDEIER, 0); POSTING_READ(SDEIER); } gt_iir = I915_READ(GTIIR); if (gt_iir) { if (INTEL_INFO(dev)->gen >= 6) snb_gt_irq_handler(dev, dev_priv, gt_iir); else ilk_gt_irq_handler(dev, dev_priv, gt_iir); I915_WRITE(GTIIR, gt_iir); ret = IRQ_HANDLED; } de_iir = I915_READ(DEIIR); if (de_iir) { if (INTEL_INFO(dev)->gen >= 7) ivb_display_irq_handler(dev, de_iir); else ilk_display_irq_handler(dev, de_iir); I915_WRITE(DEIIR, de_iir); ret = IRQ_HANDLED; } if (INTEL_INFO(dev)->gen >= 6) { u32 pm_iir = I915_READ(GEN6_PMIIR); if (pm_iir) { gen6_rps_irq_handler(dev_priv, pm_iir); I915_WRITE(GEN6_PMIIR, pm_iir); ret = IRQ_HANDLED; } } I915_WRITE(DEIER, de_ier); POSTING_READ(DEIER); if (!HAS_PCH_NOP(dev)) { I915_WRITE(SDEIER, sde_ier); POSTING_READ(SDEIER); } return ret; } static irqreturn_t gen8_irq_handler(int irq, void *arg) { struct drm_device *dev = arg; struct drm_i915_private *dev_priv = dev->dev_private; u32 master_ctl; irqreturn_t ret = IRQ_NONE; uint32_t tmp = 0; enum pipe pipe; atomic_inc(&dev_priv->irq_received); master_ctl = I915_READ(GEN8_MASTER_IRQ); master_ctl &= ~GEN8_MASTER_IRQ_CONTROL; if (!master_ctl) return IRQ_NONE; I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl); if (master_ctl & GEN8_DE_MISC_IRQ) { tmp = I915_READ(GEN8_DE_MISC_IIR); if (tmp & GEN8_DE_MISC_GSE) intel_opregion_asle_intr(dev); else if (tmp) DRM_ERROR("Unexpected DE Misc interrupt\n"); else DRM_ERROR("The master control interrupt lied (DE MISC)!\n"); if (tmp) { I915_WRITE(GEN8_DE_MISC_IIR, tmp); ret = IRQ_HANDLED; } } if (master_ctl & GEN8_DE_PORT_IRQ) { tmp = I915_READ(GEN8_DE_PORT_IIR); if (tmp & GEN8_AUX_CHANNEL_A) dp_aux_irq_handler(dev); else if (tmp) DRM_ERROR("Unexpected DE Port interrupt\n"); else DRM_ERROR("The master control interrupt lied (DE PORT)!\n"); if (tmp) { I915_WRITE(GEN8_DE_PORT_IIR, tmp); ret = IRQ_HANDLED; } } for_each_pipe(pipe) { uint32_t pipe_iir; if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe))) continue; pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe)); if (pipe_iir & GEN8_PIPE_VBLANK) drm_handle_vblank(dev, pipe); if (pipe_iir & GEN8_PIPE_FLIP_DONE) { intel_prepare_page_flip(dev, pipe); intel_finish_page_flip_plane(dev, pipe); } if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE) hsw_pipe_crc_irq_handler(dev, pipe); if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) { if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false)) DRM_DEBUG_DRIVER("Pipe %c FIFO underrun\n", pipe_name(pipe)); } if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) { DRM_ERROR("Fault errors on pipe %c\n: 0x%08x", pipe_name(pipe), pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS); } if (pipe_iir) { ret = IRQ_HANDLED; I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir); } else DRM_ERROR("The master control interrupt lied (DE PIPE)!\n"); } if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) { /* * FIXME(BDW): Assume for now that the new interrupt handling * scheme also closed the SDE interrupt handling race we've seen * on older pch-split platforms. But this needs testing. */ u32 pch_iir = I915_READ(SDEIIR); cpt_irq_handler(dev, pch_iir); if (pch_iir) { I915_WRITE(SDEIIR, pch_iir); ret = IRQ_HANDLED; } } I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); return ret; } static void i915_error_wake_up(struct drm_i915_private *dev_priv, bool reset_completed) { struct intel_ring_buffer *ring; int i; /* * Notify all waiters for GPU completion events that reset state has * been changed, and that they need to restart their wait after * checking for potential errors (and bail out to drop locks if there is * a gpu reset pending so that i915_error_work_func can acquire them). */ /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */ for_each_ring(ring, dev_priv, i) wake_up_all(&ring->irq_queue); /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */ wake_up_all(&dev_priv->pending_flip_queue); /* * Signal tasks blocked in i915_gem_wait_for_error that the pending * reset state is cleared. */ if (reset_completed) wake_up_all(&dev_priv->gpu_error.reset_queue); } /** * i915_error_work_func - do process context error handling work * @work: work struct * * Fire an error uevent so userspace can see that a hang or error * was detected. */ static void i915_error_work_func(struct work_struct *work) { struct i915_gpu_error *error = container_of(work, struct i915_gpu_error, work); drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t, gpu_error); struct drm_device *dev = dev_priv->dev; char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; int ret; kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event); /* * Note that there's only one work item which does gpu resets, so we * need not worry about concurrent gpu resets potentially incrementing * error->reset_counter twice. We only need to take care of another * racing irq/hangcheck declaring the gpu dead for a second time. A * quick check for that is good enough: schedule_work ensures the * correct ordering between hang detection and this work item, and since * the reset in-progress bit is only ever set by code outside of this * work we don't need to worry about any other races. */ if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) { DRM_DEBUG_DRIVER("resetting chip\n"); kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event); /* * All state reset _must_ be completed before we update the * reset counter, for otherwise waiters might miss the reset * pending state and not properly drop locks, resulting in * deadlocks with the reset work. */ ret = i915_reset(dev); intel_display_handle_reset(dev); if (ret == 0) { /* * After all the gem state is reset, increment the reset * counter and wake up everyone waiting for the reset to * complete. * * Since unlock operations are a one-sided barrier only, * we need to insert a barrier here to order any seqno * updates before * the counter increment. */ smp_mb__before_atomic_inc(); atomic_inc(&dev_priv->gpu_error.reset_counter); kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event); } else { atomic_set(&error->reset_counter, I915_WEDGED); } /* * Note: The wake_up also serves as a memory barrier so that * waiters see the update value of the reset counter atomic_t. */ i915_error_wake_up(dev_priv, true); } } static void i915_report_and_clear_eir(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t instdone[I915_NUM_INSTDONE_REG]; u32 eir = I915_READ(EIR); int pipe, i; if (!eir) return; pr_err("render error detected, EIR: 0x%08x\n", eir); i915_get_extra_instdone(dev, instdone); if (IS_G4X(dev)) { if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) { u32 ipeir = I915_READ(IPEIR_I965); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); for (i = 0; i < ARRAY_SIZE(instdone); i++) pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } if (eir & GM45_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); pr_err("page table error\n"); pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (!IS_GEN2(dev)) { if (eir & I915_ERROR_PAGE_TABLE) { u32 pgtbl_err = I915_READ(PGTBL_ER); pr_err("page table error\n"); pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err); I915_WRITE(PGTBL_ER, pgtbl_err); POSTING_READ(PGTBL_ER); } } if (eir & I915_ERROR_MEMORY_REFRESH) { pr_err("memory refresh error:\n"); for_each_pipe(pipe) pr_err("pipe %c stat: 0x%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); /* pipestat has already been acked */ } if (eir & I915_ERROR_INSTRUCTION) { pr_err("instruction error\n"); pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM)); for (i = 0; i < ARRAY_SIZE(instdone); i++) pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]); if (INTEL_INFO(dev)->gen < 4) { u32 ipeir = I915_READ(IPEIR); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD)); I915_WRITE(IPEIR, ipeir); POSTING_READ(IPEIR); } else { u32 ipeir = I915_READ(IPEIR_I965); pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965)); pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965)); pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS)); pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965)); I915_WRITE(IPEIR_I965, ipeir); POSTING_READ(IPEIR_I965); } } I915_WRITE(EIR, eir); POSTING_READ(EIR); eir = I915_READ(EIR); if (eir) { /* * some errors might have become stuck, * mask them. */ DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir); I915_WRITE(EMR, I915_READ(EMR) | eir); I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); } } /** * i915_handle_error - handle an error interrupt * @dev: drm device * * Do some basic checking of regsiter state at error interrupt time and * dump it to the syslog. Also call i915_capture_error_state() to make * sure we get a record and make it available in debugfs. Fire a uevent * so userspace knows something bad happened (should trigger collection * of a ring dump etc.). */ void i915_handle_error(struct drm_device *dev, bool wedged) { struct drm_i915_private *dev_priv = dev->dev_private; i915_capture_error_state(dev); i915_report_and_clear_eir(dev); if (wedged) { atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG, &dev_priv->gpu_error.reset_counter); /* * Wakeup waiting processes so that the reset work function * i915_error_work_func doesn't deadlock trying to grab various * locks. By bumping the reset counter first, the woken * processes will see a reset in progress and back off, * releasing their locks and then wait for the reset completion. * We must do this for _all_ gpu waiters that might hold locks * that the reset work needs to acquire. * * Note: The wake_up serves as the required memory barrier to * ensure that the waiters see the updated value of the reset * counter atomic_t. */ i915_error_wake_up(dev_priv, false); } /* * Our reset work can grab modeset locks (since it needs to reset the * state of outstanding pagelips). Hence it must not be run on our own * dev-priv->wq work queue for otherwise the flush_work in the pageflip * code will deadlock. */ schedule_work(&dev_priv->gpu_error.work); } static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj; struct intel_unpin_work *work; unsigned long flags; bool stall_detected; /* Ignore early vblank irqs */ if (intel_crtc == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; if (work == NULL || atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE || !work->enable_stall_check) { /* Either the pending flip IRQ arrived, or we're too early. Don't check */ spin_unlock_irqrestore(&dev->event_lock, flags); return; } /* Potential stall - if we see that the flip has happened, assume a missed interrupt */ obj = work->pending_flip_obj; if (INTEL_INFO(dev)->gen >= 4) { int dspsurf = DSPSURF(intel_crtc->plane); stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) == i915_gem_obj_ggtt_offset(obj); } else { int dspaddr = DSPADDR(intel_crtc->plane); stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) + crtc->y * crtc->fb->pitches[0] + crtc->x * crtc->fb->bits_per_pixel/8); } spin_unlock_irqrestore(&dev->event_lock, flags); if (stall_detected) { DRM_DEBUG_DRIVER("Pageflip stall detected\n"); intel_prepare_page_flip(dev, intel_crtc->plane); } } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static int i915_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (INTEL_INFO(dev)->gen >= 4) i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_ENABLE); else i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_ENABLE); /* maintain vblank delivery even in deep C-states */ if (dev_priv->info->gen == 3) I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int ironlake_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_enable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int valleyview_enable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; u32 imr; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); imr = I915_READ(VLV_IMR); if (pipe == PIPE_A) imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT; else imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; I915_WRITE(VLV_IMR, imr); i915_enable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } static int gen8_enable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return -EINVAL; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK; I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } /* Called from drm generic code, passed 'crtc' which * we use as a pipe index */ static void i915_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (dev_priv->info->gen == 3) I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS)); i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_ENABLE | PIPE_START_VBLANK_INTERRUPT_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void ironlake_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe); spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_disable_display_irq(dev_priv, bit); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void valleyview_disable_vblank(struct drm_device *dev, int pipe) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; u32 imr; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_disable_pipestat(dev_priv, pipe, PIPE_START_VBLANK_INTERRUPT_ENABLE); imr = I915_READ(VLV_IMR); if (pipe == PIPE_A) imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT; else imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; I915_WRITE(VLV_IMR, imr); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static void gen8_disable_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; if (!i915_pipe_enabled(dev, pipe)) return; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK; I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); POSTING_READ(GEN8_DE_PIPE_IMR(pipe)); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } static u32 ring_last_seqno(struct intel_ring_buffer *ring) { return list_entry(ring->request_list.prev, struct drm_i915_gem_request, list)->seqno; } static bool ring_idle(struct intel_ring_buffer *ring, u32 seqno) { return (list_empty(&ring->request_list) || i915_seqno_passed(seqno, ring_last_seqno(ring))); } static struct intel_ring_buffer * semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno) { struct drm_i915_private *dev_priv = ring->dev->dev_private; u32 cmd, ipehr, acthd, acthd_min; ipehr = I915_READ(RING_IPEHR(ring->mmio_base)); if ((ipehr & ~(0x3 << 16)) != (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER)) return NULL; /* ACTHD is likely pointing to the dword after the actual command, * so scan backwards until we find the MBOX. */ acthd = intel_ring_get_active_head(ring) & HEAD_ADDR; acthd_min = max((int)acthd - 3 * 4, 0); do { cmd = ioread32(ring->virtual_start + acthd); if (cmd == ipehr) break; acthd -= 4; if (acthd < acthd_min) return NULL; } while (1); *seqno = ioread32(ring->virtual_start+acthd+4)+1; return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3]; } static int semaphore_passed(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; struct intel_ring_buffer *signaller; u32 seqno, ctl; ring->hangcheck.deadlock = true; signaller = semaphore_waits_for(ring, &seqno); if (signaller == NULL || signaller->hangcheck.deadlock) return -1; /* cursory check for an unkickable deadlock */ ctl = I915_READ_CTL(signaller); if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0) return -1; return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno); } static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv) { struct intel_ring_buffer *ring; int i; for_each_ring(ring, dev_priv, i) ring->hangcheck.deadlock = false; } static enum intel_ring_hangcheck_action ring_stuck(struct intel_ring_buffer *ring, u32 acthd) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 tmp; if (ring->hangcheck.acthd != acthd) return HANGCHECK_ACTIVE; if (IS_GEN2(dev)) return HANGCHECK_HUNG; /* Is the chip hanging on a WAIT_FOR_EVENT? * If so we can simply poke the RB_WAIT bit * and break the hang. This should work on * all but the second generation chipsets. */ tmp = I915_READ_CTL(ring); if (tmp & RING_WAIT) { DRM_ERROR("Kicking stuck wait on %s\n", ring->name); i915_handle_error(dev, false); I915_WRITE_CTL(ring, tmp); return HANGCHECK_KICK; } if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) { switch (semaphore_passed(ring)) { default: return HANGCHECK_HUNG; case 1: DRM_ERROR("Kicking stuck semaphore on %s\n", ring->name); i915_handle_error(dev, false); I915_WRITE_CTL(ring, tmp); return HANGCHECK_KICK; case 0: return HANGCHECK_WAIT; } } return HANGCHECK_HUNG; } /** * This is called when the chip hasn't reported back with completed * batchbuffers in a long time. We keep track per ring seqno progress and * if there are no progress, hangcheck score for that ring is increased. * Further, acthd is inspected to see if the ring is stuck. On stuck case * we kick the ring. If we see no progress on three subsequent calls * we assume chip is wedged and try to fix it by resetting the chip. */ static void i915_hangcheck_elapsed(unsigned long data) { struct drm_device *dev = (struct drm_device *)data; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i; int busy_count = 0, rings_hung = 0; bool stuck[I915_NUM_RINGS] = { 0 }; #define BUSY 1 #define KICK 5 #define HUNG 20 #define FIRE 30 if (!i915_enable_hangcheck) return; for_each_ring(ring, dev_priv, i) { u32 seqno, acthd; bool busy = true; semaphore_clear_deadlocks(dev_priv); seqno = ring->get_seqno(ring, false); acthd = intel_ring_get_active_head(ring); if (ring->hangcheck.seqno == seqno) { if (ring_idle(ring, seqno)) { ring->hangcheck.action = HANGCHECK_IDLE; if (waitqueue_active(&ring->irq_queue)) { /* Issue a wake-up to catch stuck h/w. */ if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) { if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring))) DRM_ERROR("Hangcheck timer elapsed... %s idle\n", ring->name); else DRM_INFO("Fake missed irq on %s\n", ring->name); wake_up_all(&ring->irq_queue); } /* Safeguard against driver failure */ ring->hangcheck.score += BUSY; } else busy = false; } else { /* We always increment the hangcheck score * if the ring is busy and still processing * the same request, so that no single request * can run indefinitely (such as a chain of * batches). The only time we do not increment * the hangcheck score on this ring, if this * ring is in a legitimate wait for another * ring. In that case the waiting ring is a * victim and we want to be sure we catch the * right culprit. Then every time we do kick * the ring, add a small increment to the * score so that we can catch a batch that is * being repeatedly kicked and so responsible * for stalling the machine. */ ring->hangcheck.action = ring_stuck(ring, acthd); switch (ring->hangcheck.action) { case HANGCHECK_IDLE: case HANGCHECK_WAIT: break; case HANGCHECK_ACTIVE: ring->hangcheck.score += BUSY; break; case HANGCHECK_KICK: ring->hangcheck.score += KICK; break; case HANGCHECK_HUNG: ring->hangcheck.score += HUNG; stuck[i] = true; break; } } } else { ring->hangcheck.action = HANGCHECK_ACTIVE; /* Gradually reduce the count so that we catch DoS * attempts across multiple batches. */ if (ring->hangcheck.score > 0) ring->hangcheck.score--; } ring->hangcheck.seqno = seqno; ring->hangcheck.acthd = acthd; busy_count += busy; } for_each_ring(ring, dev_priv, i) { if (ring->hangcheck.score > FIRE) { DRM_INFO("%s on %s\n", stuck[i] ? "stuck" : "no progress", ring->name); rings_hung++; } } if (rings_hung) return i915_handle_error(dev, true); if (busy_count) /* Reset timer case chip hangs without another request * being added */ i915_queue_hangcheck(dev); } void i915_queue_hangcheck(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!i915_enable_hangcheck) return; mod_timer(&dev_priv->gpu_error.hangcheck_timer, round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES)); } static void ibx_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (HAS_PCH_NOP(dev)) return; /* south display irq */ I915_WRITE(SDEIMR, 0xffffffff); /* * SDEIER is also touched by the interrupt handler to work around missed * PCH interrupts. Hence we can't update it after the interrupt handler * is enabled - instead we unconditionally enable all PCH interrupt * sources here, but then only unmask them as needed with SDEIMR. */ I915_WRITE(SDEIER, 0xffffffff); POSTING_READ(SDEIER); } static void gen5_gt_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* and GT */ I915_WRITE(GTIMR, 0xffffffff); I915_WRITE(GTIER, 0x0); POSTING_READ(GTIER); if (INTEL_INFO(dev)->gen >= 6) { /* and PM */ I915_WRITE(GEN6_PMIMR, 0xffffffff); I915_WRITE(GEN6_PMIER, 0x0); POSTING_READ(GEN6_PMIER); } } /* drm_dma.h hooks */ static void ironlake_irq_preinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; atomic_set(&dev_priv->irq_received, 0); I915_WRITE(HWSTAM, 0xeffe); I915_WRITE(DEIMR, 0xffffffff); I915_WRITE(DEIER, 0x0); POSTING_READ(DEIER); gen5_gt_irq_preinstall(dev); ibx_irq_preinstall(dev); } static void valleyview_irq_preinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); /* VLV magic */ I915_WRITE(VLV_IMR, 0); I915_WRITE(RING_IMR(RENDER_RING_BASE), 0); I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0); I915_WRITE(RING_IMR(BLT_RING_BASE), 0); /* and GT */ I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIIR, I915_READ(GTIIR)); gen5_gt_irq_preinstall(dev); I915_WRITE(DPINVGTT, 0xff); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0xffff); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IMR, 0xffffffff); I915_WRITE(VLV_IER, 0x0); POSTING_READ(VLV_IER); } static void gen8_irq_preinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); I915_WRITE(GEN8_MASTER_IRQ, 0); POSTING_READ(GEN8_MASTER_IRQ); /* IIR can theoretically queue up two events. Be paranoid */ #define GEN8_IRQ_INIT_NDX(type, which) do { \ I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IMR(which)); \ I915_WRITE(GEN8_##type##_IER(which), 0); \ I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ POSTING_READ(GEN8_##type##_IIR(which)); \ I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ } while (0) #define GEN8_IRQ_INIT(type) do { \ I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \ POSTING_READ(GEN8_##type##_IMR); \ I915_WRITE(GEN8_##type##_IER, 0); \ I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \ POSTING_READ(GEN8_##type##_IIR); \ I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \ } while (0) GEN8_IRQ_INIT_NDX(GT, 0); GEN8_IRQ_INIT_NDX(GT, 1); GEN8_IRQ_INIT_NDX(GT, 2); GEN8_IRQ_INIT_NDX(GT, 3); for_each_pipe(pipe) { GEN8_IRQ_INIT_NDX(DE_PIPE, pipe); } GEN8_IRQ_INIT(DE_PORT); GEN8_IRQ_INIT(DE_MISC); GEN8_IRQ_INIT(PCU); #undef GEN8_IRQ_INIT #undef GEN8_IRQ_INIT_NDX POSTING_READ(GEN8_PCU_IIR); } static void ibx_hpd_irq_setup(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_encoder *intel_encoder; u32 hotplug_irqs, hotplug, enabled_irqs = 0; if (HAS_PCH_IBX(dev)) { hotplug_irqs = SDE_HOTPLUG_MASK; list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin]; } else { hotplug_irqs = SDE_HOTPLUG_MASK_CPT; list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin]; } ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs); /* * Enable digital hotplug on the PCH, and configure the DP short pulse * duration to 2ms (which is the minimum in the Display Port spec) * * This register is the same on all known PCH chips. */ hotplug = I915_READ(PCH_PORT_HOTPLUG); hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK); hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms; hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms; hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms; I915_WRITE(PCH_PORT_HOTPLUG, hotplug); } static void ibx_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 mask; if (HAS_PCH_NOP(dev)) return; if (HAS_PCH_IBX(dev)) { mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER | SDE_TRANSA_FIFO_UNDER | SDE_POISON; } else { mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT; I915_WRITE(SERR_INT, I915_READ(SERR_INT)); } I915_WRITE(SDEIIR, I915_READ(SDEIIR)); I915_WRITE(SDEIMR, ~mask); } static void gen5_gt_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 pm_irqs, gt_irqs; pm_irqs = gt_irqs = 0; dev_priv->gt_irq_mask = ~0; if (HAS_L3_DPF(dev)) { /* L3 parity interrupt is always unmasked. */ dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev); gt_irqs |= GT_PARITY_ERROR(dev); } gt_irqs |= GT_RENDER_USER_INTERRUPT; if (IS_GEN5(dev)) { gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT | ILK_BSD_USER_INTERRUPT; } else { gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT; } I915_WRITE(GTIIR, I915_READ(GTIIR)); I915_WRITE(GTIMR, dev_priv->gt_irq_mask); I915_WRITE(GTIER, gt_irqs); POSTING_READ(GTIER); if (INTEL_INFO(dev)->gen >= 6) { pm_irqs |= GEN6_PM_RPS_EVENTS; if (HAS_VEBOX(dev)) pm_irqs |= PM_VEBOX_USER_INTERRUPT; dev_priv->pm_irq_mask = 0xffffffff; I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR)); I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask); I915_WRITE(GEN6_PMIER, pm_irqs); POSTING_READ(GEN6_PMIER); } } static int ironlake_irq_postinstall(struct drm_device *dev) { unsigned long irqflags; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 display_mask, extra_mask; if (INTEL_INFO(dev)->gen >= 7) { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB | DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB | DE_PLANEB_FLIP_DONE_IVB | DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB | DE_ERR_INT_IVB); extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB | DE_PIPEA_VBLANK_IVB); I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT)); } else { display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT | DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE | DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN | DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE | DE_POISON); extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT; } dev_priv->irq_mask = ~display_mask; /* should always can generate irq */ I915_WRITE(DEIIR, I915_READ(DEIIR)); I915_WRITE(DEIMR, dev_priv->irq_mask); I915_WRITE(DEIER, display_mask | extra_mask); POSTING_READ(DEIER); gen5_gt_irq_postinstall(dev); ibx_irq_postinstall(dev); if (IS_IRONLAKE_M(dev)) { /* Enable PCU event interrupts * * spinlocking not required here for correctness since interrupt * setup is guaranteed to run in single-threaded context. But we * need it to make the assert_spin_locked happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } return 0; } static int valleyview_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 enable_mask; u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV | PIPE_CRC_DONE_ENABLE; unsigned long irqflags; enable_mask = I915_DISPLAY_PORT_INTERRUPT; enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; /* *Leave vblank interrupts masked initially. enable/disable will * toggle them based on usage. */ dev_priv->irq_mask = (~enable_mask) | I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT | I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT; I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); I915_WRITE(VLV_IMR, dev_priv->irq_mask); I915_WRITE(VLV_IER, enable_mask); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(PIPESTAT(0), 0xffff); I915_WRITE(PIPESTAT(1), 0xffff); POSTING_READ(VLV_IER); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, PIPE_A, pipestat_enable); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE); i915_enable_pipestat(dev_priv, PIPE_B, pipestat_enable); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IIR, 0xffffffff); gen5_gt_irq_postinstall(dev); /* ack & enable invalid PTE error interrupts */ #if 0 /* FIXME: add support to irq handler for checking these bits */ I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK); I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK); #endif I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE); return 0; } static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv) { int i; /* These are interrupts we'll toggle with the ring mask register */ uint32_t gt_interrupts[] = { GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_L3_PARITY_ERROR_INTERRUPT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT, GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT, 0, GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT }; for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) { u32 tmp = I915_READ(GEN8_GT_IIR(i)); if (tmp) DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n", i, tmp); I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]); I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]); } POSTING_READ(GEN8_GT_IER(0)); } static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t de_pipe_enables = GEN8_PIPE_FLIP_DONE | GEN8_PIPE_VBLANK | GEN8_PIPE_CDCLK_CRC_DONE | GEN8_PIPE_FIFO_UNDERRUN | GEN8_DE_PIPE_IRQ_FAULT_ERRORS; int pipe; dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_enables; dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_enables; dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_enables; for_each_pipe(pipe) { u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe)); if (tmp) DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n", pipe, tmp); I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]); I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables); } POSTING_READ(GEN8_DE_PIPE_ISR(0)); I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A); I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A); POSTING_READ(GEN8_DE_PORT_IER); } static int gen8_irq_postinstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; gen8_gt_irq_postinstall(dev_priv); gen8_de_irq_postinstall(dev_priv); ibx_irq_postinstall(dev); I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL); POSTING_READ(GEN8_MASTER_IRQ); return 0; } static void gen8_irq_uninstall(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; if (!dev_priv) return; atomic_set(&dev_priv->irq_received, 0); I915_WRITE(GEN8_MASTER_IRQ, 0); #define GEN8_IRQ_FINI_NDX(type, which) do { \ I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \ I915_WRITE(GEN8_##type##_IER(which), 0); \ I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \ } while (0) #define GEN8_IRQ_FINI(type) do { \ I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \ I915_WRITE(GEN8_##type##_IER, 0); \ I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \ } while (0) GEN8_IRQ_FINI_NDX(GT, 0); GEN8_IRQ_FINI_NDX(GT, 1); GEN8_IRQ_FINI_NDX(GT, 2); GEN8_IRQ_FINI_NDX(GT, 3); for_each_pipe(pipe) { GEN8_IRQ_FINI_NDX(DE_PIPE, pipe); } GEN8_IRQ_FINI(DE_PORT); GEN8_IRQ_FINI(DE_MISC); GEN8_IRQ_FINI(PCU); #undef GEN8_IRQ_FINI #undef GEN8_IRQ_FINI_NDX POSTING_READ(GEN8_PCU_IIR); } static void valleyview_irq_uninstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; if (!dev_priv) return; del_timer_sync(&dev_priv->hotplug_reenable_timer); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0xffff); I915_WRITE(HWSTAM, 0xffffffff); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0xffff); I915_WRITE(VLV_IIR, 0xffffffff); I915_WRITE(VLV_IMR, 0xffffffff); I915_WRITE(VLV_IER, 0x0); POSTING_READ(VLV_IER); } static void ironlake_irq_uninstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; if (!dev_priv) return; del_timer_sync(&dev_priv->hotplug_reenable_timer); I915_WRITE(HWSTAM, 0xffffffff); I915_WRITE(DEIMR, 0xffffffff); I915_WRITE(DEIER, 0x0); I915_WRITE(DEIIR, I915_READ(DEIIR)); if (IS_GEN7(dev)) I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT)); I915_WRITE(GTIMR, 0xffffffff); I915_WRITE(GTIER, 0x0); I915_WRITE(GTIIR, I915_READ(GTIIR)); if (HAS_PCH_NOP(dev)) return; I915_WRITE(SDEIMR, 0xffffffff); I915_WRITE(SDEIER, 0x0); I915_WRITE(SDEIIR, I915_READ(SDEIIR)); if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev)) I915_WRITE(SERR_INT, I915_READ(SERR_INT)); } static void i8xx_irq_preinstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); POSTING_READ16(IER); } static int i8xx_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; unsigned long irqflags; I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); I915_WRITE16(IMR, dev_priv->irq_mask); I915_WRITE16(IER, I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | I915_USER_INTERRUPT); POSTING_READ16(IER); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } /* * Returns true when a page flip has completed. */ static bool i8xx_handle_vblank(struct drm_device *dev, int pipe, u16 iir) { drm_i915_private_t *dev_priv = dev->dev_private; u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe); if (!drm_handle_vblank(dev, pipe)) return false; if ((iir & flip_pending) == 0) return false; intel_prepare_page_flip(dev, pipe); /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ16(ISR) & flip_pending) return false; intel_finish_page_flip(dev, pipe); return true; } static irqreturn_t i8xx_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u16 iir, new_iir; u32 pipe_stats[2]; unsigned long irqflags; int pipe; u16 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; atomic_inc(&dev_priv->irq_received); iir = I915_READ16(IIR); if (iir == 0) return IRQ_NONE; while (iir & ~flip_mask) { /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); I915_WRITE16(IIR, iir & ~flip_mask); new_iir = I915_READ16(IIR); /* Flush posted writes */ i915_update_dri1_breadcrumb(dev); if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); for_each_pipe(pipe) { if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && i8xx_handle_vblank(dev, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); } iir = new_iir; } return IRQ_HANDLED; } static void i8xx_irq_uninstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; for_each_pipe(pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE16(IMR, 0xffff); I915_WRITE16(IER, 0x0); I915_WRITE16(IIR, I915_READ16(IIR)); } static void i915_irq_preinstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xeffe); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i915_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 enable_mask; unsigned long irqflags; I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH)); /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); enable_mask = I915_ASLE_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT | I915_USER_INTERRUPT; if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); /* Enable in IER... */ enable_mask |= I915_DISPLAY_PORT_INTERRUPT; /* and unmask in IMR */ dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT; } I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); i915_enable_asle_pipestat(dev); /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); return 0; } /* * Returns true when a page flip has completed. */ static bool i915_handle_vblank(struct drm_device *dev, int plane, int pipe, u32 iir) { drm_i915_private_t *dev_priv = dev->dev_private; u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane); if (!drm_handle_vblank(dev, pipe)) return false; if ((iir & flip_pending) == 0) return false; intel_prepare_page_flip(dev, plane); /* We detect FlipDone by looking for the change in PendingFlip from '1' * to '0' on the following vblank, i.e. IIR has the Pendingflip * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence * the flip is completed (no longer pending). Since this doesn't raise * an interrupt per se, we watch for the change at vblank. */ if (I915_READ(ISR) & flip_pending) return false; intel_finish_page_flip(dev, pipe); return true; } static irqreturn_t i915_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 iir, new_iir, pipe_stats[I915_MAX_PIPES]; unsigned long irqflags; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; int pipe, ret = IRQ_NONE; atomic_inc(&dev_priv->irq_received); iir = I915_READ(IIR); do { bool irq_received = (iir & ~flip_mask) != 0; bool blc_event = false; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); irq_received = true; } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); if (!irq_received) break; /* Consume port. Then clear IIR or we'll miss events */ if ((I915_HAS_HOTPLUG(dev)) && (iir & I915_DISPLAY_PORT_INTERRUPT)) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915; DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n", hotplug_status); intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915); I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); POSTING_READ(PORT_HOTPLUG_STAT); } I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); for_each_pipe(pipe) { int plane = pipe; if (IS_MOBILE(dev)) plane = !plane; if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev, plane, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ ret = IRQ_HANDLED; iir = new_iir; } while (iir & ~flip_mask); i915_update_dri1_breadcrumb(dev); return ret; } static void i915_irq_uninstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; del_timer_sync(&dev_priv->hotplug_reenable_timer); if (I915_HAS_HOTPLUG(dev)) { I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); } I915_WRITE16(HWSTAM, 0xffff); for_each_pipe(pipe) { /* Clear enable bits; then clear status bits */ I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe))); } I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); I915_WRITE(IIR, I915_READ(IIR)); } static void i965_irq_preinstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; atomic_set(&dev_priv->irq_received, 0); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xeffe); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); POSTING_READ(IER); } static int i965_irq_postinstall(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 enable_mask; u32 error_mask; unsigned long irqflags; /* Unmask the interrupts that we always want on. */ dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT | I915_DISPLAY_PORT_INTERRUPT | I915_DISPLAY_PIPE_A_EVENT_INTERRUPT | I915_DISPLAY_PIPE_B_EVENT_INTERRUPT | I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT | I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT); enable_mask = ~dev_priv->irq_mask; enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT); enable_mask |= I915_USER_INTERRUPT; if (IS_G4X(dev)) enable_mask |= I915_BSD_USER_INTERRUPT; /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked check happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_EVENT_ENABLE); i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_ENABLE); i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_ENABLE); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); /* * Enable some error detection, note the instruction error mask * bit is reserved, so we leave it masked. */ if (IS_G4X(dev)) { error_mask = ~(GM45_ERROR_PAGE_TABLE | GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV | I915_ERROR_MEMORY_REFRESH); } else { error_mask = ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH); } I915_WRITE(EMR, error_mask); I915_WRITE(IMR, dev_priv->irq_mask); I915_WRITE(IER, enable_mask); POSTING_READ(IER); I915_WRITE(PORT_HOTPLUG_EN, 0); POSTING_READ(PORT_HOTPLUG_EN); i915_enable_asle_pipestat(dev); return 0; } static void i915_hpd_irq_setup(struct drm_device *dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct intel_encoder *intel_encoder; u32 hotplug_en; assert_spin_locked(&dev_priv->irq_lock); if (I915_HAS_HOTPLUG(dev)) { hotplug_en = I915_READ(PORT_HOTPLUG_EN); hotplug_en &= ~HOTPLUG_INT_EN_MASK; /* Note HDMI and DP share hotplug bits */ /* enable bits are the same for all generations */ list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head) if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED) hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin]; /* Programming the CRT detection parameters tends to generate a spurious hotplug event about three seconds later. So just do it once. */ if (IS_G4X(dev)) hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64; hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK; hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50; /* Ignore TV since it's buggy */ I915_WRITE(PORT_HOTPLUG_EN, hotplug_en); } } static irqreturn_t i965_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *) arg; drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; u32 iir, new_iir; u32 pipe_stats[I915_MAX_PIPES]; unsigned long irqflags; int irq_received; int ret = IRQ_NONE, pipe; u32 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT | I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT; atomic_inc(&dev_priv->irq_received); iir = I915_READ(IIR); for (;;) { bool blc_event = false; irq_received = (iir & ~flip_mask) != 0; /* Can't rely on pipestat interrupt bit in iir as it might * have been cleared after the pipestat interrupt was received. * It doesn't set the bit in iir again, but it still produces * interrupts (for non-MSI). */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT) i915_handle_error(dev, false); for_each_pipe(pipe) { int reg = PIPESTAT(pipe); pipe_stats[pipe] = I915_READ(reg); /* * Clear the PIPE*STAT regs before the IIR */ if (pipe_stats[pipe] & 0x8000ffff) { if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS) DRM_DEBUG_DRIVER("pipe %c underrun\n", pipe_name(pipe)); I915_WRITE(reg, pipe_stats[pipe]); irq_received = 1; } } spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); if (!irq_received) break; ret = IRQ_HANDLED; /* Consume port. Then clear IIR or we'll miss events */ if (iir & I915_DISPLAY_PORT_INTERRUPT) { u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT); u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ? HOTPLUG_INT_STATUS_G4X : HOTPLUG_INT_STATUS_I915); DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n", hotplug_status); intel_hpd_irq_handler(dev, hotplug_trigger, IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915); I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status); I915_READ(PORT_HOTPLUG_STAT); } I915_WRITE(IIR, iir & ~flip_mask); new_iir = I915_READ(IIR); /* Flush posted writes */ if (iir & I915_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[RCS]); if (iir & I915_BSD_USER_INTERRUPT) notify_ring(dev, &dev_priv->ring[VCS]); for_each_pipe(pipe) { if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS && i915_handle_vblank(dev, pipe, pipe, iir)) flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe); if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS) blc_event = true; if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS) i9xx_pipe_crc_irq_handler(dev, pipe); } if (blc_event || (iir & I915_ASLE_INTERRUPT)) intel_opregion_asle_intr(dev); if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS) gmbus_irq_handler(dev); /* With MSI, interrupts are only generated when iir * transitions from zero to nonzero. If another bit got * set while we were handling the existing iir bits, then * we would never get another interrupt. * * This is fine on non-MSI as well, as if we hit this path * we avoid exiting the interrupt handler only to generate * another one. * * Note that for MSI this could cause a stray interrupt report * if an interrupt landed in the time between writing IIR and * the posting read. This should be rare enough to never * trigger the 99% of 100,000 interrupts test for disabling * stray interrupts. */ iir = new_iir; } i915_update_dri1_breadcrumb(dev); return ret; } static void i965_irq_uninstall(struct drm_device * dev) { drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private; int pipe; if (!dev_priv) return; del_timer_sync(&dev_priv->hotplug_reenable_timer); I915_WRITE(PORT_HOTPLUG_EN, 0); I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT)); I915_WRITE(HWSTAM, 0xffffffff); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), 0); I915_WRITE(IMR, 0xffffffff); I915_WRITE(IER, 0x0); for_each_pipe(pipe) I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)) & 0x8000ffff); I915_WRITE(IIR, I915_READ(IIR)); } static void i915_reenable_hotplug_timer_func(unsigned long data) { drm_i915_private_t *dev_priv = (drm_i915_private_t *)data; struct drm_device *dev = dev_priv->dev; struct drm_mode_config *mode_config = &dev->mode_config; unsigned long irqflags; int i; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) { struct drm_connector *connector; if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED) continue; dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; list_for_each_entry(connector, &mode_config->connector_list, head) { struct intel_connector *intel_connector = to_intel_connector(connector); if (intel_connector->encoder->hpd_pin == i) { if (connector->polled != intel_connector->polled) DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n", drm_get_connector_name(connector)); connector->polled = intel_connector->polled; if (!connector->polled) connector->polled = DRM_CONNECTOR_POLL_HPD; } } } if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } void intel_irq_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func); INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func); INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work); INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work); setup_timer(&dev_priv->gpu_error.hangcheck_timer, i915_hangcheck_elapsed, (unsigned long) dev); setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func, (unsigned long) dev_priv); pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); if (IS_GEN2(dev)) { dev->max_vblank_count = 0; dev->driver->get_vblank_counter = i8xx_get_vblank_counter; } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */ dev->driver->get_vblank_counter = gm45_get_vblank_counter; } else { dev->driver->get_vblank_counter = i915_get_vblank_counter; dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */ } if (drm_core_check_feature(dev, DRIVER_MODESET)) { dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp; dev->driver->get_scanout_position = i915_get_crtc_scanoutpos; } if (IS_VALLEYVIEW(dev)) { dev->driver->irq_handler = valleyview_irq_handler; dev->driver->irq_preinstall = valleyview_irq_preinstall; dev->driver->irq_postinstall = valleyview_irq_postinstall; dev->driver->irq_uninstall = valleyview_irq_uninstall; dev->driver->enable_vblank = valleyview_enable_vblank; dev->driver->disable_vblank = valleyview_disable_vblank; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else if (IS_GEN8(dev)) { dev->driver->irq_handler = gen8_irq_handler; dev->driver->irq_preinstall = gen8_irq_preinstall; dev->driver->irq_postinstall = gen8_irq_postinstall; dev->driver->irq_uninstall = gen8_irq_uninstall; dev->driver->enable_vblank = gen8_enable_vblank; dev->driver->disable_vblank = gen8_disable_vblank; dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; } else if (HAS_PCH_SPLIT(dev)) { dev->driver->irq_handler = ironlake_irq_handler; dev->driver->irq_preinstall = ironlake_irq_preinstall; dev->driver->irq_postinstall = ironlake_irq_postinstall; dev->driver->irq_uninstall = ironlake_irq_uninstall; dev->driver->enable_vblank = ironlake_enable_vblank; dev->driver->disable_vblank = ironlake_disable_vblank; dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup; } else { if (INTEL_INFO(dev)->gen == 2) { dev->driver->irq_preinstall = i8xx_irq_preinstall; dev->driver->irq_postinstall = i8xx_irq_postinstall; dev->driver->irq_handler = i8xx_irq_handler; dev->driver->irq_uninstall = i8xx_irq_uninstall; } else if (INTEL_INFO(dev)->gen == 3) { dev->driver->irq_preinstall = i915_irq_preinstall; dev->driver->irq_postinstall = i915_irq_postinstall; dev->driver->irq_uninstall = i915_irq_uninstall; dev->driver->irq_handler = i915_irq_handler; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } else { dev->driver->irq_preinstall = i965_irq_preinstall; dev->driver->irq_postinstall = i965_irq_postinstall; dev->driver->irq_uninstall = i965_irq_uninstall; dev->driver->irq_handler = i965_irq_handler; dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup; } dev->driver->enable_vblank = i915_enable_vblank; dev->driver->disable_vblank = i915_disable_vblank; } } void intel_hpd_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *connector; unsigned long irqflags; int i; for (i = 1; i < HPD_NUM_PINS; i++) { dev_priv->hpd_stats[i].hpd_cnt = 0; dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED; } list_for_each_entry(connector, &mode_config->connector_list, head) { struct intel_connector *intel_connector = to_intel_connector(connector); connector->polled = intel_connector->polled; if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE) connector->polled = DRM_CONNECTOR_POLL_HPD; } /* Interrupt setup is already guaranteed to be single-threaded, this is * just to make the assert_spin_locked checks happy. */ spin_lock_irqsave(&dev_priv->irq_lock, irqflags); if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } /* Disable interrupts so we can allow Package C8+. */ void hsw_pc8_disable_interrupts(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); dev_priv->pc8.regsave.deimr = I915_READ(DEIMR); dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR); dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR); dev_priv->pc8.regsave.gtier = I915_READ(GTIER); dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR); ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB); ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT); ilk_disable_gt_irq(dev_priv, 0xffffffff); snb_disable_pm_irq(dev_priv, 0xffffffff); dev_priv->pc8.irqs_disabled = true; spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); } /* Restore interrupts so we can recover from Package C8+. */ void hsw_pc8_restore_interrupts(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; uint32_t val, expected; spin_lock_irqsave(&dev_priv->irq_lock, irqflags); val = I915_READ(DEIMR); expected = ~DE_PCH_EVENT_IVB; WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected); val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT; expected = ~SDE_HOTPLUG_MASK_CPT; WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n", val, expected); val = I915_READ(GTIMR); expected = 0xffffffff; WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected); val = I915_READ(GEN6_PMIMR); expected = 0xffffffff; WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val, expected); dev_priv->pc8.irqs_disabled = false; ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr); ibx_enable_display_interrupt(dev_priv, ~dev_priv->pc8.regsave.sdeimr & ~SDE_HOTPLUG_MASK_CPT); ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr); snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr); I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier); spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags); }