/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Zhi Wang * * Contributors: * Ping Gao * Tina Zhang * Chanbin Du * Min He * Bing Niu * Zhenyu Wang * */ #include #include "i915_drv.h" #include "gvt.h" #define RING_CTX_OFF(x) \ offsetof(struct execlist_ring_context, x) static void set_context_pdp_root_pointer( struct execlist_ring_context *ring_context, u32 pdp[8]) { struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW; int i; for (i = 0; i < 8; i++) pdp_pair[i].val = pdp[7 - i]; } static int populate_shadow_context(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_gvt *gvt = vgpu->gvt; int ring_id = workload->ring_id; struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx; struct drm_i915_gem_object *ctx_obj = shadow_ctx->engine[ring_id].state->obj; struct execlist_ring_context *shadow_ring_context; struct page *page; void *dst; unsigned long context_gpa, context_page_num; int i; gvt_dbg_sched("ring id %d workload lrca %x", ring_id, workload->ctx_desc.lrca); context_page_num = intel_lr_context_size( gvt->dev_priv->engine[ring_id]); context_page_num = context_page_num >> PAGE_SHIFT; if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) context_page_num = 19; i = 2; while (i < context_page_num) { context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, (u32)((workload->ctx_desc.lrca + i) << GTT_PAGE_SHIFT)); if (context_gpa == INTEL_GVT_INVALID_ADDR) { gvt_err("Invalid guest context descriptor\n"); return -EINVAL; } page = i915_gem_object_get_page(ctx_obj, LRC_PPHWSP_PN + i); dst = kmap(page); intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst, GTT_PAGE_SIZE); kunmap(page); i++; } page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); shadow_ring_context = kmap(page); #define COPY_REG(name) \ intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) COPY_REG(ctx_ctrl); COPY_REG(ctx_timestamp); if (ring_id == RCS) { COPY_REG(bb_per_ctx_ptr); COPY_REG(rcs_indirect_ctx); COPY_REG(rcs_indirect_ctx_offset); } #undef COPY_REG set_context_pdp_root_pointer(shadow_ring_context, workload->shadow_mm->shadow_page_table); intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa + sizeof(*shadow_ring_context), (void *)shadow_ring_context + sizeof(*shadow_ring_context), GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); kunmap(page); return 0; } static int shadow_context_status_change(struct notifier_block *nb, unsigned long action, void *data) { struct drm_i915_gem_request *req = (struct drm_i915_gem_request *)data; struct intel_gvt *gvt = container_of(nb, struct intel_gvt, shadow_ctx_notifier_block[req->engine->id]); struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_vgpu_workload *workload = scheduler->current_workload[req->engine->id]; switch (action) { case INTEL_CONTEXT_SCHEDULE_IN: intel_gvt_load_render_mmio(workload->vgpu, workload->ring_id); atomic_set(&workload->shadow_ctx_active, 1); break; case INTEL_CONTEXT_SCHEDULE_OUT: intel_gvt_restore_render_mmio(workload->vgpu, workload->ring_id); atomic_set(&workload->shadow_ctx_active, 0); break; default: WARN_ON(1); return NOTIFY_OK; } wake_up(&workload->shadow_ctx_status_wq); return NOTIFY_OK; } static int dispatch_workload(struct intel_vgpu_workload *workload) { int ring_id = workload->ring_id; struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx; struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv; struct drm_i915_gem_request *rq; int ret; gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n", ring_id, workload); shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT); shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode << GEN8_CTX_ADDRESSING_MODE_SHIFT; mutex_lock(&dev_priv->drm.struct_mutex); rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx); if (IS_ERR(rq)) { gvt_err("fail to allocate gem request\n"); ret = PTR_ERR(rq); goto out; } gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq); workload->req = i915_gem_request_get(rq); ret = intel_gvt_scan_and_shadow_workload(workload); if (ret) goto out; ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); if (ret) goto out; ret = populate_shadow_context(workload); if (ret) goto out; if (workload->prepare) { ret = workload->prepare(workload); if (ret) goto out; } gvt_dbg_sched("ring id %d submit workload to i915 %p\n", ring_id, workload->req); ret = 0; workload->dispatched = true; out: if (ret) workload->status = ret; if (!IS_ERR_OR_NULL(rq)) i915_add_request(rq); mutex_unlock(&dev_priv->drm.struct_mutex); return ret; } static struct intel_vgpu_workload *pick_next_workload( struct intel_gvt *gvt, int ring_id) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_vgpu_workload *workload = NULL; mutex_lock(&gvt->lock); /* * no current vgpu / will be scheduled out / no workload * bail out */ if (!scheduler->current_vgpu) { gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id); goto out; } if (scheduler->need_reschedule) { gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id); goto out; } if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) { gvt_dbg_sched("ring id %d stop - no available workload\n", ring_id); goto out; } /* * still have current workload, maybe the workload disptacher * fail to submit it for some reason, resubmit it. */ if (scheduler->current_workload[ring_id]) { workload = scheduler->current_workload[ring_id]; gvt_dbg_sched("ring id %d still have current workload %p\n", ring_id, workload); goto out; } /* * pick a workload as current workload * once current workload is set, schedule policy routines * will wait the current workload is finished when trying to * schedule out a vgpu. */ scheduler->current_workload[ring_id] = container_of( workload_q_head(scheduler->current_vgpu, ring_id)->next, struct intel_vgpu_workload, list); workload = scheduler->current_workload[ring_id]; gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload); atomic_inc(&workload->vgpu->running_workload_num); out: mutex_unlock(&gvt->lock); return workload; } static void update_guest_context(struct intel_vgpu_workload *workload) { struct intel_vgpu *vgpu = workload->vgpu; struct intel_gvt *gvt = vgpu->gvt; int ring_id = workload->ring_id; struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx; struct drm_i915_gem_object *ctx_obj = shadow_ctx->engine[ring_id].state->obj; struct execlist_ring_context *shadow_ring_context; struct page *page; void *src; unsigned long context_gpa, context_page_num; int i; gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id, workload->ctx_desc.lrca); context_page_num = intel_lr_context_size( gvt->dev_priv->engine[ring_id]); context_page_num = context_page_num >> PAGE_SHIFT; if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS) context_page_num = 19; i = 2; while (i < context_page_num) { context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, (u32)((workload->ctx_desc.lrca + i) << GTT_PAGE_SHIFT)); if (context_gpa == INTEL_GVT_INVALID_ADDR) { gvt_err("invalid guest context descriptor\n"); return; } page = i915_gem_object_get_page(ctx_obj, LRC_PPHWSP_PN + i); src = kmap(page); intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src, GTT_PAGE_SIZE); kunmap(page); i++; } intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); shadow_ring_context = kmap(page); #define COPY_REG(name) \ intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) COPY_REG(ctx_ctrl); COPY_REG(ctx_timestamp); #undef COPY_REG intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + sizeof(*shadow_ring_context), (void *)shadow_ring_context + sizeof(*shadow_ring_context), GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); kunmap(page); } static void complete_current_workload(struct intel_gvt *gvt, int ring_id) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_vgpu_workload *workload; struct intel_vgpu *vgpu; int event; mutex_lock(&gvt->lock); workload = scheduler->current_workload[ring_id]; vgpu = workload->vgpu; if (!workload->status && !vgpu->resetting) { wait_event(workload->shadow_ctx_status_wq, !atomic_read(&workload->shadow_ctx_active)); update_guest_context(workload); for_each_set_bit(event, workload->pending_events, INTEL_GVT_EVENT_MAX) intel_vgpu_trigger_virtual_event(vgpu, event); } gvt_dbg_sched("ring id %d complete workload %p status %d\n", ring_id, workload, workload->status); scheduler->current_workload[ring_id] = NULL; list_del_init(&workload->list); workload->complete(workload); atomic_dec(&vgpu->running_workload_num); wake_up(&scheduler->workload_complete_wq); mutex_unlock(&gvt->lock); } struct workload_thread_param { struct intel_gvt *gvt; int ring_id; }; static DEFINE_MUTEX(scheduler_mutex); static int workload_thread(void *priv) { struct workload_thread_param *p = (struct workload_thread_param *)priv; struct intel_gvt *gvt = p->gvt; int ring_id = p->ring_id; struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_vgpu_workload *workload = NULL; long lret; int ret; bool need_force_wake = IS_SKYLAKE(gvt->dev_priv); DEFINE_WAIT_FUNC(wait, woken_wake_function); kfree(p); gvt_dbg_core("workload thread for ring %d started\n", ring_id); while (!kthread_should_stop()) { add_wait_queue(&scheduler->waitq[ring_id], &wait); do { workload = pick_next_workload(gvt, ring_id); if (workload) break; wait_woken(&wait, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); } while (!kthread_should_stop()); remove_wait_queue(&scheduler->waitq[ring_id], &wait); if (!workload) break; mutex_lock(&scheduler_mutex); gvt_dbg_sched("ring id %d next workload %p vgpu %d\n", workload->ring_id, workload, workload->vgpu->id); intel_runtime_pm_get(gvt->dev_priv); gvt_dbg_sched("ring id %d will dispatch workload %p\n", workload->ring_id, workload); if (need_force_wake) intel_uncore_forcewake_get(gvt->dev_priv, FORCEWAKE_ALL); mutex_lock(&gvt->lock); ret = dispatch_workload(workload); mutex_unlock(&gvt->lock); if (ret) { gvt_err("fail to dispatch workload, skip\n"); goto complete; } gvt_dbg_sched("ring id %d wait workload %p\n", workload->ring_id, workload); lret = i915_wait_request(workload->req, 0, MAX_SCHEDULE_TIMEOUT); if (lret < 0) { workload->status = lret; gvt_err("fail to wait workload, skip\n"); } else { workload->status = 0; } complete: gvt_dbg_sched("will complete workload %p, status: %d\n", workload, workload->status); if (workload->req) i915_gem_request_put(fetch_and_zero(&workload->req)); complete_current_workload(gvt, ring_id); if (need_force_wake) intel_uncore_forcewake_put(gvt->dev_priv, FORCEWAKE_ALL); intel_runtime_pm_put(gvt->dev_priv); mutex_unlock(&scheduler_mutex); } return 0; } void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; if (atomic_read(&vgpu->running_workload_num)) { gvt_dbg_sched("wait vgpu idle\n"); wait_event(scheduler->workload_complete_wq, !atomic_read(&vgpu->running_workload_num)); } } void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct intel_engine_cs *engine; enum intel_engine_id i; gvt_dbg_core("clean workload scheduler\n"); for_each_engine(engine, gvt->dev_priv, i) { atomic_notifier_chain_unregister( &engine->context_status_notifier, &gvt->shadow_ctx_notifier_block[i]); kthread_stop(scheduler->thread[i]); } } int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) { struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; struct workload_thread_param *param = NULL; struct intel_engine_cs *engine; enum intel_engine_id i; int ret; gvt_dbg_core("init workload scheduler\n"); init_waitqueue_head(&scheduler->workload_complete_wq); for_each_engine(engine, gvt->dev_priv, i) { init_waitqueue_head(&scheduler->waitq[i]); param = kzalloc(sizeof(*param), GFP_KERNEL); if (!param) { ret = -ENOMEM; goto err; } param->gvt = gvt; param->ring_id = i; scheduler->thread[i] = kthread_run(workload_thread, param, "gvt workload %d", i); if (IS_ERR(scheduler->thread[i])) { gvt_err("fail to create workload thread\n"); ret = PTR_ERR(scheduler->thread[i]); goto err; } gvt->shadow_ctx_notifier_block[i].notifier_call = shadow_context_status_change; atomic_notifier_chain_register(&engine->context_status_notifier, &gvt->shadow_ctx_notifier_block[i]); } return 0; err: intel_gvt_clean_workload_scheduler(gvt); kfree(param); param = NULL; return ret; } void intel_vgpu_clean_gvt_context(struct intel_vgpu *vgpu) { i915_gem_context_put_unlocked(vgpu->shadow_ctx); } int intel_vgpu_init_gvt_context(struct intel_vgpu *vgpu) { atomic_set(&vgpu->running_workload_num, 0); vgpu->shadow_ctx = i915_gem_context_create_gvt( &vgpu->gvt->dev_priv->drm); if (IS_ERR(vgpu->shadow_ctx)) return PTR_ERR(vgpu->shadow_ctx); vgpu->shadow_ctx->engine[RCS].initialised = true; return 0; }