/* SPDX-License-Identifier: MIT */ #ifndef _INTEL_RINGBUFFER_H_ #define _INTEL_RINGBUFFER_H_ #include #include #include #include #include #include "i915_pmu.h" #include "i915_reg.h" #include "i915_request.h" #include "i915_selftest.h" #include "gt/intel_timeline.h" #include "intel_engine_types.h" #include "intel_gpu_commands.h" #include "intel_workarounds.h" struct drm_printer; struct intel_gt; /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, * but keeps the logic simple. Indeed, the whole purpose of this macro is just * to give some inclination as to some of the magic values used in the various * workarounds! */ #define CACHELINE_BYTES 64 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32)) #define ENGINE_TRACE(e, fmt, ...) do { \ const struct intel_engine_cs *e__ __maybe_unused = (e); \ GEM_TRACE("%s %s: " fmt, \ dev_name(e__->i915->drm.dev), e__->name, \ ##__VA_ARGS__); \ } while (0) /* * The register defines to be used with the following macros need to accept a * base param, e.g: * * REG_FOO(base) _MMIO((base) + ) * ENGINE_READ(engine, REG_FOO); * * register arrays are to be defined and accessed as follows: * * REG_BAR(base, i) _MMIO((base) + + (i) * ) * ENGINE_READ_IDX(engine, REG_BAR, i) */ #define __ENGINE_REG_OP(op__, engine__, ...) \ intel_uncore_##op__((engine__)->uncore, __VA_ARGS__) #define __ENGINE_READ_OP(op__, engine__, reg__) \ __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base)) #define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__) #define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__) #define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__) #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__) #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__) #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \ __ENGINE_REG_OP(read64_2x32, (engine__), \ lower_reg__((engine__)->mmio_base), \ upper_reg__((engine__)->mmio_base)) #define ENGINE_READ_IDX(engine__, reg__, idx__) \ __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__))) #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \ __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__)) #define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__) #define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__) #define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__) #define GEN6_RING_FAULT_REG_READ(engine__) \ intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__)) #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \ intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__)) #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \ ({ \ u32 __val; \ \ __val = intel_uncore_read((engine__)->uncore, \ RING_FAULT_REG(engine__)); \ __val &= ~(clear__); \ __val |= (set__); \ intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \ __val); \ }) /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. */ static inline unsigned int execlists_num_ports(const struct intel_engine_execlists * const execlists) { return execlists->port_mask + 1; } static inline struct i915_request * execlists_active(const struct intel_engine_execlists *execlists) { struct i915_request * const *cur, * const *old, *active; cur = READ_ONCE(execlists->active); smp_rmb(); /* pairs with overwrite protection in process_csb() */ do { old = cur; active = READ_ONCE(*cur); cur = READ_ONCE(execlists->active); smp_rmb(); /* and complete the seqlock retry */ } while (unlikely(cur != old)); return active; } static inline void execlists_active_lock_bh(struct intel_engine_execlists *execlists) { local_bh_disable(); /* prevent local softirq and lock recursion */ tasklet_lock(&execlists->tasklet); } static inline void execlists_active_unlock_bh(struct intel_engine_execlists *execlists) { tasklet_unlock(&execlists->tasklet); local_bh_enable(); /* restore softirq, and kick ksoftirqd! */ } struct i915_request * execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); static inline u32 intel_read_status_page(const struct intel_engine_cs *engine, int reg) { /* Ensure that the compiler doesn't optimize away the load. */ return READ_ONCE(engine->status_page.addr[reg]); } static inline void intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) { /* Writing into the status page should be done sparingly. Since * we do when we are uncertain of the device state, we take a bit * of extra paranoia to try and ensure that the HWS takes the value * we give and that it doesn't end up trapped inside the CPU! */ if (static_cpu_has(X86_FEATURE_CLFLUSH)) { mb(); clflush(&engine->status_page.addr[reg]); engine->status_page.addr[reg] = value; clflush(&engine->status_page.addr[reg]); mb(); } else { WRITE_ONCE(engine->status_page.addr[reg], value); } } /* * Reads a dword out of the status page, which is written to from the command * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or * MI_STORE_DATA_IMM. * * The following dwords have a reserved meaning: * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. * 0x04: ring 0 head pointer * 0x05: ring 1 head pointer (915-class) * 0x06: ring 2 head pointer (915-class) * 0x10-0x1b: Context status DWords (GM45) * 0x1f: Last written status offset. (GM45) * 0x20-0x2f: Reserved (Gen6+) * * The area from dword 0x30 to 0x3ff is available for driver usage. */ #define I915_GEM_HWS_PREEMPT 0x32 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32)) #define I915_GEM_HWS_SEQNO 0x40 #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32)) #define I915_GEM_HWS_SCRATCH 0x80 #define I915_HWS_CSB_BUF0_INDEX 0x10 #define I915_HWS_CSB_WRITE_INDEX 0x1f #define CNL_HWS_CSB_WRITE_INDEX 0x2f void intel_engine_stop(struct intel_engine_cs *engine); void intel_engine_cleanup(struct intel_engine_cs *engine); int intel_engines_init_mmio(struct intel_gt *gt); int intel_engines_init(struct intel_gt *gt); void intel_engine_free_request_pool(struct intel_engine_cs *engine); void intel_engines_release(struct intel_gt *gt); void intel_engines_free(struct intel_gt *gt); int intel_engine_init_common(struct intel_engine_cs *engine); void intel_engine_cleanup_common(struct intel_engine_cs *engine); int intel_engine_resume(struct intel_engine_cs *engine); int intel_ring_submission_setup(struct intel_engine_cs *engine); int intel_engine_stop_cs(struct intel_engine_cs *engine); void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine); void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask); u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); void intel_engine_get_instdone(const struct intel_engine_cs *engine, struct intel_instdone *instdone); void intel_engine_init_execlists(struct intel_engine_cs *engine); static inline u32 *__gen8_emit_pipe_control(u32 *batch, u32 flags0, u32 flags1, u32 offset) { memset(batch, 0, 6 * sizeof(u32)); batch[0] = GFX_OP_PIPE_CONTROL(6) | flags0; batch[1] = flags1; batch[2] = offset; return batch + 6; } static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset) { return __gen8_emit_pipe_control(batch, 0, flags, offset); } static inline u32 *gen12_emit_pipe_control(u32 *batch, u32 flags0, u32 flags1, u32 offset) { return __gen8_emit_pipe_control(batch, flags0, flags1, offset); } static inline u32 * __gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags0, u32 flags1) { /* We're using qword write, offset should be aligned to 8 bytes. */ GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); /* w/a for post sync ops following a GPGPU operation we * need a prior CS_STALL, which is emitted by the flush * following the batch. */ *cs++ = GFX_OP_PIPE_CONTROL(6) | flags0; *cs++ = flags1 | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB; *cs++ = gtt_offset; *cs++ = 0; *cs++ = value; /* We're thrashing one dword of HWS. */ *cs++ = 0; return cs; } static inline u32* gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags) { return __gen8_emit_ggtt_write_rcs(cs, value, gtt_offset, 0, flags); } static inline u32* gen12_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags0, u32 flags1) { return __gen8_emit_ggtt_write_rcs(cs, value, gtt_offset, flags0, flags1); } static inline u32 * gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset, u32 flags) { /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ GEM_BUG_ON(gtt_offset & (1 << 5)); /* Offset should be aligned to 8 bytes for both (QW/DW) write types */ GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW | flags; *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT; *cs++ = 0; *cs++ = value; return cs; } static inline void __intel_engine_reset(struct intel_engine_cs *engine, bool stalled) { if (engine->reset.rewind) engine->reset.rewind(engine, stalled); engine->serial++; /* contexts lost */ } bool intel_engines_are_idle(struct intel_gt *gt); bool intel_engine_is_idle(struct intel_engine_cs *engine); void intel_engine_flush_submission(struct intel_engine_cs *engine); void intel_engines_reset_default_submission(struct intel_gt *gt); bool intel_engine_can_store_dword(struct intel_engine_cs *engine); __printf(3, 4) void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...); ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now); struct i915_request * intel_engine_find_active_request(struct intel_engine_cs *engine); u32 intel_engine_context_size(struct intel_gt *gt, u8 class); void intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass); #define ENGINE_PHYSICAL 0 #define ENGINE_MOCK 1 #define ENGINE_VIRTUAL 2 static inline bool intel_engine_has_preempt_reset(const struct intel_engine_cs *engine) { if (!IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT)) return false; return intel_engine_has_preemption(engine); } #endif /* _INTEL_RINGBUFFER_H_ */